
Multi-K Machine Learning Ensembles

Matthew Whitehead
Colorado College

Mathematics and Computer Science
14 E. Cache La Poudre St.

Colorado Springs, CO 80903
matthew.whitehead@coloradocollege.edu

Larry S. Yaeger
Indiana University

School of Informatics and Computing
919 E. 10th St.

Bloomington, IN 47408
larryy@indiana.edu

Abstract

Ensemble machine learning models often surpass sin-
gle models in classification accuracy at the expense of
higher computational requirements during training and
execution. In this paper we present a novel ensemble al-
gorithm called Multi-K which uses unsupervised clus-
tering as a form of dataset preprocessing to create com-
ponent models that lead to effective and efficient ensem-
bles. We also present a modification of Multi-K that we
call Multi-KX that incorporates a metalearner to help
with ensemble classifications. We compare our algo-
rithms to several existing algorithms in terms of classi-
fication accuracy and computational speed.

Introduction
Groups of machine learning models, called ensembles, can
help increase classification accuracy over single models.
The use of multiple component models allows each to spe-
cialize on a particular subset of the problem space, essen-
tially becoming an expert on part of the problem. The com-
ponent models are trained as separate, independent classi-
fiers using different subsets of the original training dataset or
using different learning algorithms or algorithm parameters.
The components can then be combined to form an ensem-
ble that has a higher overall classification accuracy than a
comparably trained single model. Ensembles often increase
classification accuracy, but do so at the cost of increasing
computational requirements during the learning and classi-
fication stages. For many large-scale tasks, these costs can
be prohibitive. To build better ensembles we must increase
final classification accuracy or reduce the computational re-
quirements while maintaining the same accuracy level.

In this paper, we discuss a novel ensemble algorithm
called Multi-K that achieves a high-level of classification
accuracy with a relatively small ensemble size and corre-
sponding computational requirements. The Multi-K algo-
rithm works by adding a training dataset preprocessing step
that lets training subset selection produce effective ensem-
bles. The preprocessing step involves repeatedly cluster-
ing the training dataset using the K-Means algorithm at dif-
ferent levels of granularity. The resulting clusters are then
used as training datasets for individual component classi-
fiers. The repeated clustering helps the component classi-
fiers obtain different levels of classification specialization,

ultimately leading to effective ensembles that rarely overfit.
We also discuss a variation on the Multi-K algorithm called
Multi-KX that includes a gating model in the final ensemble
to help merge the component classifications in an effective
way. This setup is similar to a mixture-of-experts system.
Finally, we show the classification accuracy and computa-
tional efficiency of our algorithms on a variety of publicly
available datasets. We also compare our algorithms with
well-known existing ensemble algorithms to show that they
are competitive.

Related Work
One simple existing ensemble algorithm is called bootstrap
aggregating, orbagging (Breiman 1996). In bagging, com-
ponent models are given different training subsets by ran-
domly sampling the original, full training dataset. The ran-
dom selection is done with replacement, so some data points
can be repeated in a training subset. Random selection cre-
ates a modest diversity among the component models.

Bagging ensembles typically improve upon the classifi-
cation accuracies of single models and have been shown to
be quite accurate (Breiman 1996). Bagging ensembles usu-
ally require a large number of component models to achieve
higher accuracies and these larger ensemble sizes lead to
high computational costs.

The termboosting describes a whole family of ensem-
ble algorithms (Schapire 2002), perhaps the most famous
of which is called Adaboost (Domingo & Watanabe 2000),
(Demiriz & Bennett 2001). Boosting algorithms do away
with random training subset selection and instead have com-
ponent models focus on those training data points that pre-
viously trained components had difficulty classifying. This
makes each successive component classifier able to improve
the final ensemble by helping to correct errors made by other
components.

Boosting has been shown to create ensembles that have
very high classification accuracies for certain datasets (Fre-
und & Schapire 1997), but the algorithm can also lead to
model overfitting, especially for noisy datasets (Jiang 2004).

Another form of random training subset selection is called
random subspace (Ho 1998). This method includes all train-
ing data points in each training subset, but the included
data point features are selected randomly with replacement.
Adding in this kind of randomization allows components to



focus on certain features while ignoring others. Perhaps pre-
dictably, we found that random subspace performed better
on datasets with a large number of features than on those
with few features.

An ensemble algorithm calledmixture-of-experts uses
a gating model to combine component classifications to
produce the ensemble’s final result (Jacobset al. 1991),
(Nowlan & Hinton 1991). The gating model is an extra ma-
chine learning model that is trained using the outputs of the
ensemble’s component models. The gating model can help
produce accurate classifications, but overfitting can also be
a problem, especially with smaller datasets.

The work most similar to ours is the layered, cluster-based
approach of (Rahman & Verma 2011). This work appears
to have taken place concurrently with our earlier work in
(Whitehead 2010). Both approaches use repeated cluster-
ings to build component classifiers, but there are two key
differences between the methods. First, Rahman and Verma
use multiple clusterings with varying starting seed valuesat
each level of the ensemble to create a greater level of train-
ing data overlap and classifier diversity. Our work focuses
more on reducing ensemble size to improve computational
efficiency, so we propose a single clustering per level. Sec-
ond, Rahman and Verma combine component classifications
using majority vote, but our Multi-KX algorithm extends
this idea by placing a gating model outside of the ensem-
ble’s components. This gating model is able to learn how to
weight the various components based on past performance,
much like a mixture-of-experts ensemble.

Multi-K Algorithm
We propose a new ensemble algorithm that we callMulti-
K, here formulated for binary classification tasks, but
straightforwardly extensible to multidimensional classifica-
tion tasks. Multi-K attempts to create small ensembles with
low computational requirements that have a high classifica-
tion accuracy.

To get accurate ensembles with fewer components, we
employ a training dataset preprocessing step during ensem-
ble creation. For preprocessing, we repeatedly cluster the
training dataset using the K-Means algorithm with different
values of K, the number of clusters being formed. We have
found that this technique produces training subsets that are
helpful in building components that have a good mix of gen-
eralization and specialization abilities.

During the preprocessing step the value for the number
of clusters being formed,k, varies fromKstart to Kend.
Kstart andKend were fixed to two and eight for all our
experiments as these values provided good results during
pretesting. Each new value ofk then yields a new clustering
of the original training dataset. The reason thatk is varied is
to produce components with different levels of classification
specialization ability.

With small values ofk, the training data points form larger
clusters. The subsequent components trained on those sub-
sets typically have the ability to make general classifications
well: they are less susceptible to overfitting, but are not ex-
perts on any particular region of the problem space. Figure

1 shows the limiting case ofk = 1, for which a single classi-
fier is trained on all of the training data. Figure 2 shows that
as the value ofk increases, classifiers are trained on smaller
subsets of the original data.

Figure 1: Fork = 1, a single classifier is trained on the
entire training set.

Larger values ofk allow the formation of smaller, more
specialized clusters. The components trained on these train-
ing subsets become highly specialized experts at classifying
data points that lie nearby. These components can overfit
when there are very few data points nearby, so it is impor-
tant to choose a value forKend that is not too large. This
type of repeated clustering using varying values ofk forms
a pseudo-hierarchy of the training dataset.

Figure 2: Fork = 2, classifiers are trained on two disjoint
subsets of the data, that overlap thek = 1 training set.

Figure 3 shows that ask is further increased, the clus-
tered training datasets decrease in size allowing classifiers
to become even more highly specialized. In this particular
example, we see that classifier 6 will be trained on the same
subset of training data as classifier 3 was above. In this way,
tightly grouped training data points will be focused on since
they may be more difficult to discriminate between. The
clustering algorithm partitions the data in such a way as to
foster effective specialization of the higher-k classifiers, thus
maximizing those classifiers’ ability to discriminate.

Following the clustering preprocessing step, each compo-
nent model is trained using its assigned training data subset.
When all the components are trained, then the ensemble is
ready to make new classifications. For each new data point
to classify, some components in the ensemble make classifi-
cation contributions, but others do not. For a given new data
point to classify,p, for each level of clustering, only those
components with training data subset centroids nearest top
influence the final ensemble classification. Included compo-
nent classifications are inversely weighted according to their
centroid’s distance fromp.



Figure 3: Fork = 3, classifiers will be even more special-
ized because of their localized learning areas. If resulting
clusters are identical, as is the case with clusters 3 and 6 in
this example, only one cluster need be used to keep the final
ensemble as small as possible.

Figure 4 shows an example where classifier #2 contributes
to the final ensemble classification, since the data point to be
classified (denoted by a ’?’) is nearest to its cluster centroid.
Classifier #3 makes no contribution for this particular sam-
ple.

Figure 4: Classifier #2 contributes to the ensemble’s final
classification, but classifier #3 does not.

Figure 5 continues this example of component selection
for the next level of clustering. At this level, classifier #5is
selected to contribute to the final classification and the other
classifiers are ignored. Since classifier #5 was trained on a
smaller training data subset than classifier #2 from Figure 4,
it will be more specialized for the given problem. Its cluster
centroid is also closer to the data point to be classified, so its
classification weight will be greater.

Figure 5: Classifier #5 is selected for ensemble contribution
and is given a larger weight than classifier #2 from Figure 4.

The final classification is the weighted average of then
ensemble components’ classifications in the current ensem-
ble formation:

n∑

i=0

wi · Ci(p)

n∑

i=0

wi

whereCi(p) is classifier i’s classification of target data
pointp and eachwi is an inverse distance of the form:

wi =
1

dist(p,centroidi)

Pseudocode listing 1 shows the algorithm for clustering
and training the component classifiers in Multi-K. Once the
clustering and component classifier training is complete,
then the ensemble is ready to classify new data points. Pseu-
docode listing 2 shows the algorithm for choosing the appro-
priate component classifiers given each new target data point
to classify.

Given

D : training dataset
Kstart: The number of clusters in the first level of clustering.
Kend: The number of clusters in the last level of clustering.

Ensemble Training Pseudocode

for k from Kstart to Kend:
cluster D into k clusters, Dki, i ∈ [1, k]
for i from 1 to k:

train classifier Cki on data Dki

Pseudocode 1:Multi-K ensemble training.

Ensemble Formation Pseudocode

Given, p, a data point to classify

For each clustering (k):
Find the cluster, Dki, with centroid
< Dki > nearest to p
Add Cki, trained on Dki, to ensemble
Compute weight of Cki with distance from
< Dki > to p

Pseudocode 2:Multi-K ensemble formation.

Finally, once the appropriate component classifiers have
been selected, then the final ensemble classification can be
calculated. Pseudocode listing 3 shows the algorithm for
calculating the final classification based on a weighted sum
of the outputs of the selected components.

Multi-KX Algorithm
The Multi-K algorithm used training dataset preprocessing
to form effective component models. Final classifications
were then performed by the entire ensemble by combining
component classifications together based on the distance be-
tweenxpredict and the centroids of each of the component



Ensemble Classification Pseudocode

sum = 0
sum weights = 0
for each classifier, C, in ensemble:

weightC = 1
dist(C,p)

sum += weightC * C′s classification of p
sum weights += weightC

final_classification = sum / sum_weights

Pseudocode 3:Multi-K ensemble classification.

training datasets. This technique works well, but we also
thought that there may be non-linear interactions between
component classifications and a higher accuracy could be
gained by using a more complex method of combining com-
ponents.

With this in mind, we propose a variation to Multi-K,
called Multi-KX. Multi-KX is identical to Multi-K except
in the way that component classifications are combined. In-
stead of using a simple distance-scaled weight for each com-
ponent, Multi-KX uses a slightly more complex method that
attempts to combine component outputs in intelligent ways.
This intelligent combination method is achieved by the use
of a gating metanetwork. This type of metanetwork is used
in standard mixture-of-experts ensembles. This metanet-
work’s job is to learn to take component classifications and
produce the best possible final ensemble classification. Fig-
ure 6 shows the basic setup of the ensemble.

Figure 6: Ensemble classification using a gating model
metanetwork.

The metanetwork can then learn the best way to combine
the ensemble’s components. This can be done by weighting
certain components higher for certain types of new problems
and ignoring or reducing weights for other components that
are unhelpful for the current problem.

Building a Metapattern For the metanetwork to effec-
tively combine component classifications, it must be trained
using a labeled set of training data points. This labeled train-
ing set is similar to any other supervised learning problem:
it maps complex inputs to a limited set of outputs. In this
case, the metanetwork’s training input patterns are made up
of two different kinds of values. First, each classification
value is included from all the ensemble’s components. Then
the distance betweenxpredict and each cluster’s centroid is

also included. Figure 7 shows the general layout for a meta-
pattern.

Figure 7: A Multi-KX metapattern. Inputs are grouped in
pairs. The first number of each pair is the normalized com-
ponent class prediction value (1 or 0 for this example). The
second number is a measure of the distance betweenxpredict

and a component’s training cluster centroid, normalized to
the range (0, 1) where a value of 1 is used for the maximum
distance centroid and a value of 0 is used for the minimum
distance centroid. The metanetwork tries to learn the map-
ping from these values to the actual correct data point clas-
sification.

Experimental Results
To test the performance of our algorithms, we performed
several experiments. First, we tested the classification accu-
racy of our algorithms against existing algorithms. Second,
we measured the diversity of our ensembles compared to
existing algorithms. Finally, we performed an accuracy vs.
computational time test to see how each algorithm performs
given a certain amount of computational time for ensemble
setup and learning.

Accuracy Tests
Ensembles need to be accurate in order to be useful. We
performed a number of tests to measure the classification ac-
curacy of our proposed algorithms and we compared these
results with other commonly-used ensemble techniques. We
tested classification accuracy on a series of datasets from the
UCI Machine Learning Repository (Asuncion & Newman
2007) along with a sentiment mining dataset from (White-
head & Yaeger 2009). We performed aK-fold cross valida-
tion (with K=25) test using each algorithm on each dataset
and we repeated each test ten times to ensure that the results
were statistically stable. Each reported accuracy value isthe
mean of the resulting 250 test runs.

All accuracy tests were performed using support vector
machines (Chang & Lin 2001) with linear kernels as the
component classifiers, except we also compare our accura-
cies with boosting ensembles of decision stumps since the
boosting algorithm is known to suffer less from overfitting
with these component classifiers. For these tests, ensembles
created with commonly used algorithms each had 50 com-
ponent classifiers, as in (Breiman 1996).

Table 1 shows the classification accuracies for each tested
algorithm and dataset. For each tested dataset, the most ac-
curate result is shown in bold face. These results show that



the proposed algorithms are competitive with existing en-
semble algorithms and are able to outperform all of those
algorithms for some datasets. The telescope dataset in par-
ticular yielded encouraging results with more than a 3% in-
crease in classification accuracy (a 16% reduction in error)
obtained by the Multi-KX algorithm. Performance was also
good on the ionosphere dataset with an almost 2% higher
accuracy (a 17% reduction in error) than other ensemble al-
gorithms.

The dataset that Multi-K performed most poorly on was
the restaurant sentiment mining dataset, where it was more
than 2% behind the subspace ensemble. Since that dataset
uses an N-gram data representation model, the data is con-
siderably more sparse than the other tested datasets. We hy-
pothesize that the sparsity made the clustering and the re-
sulting component classifiers less effective. None of the en-
semble algorithms were able to outperform a single SVM
on the income dataset. This again suggests that the nature of
the dataset will occasionally determine which algorithms do
well and which do poorly.

Diversity Measurements
To form an effective ensemble, a certain amount of diver-
sity among component classifiers is required. We measured
the diversity of the ensembles formed by Multi-K using
four different pairwise diversity metrics from (Kuncheva &
Whitaker 2003):

• Q statistic - the odds ratio of correct classifications be-
tween the two classifiers scaled to the range -1 to 1.

• ρ - the correlation coefficient between two binary classi-
fiers.

• Disagreement measure - proportion of the cases where the
two classifiers disagree.

• Double-fault measure - proportion of the cases misclassi-
fied by both classifiers.

Figure 8 shows that the diversity of Multi-K ensembles
generally falls in between algorithms that rely on random
subsampling (bagging and subspace) and the one tested al-
gorithm that particularly emphasizes diversity by focusing
on previously misclassified training points (boosting). For
example, values for the Q statistic andρ were higher for the
random methods and lower for boosting. The disagreement
measure again shows Multi-K in the middle of the range.

Double fault values were nearly identical across all algo-
rithms, suggesting that double fault rate is a poor metric for
measuring the kind of diversity that is important to create
ensembles with a good mix of generalization and specializa-
tion.

Combining Accuracy and Computational
Efficiency
Since our main goal was to provide an algorithm that yielded
high classification accuracies with the minimal amount of
computational overhead, we performed a final combined ac-
curacy and complexity test to show the relationship between

Figure 8: Measures of diversity for Multi-K ensembles on
the heart dataset

the two for various ensemble algorithms. To do this, we ran
existing ensemble algorithms with a wide variety of parame-
ters that affect accuracy and training time. We then plotteda
number of these training time/classification accuracy points,
hoping to provide a simple, but informative way to compare
the two across ensemble algorithms. We also ran each of the
Multi-* algorithms and plotted each result as a single point
on the graph because they have no free parameters to change.
Each plot line is a best-logarithmic-fit for each existing algo-
rithm to help see general trends. Figure 9 shows the results
and has been normalized against the classification accuracy
and computational time of a single SVM. Averaging across
all tested datasets, Multi-K provided higher accuracy than
other algorithms using anything less than about three times
the compute time, and Multi-KX provided the highest accu-
racy of all, out to at least twice its computational costs.

Conclusions and Future Directions

We found that ensembles created using the Multi-* algo-
rithms showed a good amount of diversity and had strong
classification performance. We attribute this performance
to a good mix of components with varying levels of gener-
alization and specialization ability. Some components are
effective over a large number of data points and thus exhibit
the ability to generalize well. Other components are highly
specialized at making classifications in a relatively smallre-
gion of the problem space. The mix of both these kinds of
components seems to work well when forming ensembles.

In the future, we hope to extend our method beyond bi-
nary to multi-class classification. In addition, we specu-
late that including additional characterizations of datasets
and models as inputs to the gating network may further im-
prove the accuracy of Multi-KX. We also are continuing
work investigating alternative ways of preprocessing train-
ing datasets.



Ensemble heart bre dia iono spam tele sent inc
Single SVM 80.8 96.7 77.0 88.2 92.3 79.5 84.0 85.2

Bag 81.6 96.7 77.1 89.0 92.3 79.5 85.3 85.2
Boost SVM 81.6 96.6 77.1 88.9 92.4 79.6 84.0 84.5
Boost Stump 82.2 94.7 76.0 86.9 82.3 78.5 73.5 84.8

Subspace 83.4 96.7 76.4 88.2 91.7 77.8 86.6 84.6
Multi-K 83.1 96.5 77.2 88.6 92.1 79.8 84.3 85.1

Multi-KX 80.7 96.5 77.4 90.9 92.1 82.8 84.8 84.7

Table 1: Accuracy of algorithms with K-fold (K=25) tests - heart disease, breast cancer, diabetes, ionosphere, spam detection,
telescope, restaurant sentiment mining, and income. For each tested dataset, the highest accuracy is shown in bold font.

Figure 9: Normalized composite algorithm performance.

References

Asuncion, A., and Newman, D. 2007. UCI machine learn-
ing repository.

Breiman, L. 1996. Bagging predictors.Machine Learning
24(2):123–140.

Chang, C. C., and Lin, C. J. 2001. LIB-
SVM: a library for support vector machines.
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Demiriz, A., and Bennett, K. P. 2001. Linear programming
boosting via column generation.

Domingo, and Watanabe. 2000. Madaboost: A modifi-
cation of adaboost. InCOLT: Proceedings of the Work-
shop on Computational Learning Theory, Morgan Kauf-
mann Publishers.

Freund, and Schapire. 1997. A decision-theoretic general-

ization of on-line learning and an application to boosting.
JCSS: Journal of Computer and System Sciences 55.

Ho, T. K. 1998. The random subspace method for
constructing decision forests.Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on Volume 20(Issue
8):832–844.

Jacobs, R.; Jordan, M.; Nowlan, S. J.; and Hinton, G. E.
1991. Adaptive mixtures of local experts.Neural Compu-
tation 3:79–87.

Jiang, W. 2004. Boosting with noisy data: Some views
from statistical theory. Neural Computation 16(4):789–
810.

Kuncheva, L. I., and Whitaker, C. J. 2003. Measures of di-
versity in classifier ensembles.Machine Learning 51:181–
207.

Nowlan, S. J., and Hinton, G. E. 1991. Evaluation of adap-



tive mixtures of competing experts.Advances in Neural
Information Processing Systems.

Rahman, A., and Verma, B. 2011. Novel layered
clustering-based approach for generating ensemble of clas-
sifiers. InIEEE Transactions on Neural Networks, 781–
792. IEEE.

Schapire, R. E. 2002. The boosting approach to machine
learning: An overview.

Whitehead, M., and Yaeger, L. 2009. Building a general

purpose cross-domain sentiment mining model. InPro-
ceedings of the 2009 CSIE World Congress on Computer
Science and Information Engineering. IEEE Computer So-
ciety.
Whitehead, M. 2010. Creating fast and efficient machine
learning ensembles through training dataset preprocessing.
In Ph.D. Dissertation, School of Informatics and Comput-
ing Indiana University.


