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Abstract  
In this paper we present a hybrid technique that applies a 
genetic algorithm followed by wisdom of artificial crowds 
approach to solving the graph-coloring problem. The 
genetic algorithm described here utilizes more than one 
parent selection and mutation methods depending on the 
state of fitness of its best solution. This results in shifting 
the solution to the global optimum more quickly than using 
a single parent selection or mutation method. The algorithm 
is tested against the standard DIMACS benchmark tests 
while limiting the number of usable colors to the known 
chromatic numbers. The proposed algorithm succeeded at 
solving the sample data set and even outperformed a recent 
approach in terms of the minimum number of colors 
needed to color some of the graphs. 
 

The Graph Coloring Problem (GCP) is a well-known NP-
complete problem. Graph coloring includes both vertex 
coloring and edge coloring. However, the term graph 
coloring usually refers to vertex coloring rather than edge 
coloring. 
 
Given a number of vertices, which form a connected 
graph, the objective is to color each vertex such that if two 
vertices are connected in the graph (i.e. adjacent) they will 
be colored with different colors. Moreover, the number of 
different colors that can be used to color the vertices is 
limited and a secondary objective is to find the minimum 
number of different colors needed to color a certain graph 
without violating the adjacency constraint. That number 
for a given graph (G) is known as the Chromatic Number 
(χ(G)) (Isabel Méndez Díaz and Paula Zabala 1999).  
 
If k = {1, 2, 3...} and P(G, k) is the number of possible 
solutions for coloring the graph G with k colors, then 
 

 
χ(G) = min(k: P(G, k) > 0) (1) 

 
 
 
Graph coloring problems are very interesting from the 
theoretical standpoint since they are a class of NP-

 
 

complete problems that also belong to Constraint 
Satisfaction Problems (CSPs). The practical applications of 
Graph Coloring Problems include but are not limited to: 
 

• Map coloring (B. H. Gwee, M. H. Lim and J. S. 
Ho 1993) 

• Scheduling (Daniel Marx and D Aniel Marx 2004) 
• Radio Frequency Assignment (W. K. Hale 1980; 

S. Singha, T. Bhattacharya and S. R. B. Chaudhuri 
2008) 

• Register allocation (Wu Shengning and Li Sikun 
2007) 

• Pattern Matching 
• Sudoku 

 
In this paper we demonstrate the use of genetic algorithms 
in solving the graph-coloring problem while strictly 
adhering to the usage of no more than the number of colors 
equal to the chromatic index to color the various test 
graphs. 

Prior Work 
A great deal of research has been done to tackle the 
theoretical aspects of the Graph Coloring Problem in terms 
of its generalization as a Constraint Satisfaction Problem 
(Isabel Méndez Díaz and Paula Zabala 1999). The 
problem’s various applications and solutions have been 
discussed in detail in Porumbel’s paper (Daniel Cosmin 
Porumbel 2009). Evolutionary computation and parameter 
control has been detailed in a number of papers including 
ones by Back, Hammel, and Schwefel (T. Back, U. 
Hammel and H. P. Schwefel 1997) as well as work by 
Eiben, Hinterding and Michalewicz (A. E. Eiben, R. 
Hinterding and Z. Michalewicz 1999). Srinivas and Patnaik 
examined crossover and mutation probabilities for 
optimizing genetic algorithm performance (M. Srinivas and 
L. M. Patnaik 1994). Genetic algorithms and evolutionary 
approaches have been used extensively in solutions for the 
Graph Coloring Problem and its applications (F. F. Ali, et 
al. 1999; K. Tagawa, et al. 1999; Cornelius Croitoru, et al. 
2002; C. A. Glass and A. Prugel-Bennett 2003; Justine W. 
Shen 2003; Greg Durrett, Muriel Médard and Una-May 
O’Reilly 2010; Lixia Han and Zhanli Han 2010). Most 
recent work utilized a parallel genetic algorithm on a 



similar dataset to the one used in this paper (Reza 
Abbasian and Malek Mouhoub 2011). 
 
The concept of utilizing a crowd of individuals for solving 
NP complete problems has also been the topic of various 
papers. Most notably the Wisdom of Crowds concept has 
been used in solving the Traveling Salesman Problem 
(Sheng Kung Michael Yi, et al. 2010b) as well as the 
Minimum Spanning Tree Problem (Sheng Kung Michael 
Yi, et al. 2010a). In this paper we attempt to supplement 
the solution produced by the genetic algorithm utilizing an 
artificial crowd (Leif H. Ashby and Roman V. Yampolskiy 
2011; Roman V. Yampolskiy and Ahmed El-Barkouky 
2011). 

Proposed Approach 
Genetic algorithms share an overall structure and 
workflow yet they vary in the specific details according to 
the particular problem. The algorithm consists of a parent 
selection method, a crossover method and a mutation 
method.  
 
The general algorithm is: 
 
Algorithm1: General Genetic Algorithm 
define: population, parents, child 
 
population = randomly generated chromosomes; 
 
while (terminating condition is not reached) { 
 gaRun(); 
} 
 
// a single run of a genetic algorithm 
function gaRun() { 
 parents = getParents(); 
 child = crossover(parents); 
 child = mutate(child); 
population.add(child); 
} 
 
The goal of the previous algorithm is to improve the 
fitness of the population by mating its fittest individuals to 
produce superior offspring that offer a better solution to 
the problem. This process continues until a terminating 
condition is reached which could be simply that the total 
number of generations has been run or any other parameter 
like non-improvement of fitness over a certain number of 
generations or that a solution for the problem has been 
found. 
 
The chromosome representation of the GCP is simply an 
array with the length set to the number of vertices in the 
graph. Each cell in the array is assigned a value from 0 to 
the number of colors – 1. The adjacencies between the 
vertices are represented by an adjacency matrix of 
dimensions n×n where n: the number of vertices. 

Figure 1 displays the chromosome representation of a 
graph of 7 vertices using 4 colors: 
 
The ultimate goal when solving GCPs is to reach a solution 
where no two adjacent vertices have the same color. 
Therefore, the GA process continues until it either finds a 
solution (i.e. 0 conflicts) or the algorithm has been run for 
the predefined number of generations. In addition to the 
GA, if a run fails to reach a solution a Wisdom of Crowds 
approach will be applied to the top performers in an 
attempt to produce a better solution. 

 
The overall genetic algorithm in this approach is a 
generational genetic algorithm. The population size is kept 
constant at all times and with each generation the bottom 
performing half of the population is removed and new 
randomly generated chromosomes are added. The 
population size is set to 50 chromosomes. The value was 
chosen after testing a number of different population sizes. 
The value 50 was the least value that produced the desired 
results. 
 
The GA uses two different parent selection methods, a 
single crossover method and two different mutation 
methods. Which of the parent selection and mutation 
methods ends up selected depends on the state of the 
population and how close it is to finding a solution. The 
parent selection, crossover and mutation methods are 
outlined as follows: 
 
 
 
 
 

Figure 1: Chromosome representation of a colored connected 
graph 



Algorithm2: parentSelection1: 
define: parent1, parent2, tempParents; 
 
tempParents = two randomly selected chromosomes from the 
population; 
parent1 = the fitter of tempParents; 
  
tempParents = two randomly selected chromosomes from the 
population; 
parent2 = the fitter of tempParents; 
 
return parent1, parent2; 
 
Algorithm3: parentSelection2: 
define: parent1, parent2 
 
parent1 = the top performing chromosome; 
parent2 = the top performing chromosome;  
 
return parent1, parent2; 
 
Algorithm4: crossover 
define: crosspoint, parent1, parent2, child 
 
crosspoint = random point along a chromosome; 
child = colors up to and including crosspoint from parent 1 + 
colors after crosspoint to the end of the chromosome from 
parent2; 
 
return child; 
 
Algorithm5: mutation1: 
define: chromosome, allColors, adjacentColors, validColors, 
newColor; 
 
for each(vertex in chromosome) { 
if (vertex has the same color as an adjacent vertex) { 
  adjacentColors = all adjacent colors; 
  validColors = allColors – adjacentColors;  
 

 newColor  = random color from validColors; 
 chromosome.setColor(vertex, newColor) 

 } 
} 
return chromosome; 
 
Algorithm6: mutation2: 
define: chromosome, allColors 
 
for each(vertex in chromosome) { 
 if (vertex has the same color as an adjacent vertex) { 

 newColor  = random color from allColors; 
 chromosome.setColor(vertex, newColor) 

 } 
} 
return chromosome; 
 

A bad edge is defined as an edge connecting two vertices 
that have the same color. The number of bad edges is the 
fitness score for any chromosome. As mentioned above, the 
alteration between the two different parent selection and 
mutation methods depends on the best fitness. If the best 
fitness is greater than 4 then parentSelection1 and 
mutation1 are used. If the best fitness is 4 or less then 
parentSelection2 and mutation2 are used. This alteration is 
the result of experimenting with the different data sets. It 
was observed that when the best fitness score is low (i.e. 
approaching an optimum) the usage of parent selection 2 
(which copies the best chromosome as the new child) along 
with mutation2 (which randomly selects a color for the 
violating vertex) results in a solution more often and more 
quickly than using the other two respective methods.  
 
Finally, the algorithm is run for 20,000 generations or until 
a solution with 0 bad edges is found. If a solution is not 
found after 20,000 generations the 
wisdomOfArtificialCrowds algorithm is run. The algorithm 
used is a localized wisdom of crowds algorithm that only 
builds a consensus out of the violating edges in the best 
solution. Moreover, it uses the best half of the final 
population to produce an aggregate solution. Only a 
localized consensus is generated so as not to produce a 
result that alters the correctly colored vertices. Also, it 
takes the best half because they share the most similarity 
and thus will most likely be different at the level of the bad 
edges rather than the good ones. 
 
Algorithm7: wisdomOfArtificialCrowds 
define: aggregateChromosome, newColor, expertChromosomes; 
 
expertChromosomes = best half of the final population; 
aggregateChromosome = best performing chromosome; 
 
for each (vertex in graph) { 
 if (vertex is part of a bad edge) { 

newColor = most used color for vertex among 
expertChromosomes; 

     aggregateChromosome.setColor(vertex, newColor) 
 } 
} 

Data 
Data used to test our approach are derived from the 
DIMACS benchmarking graph collection. DIMACS is the 
Center for Discrete Mathematics and Theoretical Computer 
Science. It is part of Rutgers University (The State 
University of New Jersey Rutgers, et al. 2011). The data 
are frequently used in challenges involving constraint 
satisfaction problems. The files used have a .col extension. 
Each file contains a header with the number of vertices (p) 
and the number of edges (e): 
 
p edge 496 11654 



A number of lines follow the header with each line 
denoting the connected edges and their vertex indices: 
 
e 1 100 
 
16 files were chosen from the DIMACS collection. The 
graphs the files represent vary in vertex count, edge count 
and overall complexity. The vertex count ranges between 
11 and 561 and the edge count ranges from 20 to 11654. 
The rationale behind the selection of these graphs other 
than the wide range of variation is that there is a known 
chromatic number for each of them, or at least a good 
approximation. 
 
The following files were used in this approach: 
(myciel3.col, myciel4.col, myciel5.col, queen5_5.col, 
queen6_6.col, queen7_ 7.col, queen8_8.col, huck.col, 
jean.col, david.col. games120.col, miles250.col, 
miles1000.col, anna.col, fpsol2.i.1.col, homer.col). 

Results 
Table 1 displays the following statistics for each file: 

 
• The number of vertices |V| 
• The number of edges |E| 
• The expected chromatic number χ(G) 
• The minimum number of colors used by this 

algorithm kmin 
• The minimum number of colors used by a 

comparative publication using a Hybrid Parallel 
Genetic Algorithm (HPGAGCP) 

• Average time it took to find a solution  
 
The genetic algorithm was developed in Java utilizing JDK 
1.6 and JUNG (Java Universal Network/Graph) framework 
for graph visualization (Joshua O'Madadhain, Danyel 
Fisher and Tom Nelson 2011). Performance plots were 
generated using MATLAB R2010a. 
 
The tests were run on a desktop PC with the following 
specifications: 
  
CPU: Intel Core i7 860 @2.8Ghz 
RAM: 8 GB DDR3 @1333MHz 
 
 
 
 
 
 
 
 
 
 
 
 

File |V| |E| Expected 
χ(G) 

kmin HPGAGCP 
Result 

Time 
(s) 

myciel3.col 11 20 4 4 4 0.003 
myciel4.col 23 71 5 5 5 0.006 
queen5_5.col 23 160 5 5 5 0.031 
queen6_6.col 25 290 7 7 8 6.100 
myciel5.col 36 236 6 6 6 0.014 
queen7_7.col 49 476 7 7 8 6.270 
queen8_8.col 64 728 9 9 10 47.482 
huck.col 74 301 11 11 11 0.015 
jean.col 80 254 10 10 10 0.015 
david.col 87 406 11 11 11 0.019 
games120.col 120 638 9 9 9 0.027 
miles250.col 128 387 8 8 8 0.076 
miles1000.col 128 3216 42 42 42 48.559 
anna.col 138 493 11 11 11 0.058 
fpsol2.i.1.col 496 11654 65 65 65 22.656 
homer.col 561 1629 13 13 13 0.760 
Table 1: Results of running the proposed algorithm on 16 .col 
files from the DIMACS collection 
 
The following graphs plot the relationship between the 
fitness and the generation for a sample set of the files used: 
 

 
Figure 2: Fitness score over the number of generations for 
myciel3.col 

 

 
Figure 3: Fitness score over the number of generations for 
queen5_5.col 

 



Figures 2 and 3 are not very interesting since the solutions 
are found after a few generations. The next plot, however, 
is of particular interest since it clearly represents the erratic 
behavior of the fitness score between the initial rapid drop 
until a solution is ultimately found. In standard genetic 
algorithms the fitness score continues to increase or 
decrease (depending of the definition of better fitness) 
until the end of the run. This is not the case here. This 
factor plays a huge role in obtaining the global optimum 
with a higher probability than without it as will be 
discussed later. 
 

 
Figure 4: Fitness score over the number of generations for 
queen6.col 
 
Sample solutions: (graphs were visualized using the JUNG 
framework (Joshua O'Madadhain, Danyel Fisher and Tom 
Nelson 2011)): 
 

 
Figure 5: GCP solution for myciel5.col 

 
Figure 6: GCP solution for games120.col 
 

 
Figure 7: GCP solution for fpsol2.i.col 

Discussion 
During the design of this approach, the issue of designing 
good operators was a constant concern. The goal of any 
good operator is to bring the chromosomes of a population 
closer to the desired solution. However, during the process, 
a chromosome’s fitness often improves but eventually ends 
up in a local optimum. The overall design of this approach 
aimed to improve fitness towards the global optimum while 
avoiding the pitfalls of local optima. 



To achieve that, a number of factors need to be considered. 
Initially, the crossover function is applied to parents that 
result from the first parent selection method. This method 
selects parents by conducting a small tournament between 
random pairs of chromosomes. Two pairs are chosen 
randomly and the fitter of each pair becomes a parent. 
These fit parents are then used as input to this crossover 
method. The crossover conducts a simple one-point 
crossover with the cross point being chosen at random. 
The result of this crossover is then subjected to the first 
mutation method. The mutation is carried out at a high rate 
of 0.7. This mutation examines each vertex and if a vertex 
violates the coloring constraint a valid color is chosen at 
random. 
 
This process is very effective in reducing the number of 
conflicts rapidly which can be seen in all the plots through 
an almost perpendicular drop in fitness. However, in spite 
of this method’s effectiveness at increasing fitness rapidly, 
it has the side effect of keeping the solution at a local 
optimum.  
 
To fix that, another parent selection and mutation method 
is introduced. The two methods are applied when the 
overall fitness of the best solution drops below 5 conflicts. 
After that point crossover is no longer applied. The top 
performer is selected and is subjected to the second 
mutation method. This method finds the conflicting 
vertices and replaces their conflicting colors with random 
colors; which could be invalid as well. This has the 
potential to either find a globally optimum solution (i.e. 0 
conflicts) or produce a solution that is worse! This can be 
observed by the erratic pattern in some of the graphs after 
the sharp descent and before the actual resolution of the 
problem. 
 
This seemingly worsening fitness is not bad however. In 
fact, it is partly due to this worsening of the fitness that 
some solutions are found at all! When the solution 
becomes worse the fitness score increases. This will force 
the algorithm back to using the first parent selection and 
mutation methods. But, the population now contains a 
solution that hadn’t been there before, which increases the 
possibility of reaching the global optimum. The continuous 
back and forth between parent selection and mutation 
methods plays a crucial role in shifting the solution from a 
local optimum to a global optimum. 
 
Finally, if a solution is not found after 20,000 generations, 
a Wisdom of Artificial Crowds algorithm is applied to the 
resultant population to produce a better solution. The 
genetic algorithm had been producing optimal results and 
thus, per the algorithmic workflow, the Wisdom of 
Artificial Crowds postprocessor wouldn’t be applied. 
However, in order to test its effectiveness, a test was 
conducted by decreasing the generation count to 10,000 to 
intentionally produce a suboptimal solution. The test was 
carried out on the miles1000.col file. Before the 

postprocessor was applied the best solution had 5 
conflicting edges. After application of the Wisdom of 
Artificial Crowds postprocessor the graph was colored 
slightly differently but still had 5 conflicting edges. It is 
worth noting that the postprocessor added an average of 
250 ms to the overall process.  
 
The test cases used were very useful in both testing and 
tuning the algorithm. The algorithm was able to scale 
across the different graphs and produce optimum solutions 
in each case. A recent 2011 publication presented a parallel 
genetic algorithm for the GCP (Reza Abbasian and Malek 
Mouhoub 2011). This paper used most of the same test 
files that were used in Abbasian’s approach. That 
approach’s proposed algorithm failed to solve three of the 
graphs and only produced solutions when the color count 
was increased by 1. The files representing these graphs are 
queen6_6.col, queen7_7.col and queen8_8.col. The 
algorithm used in our approach successfully solved these 
three files using the specified known chromatic number as 
the number of colors used. Our approach is also generally 
faster at finding a solution. It is faster in all cases except 
four. Three of those cases are the three aforementioned 
files, which the comparative method did not succeed at 
finding a solution using the known chromatic index. The 
fourth case is miles1000.col. 

Conclusion 
The overarching algorithm used in this approach is a 
genetic algorithm with a subsequent Wisdom of Crowds 
post-processor. Within the genetic algorithm itself is a set 
of operators that utilize methods from the genetic algorithm 
domain as well as applying various heuristics in a 
stochastic manner. The end result is an quick progressive 
climb to the peak of the globally optimum solution. 
 
The algorithms described here can also be applied to the 
various subsets of the general GCP. In particular, Sudoku 
can benefit from these algorithms where it can be 
represented as a graph with 81 vertices that must be colored 
using no more than 9 different colors (i.e. different 
numbers). 
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