
On Indexing in Native XML Database Systems?

Pavel Loupal1, Aleš Kantor1, Ondřej Macek2, and Pavel Strnad2

1 Department of Software Engineering
Faculty of Information Technology, Czech Technical University in Prague

Czech Republic
loupalp@fit.cvut.cz, kantoale@fit.cvut.cz

2 Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University in Prague

Czech Republic
macekond@fel.cvut.cz, pavel.strnad@fel.cvut.cz

On Indexing in Native XML Database Systems?

Pavel Loupal1, Aleš Kantor1, Ondřej Macek2, and Pavel Strnad2

1 Department of Software Engineering
Faculty of Information Technology, Czech Technical University in Prague

Czech Republic
loupalp@fit.cvut.cz, kantoale@fit.cvut.cz

2 Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University in Prague

Czech Republic
macekond@fel.cvut.cz, pavel.strnad@fel.cvut.cz

Abstract. Database indices are fundamental data structures that im-
prove the speed of data retrieval operations. In this paper, we focus on
native XML database systems and provide an elementary survey of ex-
isting approaches for indexing semistructured data employed in selected
academic open-source systems. Considering the requirements set for a
particular system, ExDB, and the results of the accomplished research,
we provide a design proposal of the indexing facility and discuss the
properties of the solution we plan to subsequently realize.

1 Introduction

Native XML database management systems (NXDs) are nowadays a promis-
ing sort of document-based systems oriented on semistructured data. With the
growing amount of XML data available it is essential to provide systems that
can still process increased workloads efficiently. It is a fairly obvious challenge
that is addressed by many research teams working on various aspects of data
management. As a consequence of this situation there is a huge variety of ex-
isting algorithms and their prospective implementations in production-quality
systems. To clarify the purpose and contribution of this submission let us first
identify our position in this space and depict the issues we aim to address.

Our effort is driven by the endeavour to design and develop an indexing mod-
ule in the ExDB system [7] that is being developed within our research group.
Thus, this paper reflects the approach how to achieve this goal as a software
engineering task. First, we depict here the theoretical background related to in-
dexing (naturally only in a conceptual overview) to get acquainted with existing
methods. The next step is to identify some of existing systems that might offer
a useful real-world experience. The selection of presented systems we have made

? This work was partially supported by the Czech Technical University in Prague,
grant no. SGS10/226/OHK3/2T/18 and by the grant project of the Czech Grant
Agency (GAČR) No. GA201/09/0990.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2012, pp. 127–134, ISBN 978-80-7378-171-2.



128 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

is not random; we have decided to include those claiming to offer distinct index-
ing facilities and which are regarded as stable products. We have already had a
positive experience with some of them from our past experiments. An additional
condition was also the source code availability for potential detailed exploration.

Upon the comparison of existing open-source products we can then provide a
design proposal how to construct the indexing module in ExDB according to the
requirements we have set. Subsequently, we discuss potential influence of this
newly built module to operation of the database system. The final evaluation of
the proposal will be naturally available after the implementation and adequate
benchmarking.

Related Work. There are loads of papers and books focused on database systems
and on related particular problems. Here we highlight only the most important
resources for us. The general theoretical foundations required for the work are
sufficiently covered by well-known ”database Bibles”, by Date [3], and Ramakr-
ishnan [10]. Some internals of the systems we discuss later in this paper can be
found on respective project homepages (i.e., for BaseX [4], eXist [9], Sedna [1],
and CellStore [11]) – either by reading the documentation provided or by ac-
cessing their source codes.

2 Native XML Database Systems

Apparently, the most natural way of storing XML documents is to employ a
native XML database system (NXD). The term itself is nevertheless understood
differently by various groups. For our purposes we consider the XML:DB ini-
tiative definition [13]: a NXD database utilizes an (arbitrary) logical model for
an XML document, as opposed to the data in that document, and stores and
retrieves documents according to that model. At a minimum, the model must
include elements, attributes, PCDATA, and document order. The system then
considers such XML document as its fundamental unit of (logical) storage (but,
obviously, may employ an arbitrary physical storage model). To distinguish from
so called XML-enabled databases, we require an NXD to be freshly grown-up
upon the XML technology and not to benefit from facilities available in an ex-
isting (e.g., either relational or object) database system.

2.1 Selected Current NXDs & Feature Survey

To gain some experience with existing products we have selected few products
that seem to offer appropriate and helpful view into the world of production-
quality open-source systems and are initially originated in the academic envi-
ronment. We try to study their internals and assess the particular findings to
learn the best from it. There are two key decision points to be made in order
to obtain valuable and beneficial information – which systems to examine and
what criteria to consider – from such comparison.



On Indexing in Native XML Database Systems 129

Into the list of investigated systems we have selected those that we consider as
potential competitors to our systems (CellStore, ExDB), i.e. open-source prod-
ucts grown-up in academic environment that are in active development and have
a certain track of public releases. Hence, we have picked BaseX, eXist and Sedna.

To select the criteria most relevant to indexing is a more difficult problem
with respect to the complexity of database management systems (in general).
For our purposes we focus mainly on the following areas: supported types of
indices along with their configuration options, utilized numbering schemas, in-
volvement of available indices in query processing and space consumption (either
by database or index). If any additional and beneficial properties have been iden-
tified then they are naturally included in this section, too.

BaseX [4] claims to be a light-weight, high-performance and scalable NXD. It is
written completely in Java and shall be thus available on all supported platforms.
The system supports XPath and XQuery query languages with almost complete
coverage of the XQuery Test Suite (99.9 %). For client applications, provides the
most of the APIs utilized nowadays – REST, WebDAV, XML:DB and XQJ.

The product package contains both server part and GUI client. There are
two ways how to utilize the suite – either in client/server architecture (the most
common deployment scenario) or (locally) as an embedded database. Undoubt-
edly, the supplied GUI client is the best one from all systems mentioned in this
paper. It is user-friendly and offers many ways how to look on data stored at
the server. Moreover, it provides also valuable statistical reports exposing inter-
esting internals such as index configuration parameters, index size or detailed
query execution plans.

Internally, the system supports a (1) structural index (Path Summary Index)
and (2) value indices (text and attribute indices) and a (3) full-text index. All of
these can be independently turned on/off and (3) can be moreover configured in
detail. Particular employment of these indices can be tracked in execution plans
for queries executed within the GUI client.

eXist [9] is another Java-based NXD that, in contrast to other products, de-
pends heavily on several external components, e.g. from the Apache Foundation,
such as Xerces and Xalan. The system supports almost all relevant query lan-
guages – XPath 2.0, XQuery 1.0 and XSLT (1.0 + 2.0). The XQuery compliance
is slightly lower than for BaseX (99.4 %).

Although the documentation of the system’s internals is very sparse we can
observe that the vast majority of work has been done (at least in the recent time)
in the field of numbering schemas and indexing concepts. According to [8] there
are two node ID identification schemes implemented – Level-Order Numbering
(LON) and preferred Dynamic Level Numbering (DLN). The LON uses a simple
arithmetic computation to determine the relationship between two given nodes,
therefore the algorithm works well for all XPath axes (on the contrary, such
algorithm is not update friendly and there exists a document size limit due to



130 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

existing number of available IDs). The DLN is based on decimal classification
and removes thus the disadvantages of the former one.

Using these schemas there are various (built-in or optional) indices available.
The modularized design of the indexing subsystem easily allows to plug in a
new index and attach it to the indexing pipeline. Supported built-in indices are
basically a B+-Tree based Structural Index that is created by default for each
element or attribute in a document and a Range Index (able to directly select
nodes based on their typed values and applied when comparing nodes by way
of standard XPath operators and functions, e.g. =, >,<). Pre-packaged optional
indices are the Spatial Index, N-Gram Index and a Full-text Index (realized by
the Apache Lucene engine).

Configuration of indices in eXist is accomplished by collection-specific con-
figuration files (stored in special path with .xconf extension). The system does
not index any element or attribute values by default therefore the configuration
is needed. Subsequently all indices are automatically maintained and updated
as necessary (according to all modification operations performed).

Sedna [1] is an NXD written in C++ aiming to provide ”schema-based clus-
tering storage efficient for querying and updating”. This motto has been only
partially confirmed by our benchmark (will be published in detail at the con-
ference) as the storage size grew too steeply and the execution times did not
overcome its competitors considerably. Such results might even re-swirl a dis-
cussion on C++ vs. Java environment efficiency.

The system is available on all major operating systems (Windows, Linux,
FreeBSD, MacOS) and comprises of several command-line programs. This ap-
proach differs from all the other systems and makes the use of provided tools a
bit more difficult (at least at the first glance). On the other side, there are API
drivers available for a really wide variety of languages (Java, C, PHP, Python,
Ruby, Perl, Delphi, C#) and XQJ and XML:DB drivers for Java. According to
documentation provided the only query language supported is XQuery 1.0 (with
the coverage confirmed by the XQuery Test Suite to 98.8 %).

Sedna provides two kinds of indices – value (to index XML element content
and attribute values) and full-text index. In the current version, however, the
query executor does not use these indices automatically, but it is necessary to ex-
plicitly use the respective XQuery functions index-scan, index-scan-between,
and ftindex-scan. Value indices can be stored is either B+-tree or Block String
Trie (BST). The latter option is an experimental feature that should provide
more space-efficient alternative to B+-tree with the same search speed.

CellStore The main goal of the CellStore project [11] is to develop an NXD for
both educational and research purposes. It is meant rather as an experimental
platform than an in-box and ready-to-use database engine. We planned such
an engine because the students can easily look inside it, understand and create
new components for this engine as, e.g., a built-in XSLT engine, a query opti-



On Indexing in Native XML Database Systems 131

mizer, an index engine or an event-condition-action (ECA) processing. CellStore
is developed in Smalltalk/X.

System’s architecture is depicted in Figure 1. It can be approached through
several interfaces at different levels of services. The lowest layer, low level storage,
consists of several cooperating modules. Modules depicted in solid boxes are
already implemented, whereas modules in dotted boxes are not ready yet.

Fig. 1. CellStore Architecture

The system currently uses only the Path Summary Index (particular design
and benchmarking depicted in [2]), which is a structural index very similar to
the C–Tree index structure. As the CellStore has a specific internal structure
based on the Self Model [12] the common indexing structures are not directly
applicable. It is an issue to be addressed by future developments.

3 ExDB

ExDB [7] is an NXD being developed as a student research project at our uni-
versity. Its primary goal is to prototype a working database environment in Java
based upon the XML-λ Framework, a functional framework for XML, and thus
confirm its suitability for such use case. The framework and related research
activities are described in detail in [6].

Currently, it allows to persist data in either filesystem-based or native stor-
age. XML data can be queried by XPath, XQuery and XML-λ languages. The
weak point of the present solution is the non-existence of any indexing facility.
Although we have investigated some potential options and proposed a solution
([5]) yet there is no indexing support available. Such shortcoming naturally pre-
vents the system from performing efficiently for any query-based workload.



132 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

3.1 Indexing-related Requirements

The overall goal of our effort is to design and develop a configurable and exten-
sible indexing module for the ExDB system. This module should be in charge of
all documents indices and should provide access to them.

According to the previous survey we have identified fundamental require-
ments listed in short as follows. The design proposal should be

– configurable in various directions
• enabling general setup of the indexing subsystem
• supporting database, collection or document level configuration
• allowing alternative physical storage structure approach – either clus-

tered by index type or by collection hierarchy
– extensible for future improvements and modifications
– supporting multiple index types, generally both value, structure and full-text
– offering automatic index update
– open to multiple query languages – actually for XQuery and XML-λ
– helping with query cost estimation

Moreover, with respect to the nature of the ExDB project, we need to be able
to select some of these requirements and build an prototype within a few months
(till the end of current term). The remaining part is to be done subsequently.

3.2 Analysis

The requirements stated in the previous section cover a very wide range of par-
ticular sub-items that shall be analyzed in detail. In order to cover the most
important ones and due to limited space available we focus here only on the
major issues. Basically, with all these requirements in mind we propose a de-
sign addressing the key areas and furthermore attempt to take into account also
those that remain for the future work. There are three important parts that need
to be examined at first – module configuration, its storage strategy and query
interface.

The configuration of the indexing module will obviously control its behavior
and the scope of features available. Technically, there already is a configuration
facility within the system and thus no additional extension is necessary. So far,
we have identified about 20 parameters that could be used for setting up the
module and its activities. For its length we do not publish it here in depth.

For persisting indices we need to extend current Storage module. Principally,
retrieving and storing does not differ much from working with XML data and
is thus not too complicated. The only doubt is the physical structure of the
data – there are a few different approaches that might affect the efficiency of
read/write operations – particular indices (of distinct types) can be stored in
separate operating system files according to database collection hierarchy or in
one ”big” file all-together. One might consider also a hybrid approach when, for
example, the full-text index for all documents in database is stored in one file



On Indexing in Native XML Database Systems 133

and all the remaining indices are stored separately and organized in collection-
like directory hierarchy. Each approach has its pros and cons (chiefly clashing
memory consumption with disk look-up time overhead) and we are not aware of
any study with general and clear results. Thus, presuming the first approach –
an individual per-document, per-index file – to be sufficiently suitable (i.e. still
efficient and easily implementable) for our prototype.

Regarding the index-lookup interface we are confronted with a problem of us-
ing two implementations of distinct query language (XPath/XQuery and XML-λ)
using different internal data model. There is a planned work on transforming
XQuery queries into their XML-λ equivalent but a working transformation li-
brary seems to be still too distant. There are two alternatives how to face this
problem – we can either speed up the development of the transformation tool
or create a more general interface with adapters to both implementations. From
our programmers experience we prefer to invest the time in the later option and
put some additional effort into developing an adapter layer between indexing
and querying modules.

3.3 Design Proposal

From the requirements and analytical notes stated above we have derived an
outline of module design as shown in Figure 2. The diagram depicts the separa-
tion of the functionality into two logical parts, the first is the manager aiming
to administer particular document indices. Its task is the creation, modification,
deletion, storage and loading of indices. This component is connected to the sys-
tem core from where the commands arrive. Moreover, upon its configuration, the
component may automatically reindex or drop obsolete indices when necessary.

«module»
Query Module

«module»
ExDB Core

«module»
Indexing Module

Query part evaluator

«module»
Storage Module

Index Manager

Index Management Commands

Query (XPath/XQuery..)

Parser

Executor

«module»
Configuration

Query 

Optimizer

Fig. 2. Indexing Module Component Diagram

Parsing the query and consequent preparation of execution plans will be
naturally the task for particular implementation of the query language. These
plans are sent to the indexing module for estimating their costs. The query
module then chooses the most convenient execution plan and starts to evaluate
its steps it accessing either the storage or the indexing module.



134 Pavel Loupal, Aleš Kantor, Ondřej Macek, Pavel Strnad

«module»
ExDB Core

«module»

Indexing Module

«module»

Query Module

«module»

Storage Module

loop Query Plan Evaluation

Evaluate(Query q)

parse(q)

createExecutionPlans(AST)

costEstimation(plans)

bestPlanSelection()

step_evaluation()

partial_result()

step evaluation()

partial result()

partial result()

Fig. 3. Query Evaluation Process Model

4 Conclusion and Future Work

The aim of this paper was to provide an overview of existing approaches for
indexing XML data available in open-source NXDs and to describe a particular
design proposal for a configurable indexing module inside the ExDB system.
Although we have not dipped into the problem in full detail we suppose that the
text sufficiently covers the judgment of our proposal.

Our future work will include the implementation and benchmarking of the
indexing module. These activities are scheduled for the following months along
with implementation of a new transaction module.

References

1. K. Antipin. Sedna project homepage. http://www.sedna.org, 2012.
2. K. Beyr. Index implementation in CellStore project. Master’s thesis, Dept. of

Computer Science and Engineering, FEE CTU, Prague, 2008.
3. C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1995.
4. C. Grün. BaseX project homepage. http://www.basex.org, 2012.
5. M. Janek. Indexing techniques for native XML database systems. Master’s thesis,

Dept. of Computer Science and Engineering, FEE CTU, Prague, 2011.
6. P. Loupal. XML-λ : A functional framework for XML. PhD thesis, Department

of Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, February 2010.

7. P. Loupal. ExDB project homepage. http://exdb.fit.cvut.cz, 2012.
8. W. Meier. Index-Driven XQuery Processing in the eXist XML Database. http:

//www.xmlprague.cz/2006/slides06/meier.pdf, 2006.
9. W. Meier. eXist project homepage. http://exist.sourceforge.net, 2012.

10. R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-Hill
Science/Engineering/Math, 3rd edition, 2002.

11. M. Valenta. CellStore project homepage. http://swing.fit.cvut.cz/projects/

cellstore, 2012.
12. J. Vraný. CellStore - the vision of pure object database. In DATESO, 2006.
13. XML:DB. What is a XML database? http://xmldb-org.sourceforge.net, 2003.


