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Abstract. Sensor Web researchers are currently investigating middleware to aid 

in the dynamic discovery, integration and analysis of vast quantities of high 

quality, but distributed and heterogeneous earth observation data. Key 

challenges being investigated include dynamic data integration and analysis, 

service discovery and semantic interoperability. However, few efforts deal with 

the management of both knowledge and system dynamism. Two emerging 

technologies that have shown promise in dealing with these issues are 

ontologies and software agents. This paper introduces the idea and identifies 

key requirements for a Knowledge Driven Sensor Web and presents our efforts 

towards developing an associated semantic infrastructure within the Sensor 

Web Agent Platform.  
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1 Introduction  

Advances in sensor technology and space science have resulted in the availability of 

vast quantities of high quality, but distributed and heterogeneous earth observation 

data. Sensor Web researchers are currently investigating middleware to facilitate the 

dynamic discovery, integration and analysis of this data with the vision of creating a 

global worldwide Sensor Web [33][6][9]. Key challenges being investigated include 

dynamic data discovery, integration and analysis, semantic interoperability, and 

sensor tasking. While it has been acknowledged that abstractions are required to  

bridge the gap between sensors and applications [6][9] and to provide support for the 

rapid deployment of end user applications [9], the most effective mechanism for 

modeling and managing the resultant deluge of software components remains an open 

issue. Two emerging technologies in Computer Science that have shown promise in 

dealing with these challenges are software agents and ontologies. Agent researchers 

propose the use of software agents as logical abstractions to model and manage 

software components in large scale, dynamic and open environments [17][34][35]. 



 

Software agents are autonomous software components that communicate at the 

knowledge level [13][17]. Many agent based architectures have been proposed for the 

Sensor Web [14][23][5][2]. However most approaches have limited support for the 

construction and evolution of the ontologies to support domain modeling, agent 

communication and reasoning, and to represent the algorithms, scientific theories and 

beliefs that are routinely applied to sensor data. In previous work we described an 

agent based architecture for the Sensor Web [21], i.e. the Sensor Web Agent Platform 

(SWAP), and proposed initial components for the semantic infrastructure [31].  In this 

paper we introduce the idea of a knowledge driven Sensor Web and describe a 

semantic infrastructure that supports both the specification and integration of 

scientific theories and system modeling. Additional details of the implementation of 

the ontologies and the reasoners can be found in [20].  

The rest of the paper is organised as follows. In section 2 key requirements of a 

Knowledge Driven Sensor Web and its potential impact is described. Section 3 

reviews related research. The SWAP semantic infrastructure is described in section 4 

and in section 5 we conclude with a summary of key contributions and some avenues 

for future work. 

2 A Knowledge Driven Sensor Web  

A global Sensor Web must not only deal with issues around the provision, fusion and 

analysis of heterogeneous data. It must also support knowledge capture and use. 

Knowledge includes data processing and transformation algorithms, scientific theories 

and even subjective beliefs. To use this knowledge a mechanism must exist to 

dynamically apply knowledge to observations and to combine the results into 

meaningful information for end users.  This capability to capture and apply 

knowledge will lead to a Knowledge Driven Sensor Web (KDSW). 

A semantic infrastructure for a KDSW must include support for: 

• Data and knowledge dynamism: a comprehensive but integrated conceptual 

modeling framework that includes support for not only modeling theme, time and 

space, but also uncertainty  

• System and application dynamism: modeling of system entities, services, 

workflows, agents (system dynamism) and seamless movement between the 

conceptual model and the system model to support continuous application and 

service  deployment 

Potential benefits of a Knowledge Driven Sensor Web (KDSW) include [22]:  

• Promoting the sharing and reuse of data, knowledge and services  



 

• Facilitating human collaboration and scientific experimentation 

• Reducing information overload and system complexity 

• Managing both data, knowledge and system dynamism 

• Increasing automation and machine intelligence 

A Knowledge Driven Sensor Web can provide specific benefits to a wide range of 

users in the earth observation community. Decision makers can access, manage and 

visualise information provided by real time monitoring applications. Earth 

observation scientists can capture and share earth observation data and knowledge, 

and use the Sensor Web as a platform for experimentation, collaboration and 

knowledge discovery. Developers can easily design, develop and deploy dynamic 

Sensor Web services and end user applications.  

3 Related work  

A number of agent based Sensor Web approaches exist. These include the Internet-

scale resource-intensive sensor network services (IrisNet) [14], Abacus [2], the agent 

based imagery and geospatial processing architecture (AIGA) [23], and the approach 

by Biswas et al. [5]. A summary of these approaches is given in [21]. Each approach 

proposes some form of layered architecture that provide abstractions to separate 

sensor agents from data analysis and filtering agents and aims to ease the modeling of 

agent based applications. While these approaches are promising for single or even 

groups of organizations building distributed agent based applications, except for the 

limited support provided in AIGA [23], no explicit support is provided for creating 

and managing ontologies that are required for agent communication and processing in 

an open Internet scale multi-agent system [13][34][35].  

Ontologies are being widely investigated within the geospatial community to 

standardise, dynamically integrate and query complex earth observation data.  

Agarwal [1] summarises key advances in ontology research within the geospatial 

community. A more recent survey by Compton et. al. [8] describes the range and 

expressive power of twelve sensor ontologies. Despite these efforts there are still 

many outstanding challenges. The added temporal and spatial dimension associated 

with geospatial data requires additional representation support for modeling and 

formalising the domain [1][3]. One intuitive approach to model geospatial entities is 

to follow the human cognition system. Humans store knowledge in three separate 

cognitive subsystems within the mind [19]. The what system of knowledge operates 

by recognition, comparing evidence with a gradually accumulating store of known 

objects. The where system operates primarily by direct perception of scenes within 

the environment, picking up invariants from the rich flow of sensory information. The 

when system operates through the detection of change over time in both stored object 



 

and place knowledge, as well as sensory information. Separate ontological 

representations for space, time and theme have been proposed [26][31]. However, 

these approaches still lack support for representing the inherent uncertainty [3] 

associated with sensor data or for representing system entities.  Even the widely used 

Web Ontology Language (OWL) [25] still lacks core support for representing time, 

space and uncertainty [30] and for representing system entities such as agents, 

services and processes.  

4 The SWAP semantic infrastructure 

Fig. 1 shows the different ontologies provided by SWAP. Ontologies are split into 

two levels, a conceptual level and a technical level. Conceptual ontologies are used 

for modeling and representing observations and theories about the physical world.  

Technical ontologies are used for modeling and representing the software entities 

(agents) that will host and process these observations and theories.  

 

 

Fig. 1. SWAP ontology levels 

The conceptual ontologies are based on creating separate subsystems as proposed by 

Mennis et al [19]. SWAP defines four conceptual dimensions to represent and reason 

about knowledge, the traditional dimensions of theme, space and time, and introduces 



 

a fourth dimension for uncertainty. An ontology and an associated reasoner is 

provided for each dimension. The reasoners currently use different inferencing 

engines: the thematic reasoner uses a Pellet reasoner; the temporal and spatial 

reasoners use a Jena rule-based engine; and the uncertainty reasoner uses a Bayesian 

inference engine. Domain ontologies for specific application domains are built by 

extending the swap-theme ontology. The eo-domain ontology extends the swap-theme 

ontology by adding concepts for building applications in the earth observation domain 

(Fig. 1). It currently references concepts from the SWEET [27] ontologies, an existing 

set of earth science ontologies. Application ontologies specify concepts that are used 

for specific applications, e.g. wildfire detection. Application specific concepts are 

specified along one or more of the four dimensions. The four reasoners are applied 

independently as required to perform inferencing on the application ontology.  

4.1 The thematic dimension 

The thematic dimension provides a thematic viewpoint for representing and reasoning 

about thematic concepts. The swap-theme ontology provides for the representation of 

observations and is based on the OGC's model of observations and measurements 

[10]. The Observation concept, defined in the swap-theme ontology, describes a 

single or a set of observations. Various thematic, spatial, temporal or uncertainty 

properties that are known may be specified for an observation (Fig. 2).  The different 

types of properties are defined in the respective conceptual ontologies, e.g. thematic 

properties are defined in the swap-theme ontology and spatial properties are defined 

in the swap-space ontology. 

 

Fig. 2. Representing an observation 

Two thematic properties are defined in swap-theme, observesEntity describes the 

entity being observed (observedEntity), while observesProperty describes the 

property of the entity that is being measured (observedProperty). The eo-domain 

ontology (Fig. 3) links observable properties from the NASA SWEET [27] property 

ontology by making these properties a subclass of observedProperty such as 



 

BrightnessTemperature
1
 and DryBulbTemperature

2
. Geographical entities from the 

SWEET earthrealm and SWEET phenomena ontologies are also linked by making 

these entities a subclass of observedEntity, e.g. Air, Ocean, PlanetarySurface and 

Wind. 

  
 

Fig. 3. The eo-domain ontology and representing a data set of observations 

The schema for the thematic reasoner consists of the eo-domain, swap-theme and the 

SWEET ontology. This allows the inference engine to infer relations with SWEET 

concepts not explicitly referenced in the eo-domain ontology, e.g. that 

BrightnessTemperature and DryBulbTemperature are both subclasses of 

Temperature.  

4.2 The spatial and temporal dimensions 

The swap-space ontology provides concepts for representing and reasoning about the 

spatial aspects of data.  A part of the swap-space ontology is shown in Fig. 4. Spatial 

entities include spatial reference systems, spatial projections, spatial resolution and 

location. Locations can be common descriptions such as a point coordinate or a 

bounding box, or well defined spatial geometries such as a point, line or polygon. A 

SpatialThing is defined as an entity that has a Location and the spatial reasoner 

determines how two SpatialThings are related. Since OWL does not provide native 

support for spatial representation, a set of spatial rules were formulated using the 

Jena3 rule-based OWL reasoner to represent the eight spatial operators specified in the 

OpenGIS simple features for SQL [24].  

 

                                                           

1 brightness temperature is the measure of the intensity of radiation thermally emitted by an 

object, given in units of temperature  
2 dry-bulb temperature is the temperature of air measured by a thermometer freely exposed to 

the air but shielded from radiation and moisture 
3 http://jena.sourceforge.net 



 

For example, the rule used to determine whether two SpatialThings intersect is: 

 (?x spc:intersects ?y) <- 

    (?x rdf:type spc:SpatialThing) (?y rdf:type spc:SpatialThing) 

    (?x spc:locatedAt ?xExt) (?y spc:locatedAt ?yExt) 

    spatiallyIntersects(?xExt,?yExt). 

 

The rules use special builtins that were created for each of the eight relations. The 

builtins use the JTS topology suite [11] to determine if a specific relation holds 

between two spatial things. It first converts spatial things into JTS geometry objects 

and then calls the appropriate method on the geometry objects to perform the check.  

 

 

 
 

 

 

 

Fig. 4. The spatial ontology and representing spatial properties of observations in SWAP 

The swap-time ontology incorporates the OWL-Time [16] ontology to represent and 

reason about the temporal aspects of data (Fig. 5). OWL-Time considers a temporal 

entity to be either a temporal instant or a temporal interval. As with the spatial 

reasoner an additional set of temporal rules, based on the COBRA temporal reasoner 

[7], specify temporal relations.  

 



 

 

Fig. 5. Representing the temporal properties of a DataSet 

For example, the two rules for determining whether a time instant is inside a time 

interval are: 

 (?x tme:inside ?y) <- 

    (?x rdf:type tme:InstantThing), 

    (?y rdf:type tme:IntervalThing), 

    (?y tme:begins ?beginsY), (?y tme:ends ?endsY), 

    (?beginsY tme:before ?x), (?x tme:before ?endsY). 

 

(?x tme:before ?y) <- 

     (?x rdf:type tme:InstantThing), 

     (?x tme:inCalendarClockDataType ?timeX), 

     (?y rdf:type tme:InstantThing), 

     (?y tme:inCalendarClockDataType ?timeY), 

     lessThan(?timeX,?timeY). 

 

where tme is the name space of the OWL-Time ontology. The first rule stipulates that 

a time instant x is within a time interval y if the starting time of y is before x, and x is 

before the ending time of y. The second rule uses the lessThan builtin to determine 

whether the time value of a time instant x is before the time value of another time 

instant y. 

4.3 The uncertainty dimension 

SWAP takes a Bayesian probability [28] approach to represent and reason about 

uncertainty on the Sensor Web. Bayesian probability is well suited for dealing with 

uncertainty on the Sensor Web: where no complete theory is available; where it exists 

it might be too tedious or complex to incorporate all the required observations; or 

where all the necessary observation data is not available [28]. 

The occurrence of natural phenomena is sometimes difficult to detect. However, 

certain phenomena sometimes exhibit consistent symptoms that are more easily 

detected and can serve as an indicator for the occurrence of the phenomena. The 

analysis of observations from multiple sensors may be required to determine the 

existence of the symptoms of specific phenomena. A Bayesian Network can be used 

to determine the probability of the occurrence of a phenomenon given one or more 

observable symptoms.  



 

In such a Bayesian Network two types of discrete random variables are required: 

• Observable event variables: represents the occurrence of a symptom of a 

phenomenon and is a qualitative measure for an observation. The variable must 

specify the entity, the characteristic of the entity being observed, as well as the 

property that contains the numerical value for the observation. The states are 

predefined numerical ranges, corresponding to qualitative descriptions. For 

example, wind speed is often used as an indication of the extent of a storm: from 

6 to 49 km/hr is a breeze; 50 to 89 km/hr is a gale; 90 to 117 km/hr is a storm and 

speeds greater than 118 km/hr is indicative of a hurricane4. Observation values 

can be used to populate observable event variables. 

• Inferred event variables: represents the occurrence of a phenomenon, e.g. a 

hurricane. A phenomenon is represented as a subclass of Phenomenon in the 

swap-theme ontology. When a phenomenon is detected, an instance of the 

appropriate class is created. These events are inferred from observable events or 

other inferred events. Even though these variables are intended for representing 

the occurrence of a phenomenon, they can be used to represent any event that is 

not easily or directly measurable. 

An occurrence of an observable event is determined by evaluating measurements of 

some observed property of an observed entity, e.g. the speed of the wind above a 

certain threshold results in the occurrence of a "strong wind" event. These observable 

events are used to infer the probability of the occurrence of other events, e.g. a very 

strong wind is a symptom of a hurricane event. Thus, by analysing one or more 

measurements certain phenomena can be detected, e.g. a wind speed above 118 km/hr 

and an air pressure lower than 97.7 kPa can be considered to be symptoms of a 

hurricane event5. A simple Bayesian Network for determining the probability that a 

hurricane is occurring is shown in Fig. 6. The proposed Bayesian Network model 

assumes that all variables are discrete and represent events that occur at the same time 

and space. A limitation of the current model is that it does not cater for the influence 

of past or future events, or the influence of events occurring at different locations.  

An ontology to represent Bayesian Networks. 

The swap-uncertainty ontology, shown in Fig. 7 extends the BayesOWL [12] 

ontology. The BayesOWL ontology proposes five classes to represent a Bayesian 

Network, i.e. ProbObj, which could either be a CondProb or a PriorProb, Variable 

and State. A ProbObj has a probability value (hasProbValue) of some variable 

                                                           

4 Using the Beaufort scale from http://www.hwn.org/home/bws.html 
5 Using the Saffir-Simpson Hurricane Wind Scale, from http://www.nhc.noaa.gov/sshws.shtml 



 

(hasVariable) being true. 

a member (rdf:type) of the specified class 

True or False.  

Fig. 6. A Bayesian Network to determine the occurrence of an hurricane from air pressure 

One extension to the BayesOWL ontology is 

allow for user defined DiscreteStates

interval for numerical data type properties 

values. 

The swap-uncertainty ont

Networks (BN). Each node in the BN represents either an observation or an inferred 

variable. An observation variable represents 

(hasValueProperty) for some observed property (

entity (observesEntity). An inferred variable represents t

phenomena (hasClass). The 

influence the state of the variable.

SWAP uses the BNJ toolkit for internal representation and inferenci

Network tools in Java (BNJ)

applications that use Bayesian Networks. It provides a visual Bayesian Network 

editor and viewer, a graph representation model for representing and manipulating a 

                                                          

6 http://bnj.sourceforge.net 

 In BayesOWL a Variable represents whether an instance is 

) of the specified class (hasClass) with one of two states, either 

 

A Bayesian Network to determine the occurrence of an hurricane from air pressure 

and wind speed observations 

One extension to the BayesOWL ontology is the specialization of the State class to 

DiscreteStates. The DiscreteRangeState could be a numeric 

numerical data type properties or a SingleNumericState for single numeric 

ontology provides support to represent one or more Bayesian 

node in the BN represents either an observation or an inferred 

observation variable represents the observation value 

) for some observed property (observesProperty) of the observed 

). An inferred variable represents the occurrence of some 

). The influencedBy property is used to specify the variables that 

variable. 

SWAP uses the BNJ toolkit for internal representation and inferencing. Bayesian 

Network tools in Java (BNJ)6. BNJ is an open source Java toolkit for developing 

applications that use Bayesian Networks. It provides a visual Bayesian Network 

editor and viewer, a graph representation model for representing and manipulating a 

                   

s whether an instance is 
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A Bayesian Network to determine the occurrence of an hurricane from air pressure 

class to 

could be a numeric 

for single numeric 

Bayesian 

node in the BN represents either an observation or an inferred 

the observation value 

observed 

he occurrence of some 

the variables that 

ng. Bayesian 

is an open source Java toolkit for developing 

applications that use Bayesian Networks. It provides a visual Bayesian Network 

editor and viewer, a graph representation model for representing and manipulating a 



 

BN, a number of inference engines, as well as learning algorithms for constructing a 

Bayesian Network from data. 

 

Fig. 7. A fragment of the SWAP uncertainty ontology 

A BayesianNetwork instance uses the states of observed variables (observation 

instances) to make inferences about whether a phenomena has occurred (inferred 

variables). If a phenomena has occurred then an instance of the corresponding 

phenomena, which contains the corresponding location and time of the observations, 

is created. A schema ontology containing the BN and observation instances from the 

knowledge base are provided to the inference engine. The BN is first extracted from 

the schema ontology and used to create a BNJ graph model. The URIs of the variables 

and their states are used as the variable and state names in the BNJ graph model to 

ease the mapping of variables and states between the ontology and the graph model. 

In this way the uncertainty reasoner dynamically populates user defined bayesian 

networks with observable events, performs inferencing on these events and 

determines and records the occurrence of other events. 

4.4 System ontologies 

SWAP provides three technical ontologies, i.e. swap-data, swap-agent and swap-task 

that provide representational support to describe the system entities that are required 

for hosting and transmitting observations, and for executing algorithms and theories. 



 

The swap-data ontology provides descriptions of different data structures that can be 

exchanged between agents. This includes coverage (image) and feature data as well as 

units of measure. 

Representing agents 

The swap-agent ontology provides support for representing an agent, the service it 

hosts and the interaction protocol required to invoke the service. It provides support 

for representing the six different types of agents specified in the SWAP abstract 

architecture (Fig. 8) [21]. These are data provider (Sensor) agents, processing or data 

transformation (Tool) agents, modeling (Modeling) agents and coordination 

(Workflow) and application (Application) agents.   

 

Fig. 8. The SWAP abstract agent architecture [21] 

Each agent type has a corresponding service description with a set of common 

attributes that capture the conceptual functionality of the service. Sensor Agents 

provide a description of the observations that they provide, while Tool and Modeling 

Agents provide a description of the data processing algorithms and prediction models 

that they respectively provide. Service description attributes are grouped into the four 

different conceptual systems, i.e. spatial, temporal, thematic and uncertainty, and are 

specified using concepts from the appropriate top level ontology. Service descriptions 

also contain service invocation information in the form of input and output mappings. 



 

A request and a response message template is used for invoking and interpreting the 

response of the service. The request message template specifies all service invocation 

parameters, which may be mandatory or optional parameters that have default values. 

Users populate mandatory parameters and may also specify optional parameters for 

finer control of the service. These message templates are used to dynamically invoke 

a service and to consume and interpret its results. This bridges the gap between 

service selection and use, i.e. once a suitable service has been identified it can be 

dynamically invoked and its results can be dynamically interpreted. 

Representing services and workflows 

The swap-task ontology is based on OWL-S [32], and provides algorithmic primitives 

to assemble multiple agents into executable agent workflows. An agent is represented 

as atomic processes and OWL-S algorithmic constructs are used to assemble multiple 

agents into appropriate sequences of invocations or composite processes. The main 

extension to OWL-S is a process to agent mapping that allows OWL-S processing 

steps to be transformed into agent invocations at runtime. The mapping specifies 

request and response templates that are used to transform each processing step into an 

appropriate request and response message used to invoke an agent and to interpret its 

response.  

The technical ontologies provide support for describing the services offered by 

different agents and the agent interactions used to invoke these services. Support is 

also provided for constructing complex information processing chains or workflows 

that may be stored, shared and executed on demand. Since service descriptions and 

data models are captured within shared ontologies, they become dynamic entities that 

can be accessed, queried and modified at runtime. Selected services can be assembled 

into different configurations to form complex executable workflows that may be 

deployed as new composite services. This approach facilitates interoperability 

between agents, and between agents and humans. It also allows for data models and 

service offerings to change, and evolve naturally with minimal impact and without 

having to re-engineer the system. 

Together, the technical and conceptual ontologies allow SWAP users to represent 

complex information processing chains or workflows. Users search semantic agent 

service descriptions and identify appropriate sensor data sets, algorithms and models 

to apply to these data sets. Once the appropriate agents are identified, users use the 

algorithmic constructs in the swap-task ontology to specify a processing workflow 

that assembles different agent services in an appropriate sequence for execution. Each 

workflow represents new functionality in the system. A workflow can also be 

deployed on a Workflow Agent where it can be executed on demand.  Since a 

workflow is fully specified and executed from its OWL-S specification, the 



 

appropriate ontologies (which contain the workflow) can be shared, downloaded and 

executed locally. Furthermore, once the workflow is downloaded it can be easily 

modified and executed locally by SWAP users. A workflow is represented as a 

composite process, which means that it can be incorporated into other composite 

processes (workflows). This allows for reuse of existing workflows within other 

workflows and for creating and managing large and complex nested workflows. 

Currently, workflows are created and modified manually via an ontology editor. 

However, given that the semantics of both the conceptual and the technical aspects of 

each service are specified in the service description, this provides a sound foundation 

for automating workflow composition. 

5 Conclusion  

We have introduced the notion and proposed knowledge representation requirements 

and potential benefits of a Knowledge Driven Sensor Web. We contend that a 

semantic infrastructure and formal software modeling and engineering abstractions 

are both equally important to manage data and knowledge dynamisms as well as 

system and application dynamism.  We propose an ontology driven multi-agent 

system approach to constructing such a system. A key limitation in agent based 

approaches is the lack of a comprehensive semantic infrastructure that includes 

support for representing uncertainty, theories and beliefs and support for representing 

agents, services and tasks. A semantic infrastructure that deals with these limitations 

was described. A novel aspect is the introduction of the additional modeling 

dimension of uncertainty which can be used for representing and applying subjective 

theories. The swap-uncertainty ontology incorporates Bayesian probability, which is 

widely used in practical applications to represent degrees of belief, and allows for the 

incorporation of Bayesian Networks to represent different theories of cause and effect 

relations between events in the physical world. The nature and availability of sensor 

data, the accuracy and completeness of the theory that underpins the choice, and the 

sequence of the processing steps may contribute an additional element of uncertainty. 

The information produced by workflows is frequently approximations or best guesses. 

The incorporation of uncertainty allows end users to better understand the quality of 

information generated within the Sensor Web.  

There are many avenues for future work. The relation of this work to the trend in the 

Semantic Sensor Web community towards linked data [9][4][18] warrants further 

investigation. Another avenue is the extension of the uncertainty model to capture and 

reason about relations between past, current and future events and events occurring at 

different locations. 
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