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Abstract 

The genetic algorithm (GA) has been applied 

to a wide variety of problems where truly 

optimal solutions are computationally 

intractable.  One such problem is the book 

embedding problem from graph theory.  A 

book embedding is an ordering of vertices 

along a line (the spine) with the edges 

embedded in half-planes (the pages) extruding 

from the line so that the edges do not cross.  

The goal is to find the minimal number of half-

planes needed to embed a given graph.  This 

problem is known to be NP-complete.  The 

paper shows that the GA can be used to 

generate counter-examples to conjectured 

minimum bounds.  

 
Introduction 

 

The idea that there might be something to be gained 

by applying the principles of Darwinian natural 

selection to computing is not new.  Turing himself 

proposed evolutionary search as early as 1948.  

Though John Holland at the University of Michigan 

coined the term “genetic algorithm” in the mid-

seventies, the GA was not widely studied until 1989 

when D.E. Goldberg showed that it could be used to 

solve a number of difficult problems (Holland, 1975; 

Goldberg, 1989; Luger and Stubblefield, 2009).   At 

least some of those difficult problems are in the 

equivalence class “consisting of the ‘hardest’ 

problems in NP,” namely the class of NP-complete 

problems (Garey and Johnson, 1979: 14).  

Researchers who investigate problems in this class 

must content themselves with heuristic approaches, 

constraint relaxation, and, crucially, with sub-optimal 

solutions.   

 

This paper argues that the GA can be effectively used 

in a problem from graph theory known as book 

embedding.  A book embedding of a graph is an 

ordering of the vertices along a line in 3-space (the 

spine) along with an assignment of each edge to a 

single half-plane extruding from the spine (a page) 

such that the edges do not cross each other or the 

spine.  The goal is to find the minimal number of 

pages needed to embed a given graph in a book.  The 

study of book embedding is of interest both as a 

theoretical area of topological graph theory and as a 

practical subject with numerous applications. 

There has been a recent boom in interest in book 

embedding, motivated by its usage in modeling a 

variety of problems.  Book embeddings have been 

applied to fault-tolerant VLSI design, sorting with 

parallel stacks, single-row routing, and complexity 

theory (Chung, Leighton, and Rosenberg, 1987).  

Beyond computer science applications, book 

embeddings can be used to model and solve traffic 

flow problems (Kainen, 1990) and to study RNA 

folding (Gliess and Stadler, 1999).  Due to its 

contributions to both theory and application, book 

embedding has been the subject of extensive study.  

Dujmović and Wood (2004) give a summary of many 

of the known applications and results in book 

embeddings.   

The book embedding problem is also known to be 

NP-complete (Garey, et al., 1980).  Informally, this 

means that an exhaustive search through the space of 

possible embeddings for a minimal embedding is 

intractable.  As an NP-complete problem, the task of 

determining an optimal book embedding for an 

arbitrary graph is difficult.  This is where methods 

such as the GA may be of great assistance. The 

contribution of the GA to the book embedding 

problem is two-fold: 1) generating novel embeddings 

and 2) generating counter-examples to conjectured 

bounds.  In this paper, we provide an overview of 

book embedding, an overview of the GA, and present 

very encouraging results for graphs of various 

configurations.  We also describe a novel technique 

that we call the “Dual-Layered Approach” (DUA) 

which we are currently investigating. 



The Book Embedding Problem 
 

An n-book is a topological structure consisting of n 

half-planes (the pages) joined together at a common 

line (the spine).  A graph is embedded in a book by 

placing the vertices along the spine and each edge on 

a single page of the book so that no two edges cross 

on any page.  The book-thickness of a graph G, 

denoted ��(�), is the smallest number n for which G 

has an n-book embedding. 

 

 

 
 

 

 
Figure 1:   A three-page book embedding of K6 

 

 

A book embedding of the complete graph on six 

vertices �� in a three-page book is given in Figure 1.  

The vertices of the graph lie on the spine.  The first 

page of the book consists of the solid edges above the 

spine, the second page of the book is comprised of 

the solid edges below the spine, and the dashed edges 

above the spine form the third page of the book.  

These pages may be represented as lists of edges as 

follows: 

Page 1:  {(1,2), (1,3), (1,6), (2,3), (3,4), (3,6), (4,5),   

(4,6), (5,6)} 

Page 2: {(1,4), (1,5), (2,4)} 

Page 3: {(2,5), (2,6), (3,5)} 

When embedding a graph in a book, there are two 

important considerations.  First, the ordering of the 

vertices along the spine must be determined.  For a 

graph with � vertices, there will be �!		possible 

arrangements of the vertices along the spine.  Even if 

we account for the � cyclic rotations of this linear 

ordering and the reflections of each of these, there are 

still (� − 1)!/2 vertex orderings to consider.  Once 

the vertex order is determined, then the edges must 

be embedded on the pages of the book.  As the 

numbers of vertices and edges increase, finding the 

book-thickness of a graph becomes computationally 

intractable. Garey, Johnson, Miller, and 

Papadimitriou (1980) proved that the problem of 

determining the book-thickness of an arbitrary graph 

is NP-complete, even with a pre-specified vertex 

ordering. 

Despite the difficulty of the general book embedding 

problem, there are known bounds for the book-

thickness of a graph with m vertices and q edges. We 

include Bernhart and Kainen’s (1979) proof here 

since we use methods from this proof to form our 

custom cost function for our book embedding GA. 

 

 

Theorem 1    ��	�	��	�	������	������	����ℎ	���ℎ 

    		� ≥ 4	��������	�� 	!	� ���, �ℎ��  
 

��(�) ≥ #$%
%$& . 

Proof: Place the � vertices on the spine of the 

book.  The �	 − 1 edges connecting consecutive 

vertices along the spine may be placed on any page 

of the book without creating edge crossings.  The 

edge connecting the first and last vertex on the spine 

may also be placed on any page of the book, above 

all other edges, without causing crossings.  Ignoring 

the � edges of this cycle, there may be at most 

� − 3 additional edges on any page of the book, 

corresponding to a complete triangulation of the 

interior of this cycle.  Thus an n-page book 

embedding of a graph with � vertices may have at 

most  �	 + 	�	(� − 3) edges;  � for the outer cycle 

and � − 3 for a complete triangulation of this cycle 

on each of the n pages. 

Now we have:     

! ≤ � + �(� − 3) 
Solving for	� yields the desired result: 

 

    � ≥ #$%
%$& ,     thus completing the proof. 

 

 

 

The complete graph on � vertices,	�%, is formed by 

connecting each pair of distinct vertices with an edge. 

The bound for book-thickness given in Theorem 1 

may now be used to determine the optimal book-

thickness of �% in the following theorem (Bernhart 

and Kainen, 1979). 



Theorem 2 ��	� ≥ 4, �ℎ��	��(�%) = +	%, 	-. 
 

 

Proof: The graph �% has ! = /�20 =
%(%$1)

,  

edges, corresponding to each distinct pairs of 

vertices.  From Theorem 1, it follows that  

 

��(�%) 	≥ 	
2�(� − 1)

2 3 − �
� − 3 	= 	�2  

 
Since the book-thickness must be an integer, it 

follows that		��(�%) ≥ +	%, 	-.   
 
 

 

 

 

 

 

 

Figure 2:   Rotated zig-zag triangulations of an m-cycle.  

Each rotation corresponds to one of the m/2 pages in a 

book embedding of �%. 

 

 

To show that	+	%, 	- pages are sufficient, we first 

observe that when � is even, then +	%, 	- = +	%$1
, 	- =

%
,  .  Hence, we may assume that � is even.  Since the 

graph �%$1 is a sub-graph of		�%, we will show that 

�% is embeddable in a book with 
%
,  pages.  The 

corresponding embedding of �%$1 will follow after 

removing one vertex and its adjoining edges from the 

embedding of �%.  
 

The desired embedding of �% is attained by rotating 

the interior edges of a zig-zag triangulation of the 

outer �-cycle through  
%
,   successive positions, as 

shown in Figure 2.  The edges of each rotation are 

embedded on a separate page and the � edges of the 

outer cycle are placed on the first page.  It is easily 

seen that each of the  � + %
, (� − 3) = /�20 edges 

of of �% are embedded exactly once, showing that 

��(�%) ≤ +	%, 	-.  This gives us our desired result. 

 

For example, the �� graph shown in Figure 1 has 15 

edges, 6 on the outer cycle and 	�, (6 − 3) = 9 in the 

interior of the cycle.  By Theorem 2, the optimal 

book-thickness of this graph is		��(��) = +	�	, - = 3.  

Figure 2 depicts the three rotated triangulations of the 

6-cycle that correspond to each of the three pages of 

the book embedding of	�� given in Figure 1.   

The optimal book-thickness is known for several 

classes of graphs (Dujmović and Wood, 2004).  

When a graph is planar, it can be shown that the book 

thickness is never more than four pages (Yannakakis, 

1986).  Further, if the graph is planar and does not 

contain triangles, the book thickness is at most two 

pages (Kainen and Overbay, 2007).  Although the 

optimal book-thickness is known for the complete 

graph, there are other similar graphs for which the 

optimal number is not known.  One such graph is the 

complete bipartite graph, �%,6.  This graph consists 

of a set of � vertices and a set of �	vertices, with all 

possible connections from the �-set to the �-set and 

no connections within each set.  The book-thickness 

of �%,6 has been shown to be at most the smaller of � 

and +,67%8 - (Muder, Weaver, and West, 1988).  They 

originally conjectured that this bound was optimal, 

but it has been improved to 9,6& : + 1 when � = �  

and in the case when  � = 96;8 :, embeddings in books 

with � − 1 pages have been found (Enomoto, 

Nakamigawa, and Ota, 1997).   



The Genetic Algorithm 
 

Having provided an overview of the book embedding 

problem, we turn our attention to the Genetic 

Algorithm (GA).  The GA is loosely based on the 

concept of Darwinian natural selection. Individual 

members of a species who are better adapted to a 

given environment reproduce more successfully and 

so pass their adaptations on to their offspring.  Over 

time, individuals possessing the adaptation form 

interbreeding populations, that is, a new species.  In 

keeping with the biological metaphor, a candidate 

solution in a GA is known as a chromosome.  The 

chromosome is composed of multiple genes.  A 

collection of chromosomes is called a population.  

The GA randomly generates an initial population of 

chromosomes that are then ranked according to a 

fitness (or cost) function (Haupt and Haupt, 1998).  

One of the truly marvelous things about the GA is its 

wide applicability.  We have used it to optimize 

structural engineering components—an NP-Complete 

problem—and are currently applying it to model 

language change (Ganzerli, et al., 2003, 2005, 2008; 

Overbay, et al., 2006). For practical purposes, this 

means, of course, that those who attempt to solve 

these problems must be content with good-enough 

solutions.  Though good-enough may not appeal to 

purists, it is exactly the kind of solution implicit in 

natural selection: a local adaptation to local 

constraints, where the structures undergoing change 

are themselves the product of a recursive sequence of 

adaptations.  This can be expressed quite compactly: 

GA() 

 { 

 Initialize() //generate population  

  ComputeCost() //of each member 

 SortByCost() //entire population  

  while (good enough solution has not appeared) 

    { 

         Winnow() //who reproduces? 

 Pair() //pair up reproducers 

 Mate() //pass properties to children 

  Mutate()  //randomly perturb genes 

 SortByCost() //entire population 

  TestConvergence()  //good enough solution? 

  } 

 } 

 

As noted, the optimal book embedding for the 

complete bipartite graph �%,6 is not known.  The 

optimal book-thickness is known for small values of 

� and �, but even in cases as small as �8,8	an 

unusual ordering of the vertices is needed to attain an 

optimal 3-page embedding.  Using a dual-layered 

approach to our genetic algorithm, described later in 

the paper, we hope to improve upon the best known 

bounds. 

 
The GA and Book Embedding 

 

The most extensive application of the GA to the book 

embedding problem prior to our own work is found 

in Kapoor et al. (2002) and Kapoor (1999).  Kapoor 

at al. (2002) algorithmically generate an edge 

ordering and use the GA solely for the vertex 

ordering.  Their algorithm produced embeddings at 

the known optimal bound for certain families of 

graphs.  They provide no examples on how their 

approach scales to other types of graphs.  Further, 

Kapoor (1999) appears only to have found known 

optimums for relatively small graphs, such as the 

complete graph up to �1<. Kapoor’s results may be 

limited since the edge ordering is fixed.  It is also 

known that embedding with pre-set vertex ordering 

does not always achieve optimal results.  Our 

approach seeks to vary both dimensions of the 

problem. 

  
The Dual-Layered Approach 
We use a novel application of the GA to the book 

embedding problem that we call the “Dual-Layered 

Approach” (DUA).  DUA provides an outer GA, 

which is used to seek an “optimal” vertex ordering 

for the spine of the book, along with an inner GA 

which seeks the “best” edge ordering for any given 

vertex sequence.  Each population in our experiments 

consists of 64 chromosomes.  The outer GA 

generates an initial population of vertex orderings, 

referred to as outer chromosomes.  In order to 

determine the fitness of these chromosomes, the inner 

GA is run using each individual member of the 

population as a vertex ordering.  So, for each member 

of a population of 64 outer chromosomes, the inner 

GA is run 64 times.  The fitness of each outer 

chromosome is equal to the fitness of the best 

solution found in the inner GA using that vertex 

sequence.  This process is repeated in each generation 

of the outer GA.   

 

The ultimate goal is to find a solution within the 

inner GA that is lower than theorized bounds for 

graphs such as complete bipartite graphs, �%,6.  

DUA will be particularly useful in seeking an 

improvement on the best known bounds for the book 

thickness of complete bipartite graphs since it is 

known that naïve approaches to vertex ordering for 

this family of graphs does not lead to optimal results.  

In particular, orderings with high regularity do not 

lead to the smallest book thickness.  We hope that 

DUA will help discover atypical vertex orderings for 



complete bipartite graphs that will produce book 

embeddings that require fewer pages than the best 

known bounds. 
 
The Cost Function 
We have applied optimizations to several aspects of 

the inner GA in order to improve its effectiveness and 

efficiency.  The cost function received special 

attention.  The fitness of any given solution can be 

seen as its distance away from the best known bound.  

The more accurately the cost algorithm is able to 

capture this distance, the more quickly the GA will 

converge on a local solution.  If the cost algorithm 

does not capture this distance well, then the GA will 

approach a random search.  Initially we attempted to 

measure the cost using a relatively naïve approach, 

that is, the cost was simply equal to the book- 

thickness for a given edge ordering.  However, 

consider two edge orderings with the same book- 

thickness: ordering one is more tightly packed toward 

the first page, while ordering two is more thickly 

populated toward the end.  Ordering one is probably 

closer to an optimal solution than ordering two, but 

by considering only the book-thickness, the genetic 

algorithm would be unable to differentiate between 

the two solutions.   

 

In order to solve this problem, we developed a cost 

function that values both small book-thickness as 

well as books more tightly packed towards the top.  

This cost function is customized for each type of 

graph.  For example, when evaluating the fitness of a 

particular book embedding of the complete graph, we 

remove the �	cycle edges from our edge list, since 

these may be placed on any page.  By the proof of 

Theorem 1, at most � − 3 additional edges may be 

placed on any page of the book.  We assign a cost of 

0 to any page that achieves this bound.  Pages that 

have � − 3	– >	edges are assigned a cost of >.  Since 

an optimal book embedding of �% requires � = +	%, 	- 
pages (see Theorem 2), any edges embedded on 

pages after page � are also included in the cost 

function.  The cost function for �% is given below: 

 
t = total number of edges (not counting adjacent boundary   

     edges) 

e = max number of edges per page = m-3 

p = max number of pages = ceiling(t/e) 

n = number of edges on last page = e-(t mod e) 

 

cases: 

1. current page # < p 

    cost = e - (number of edges on page) 

 

2. current page number == p 

    if current number of edges on page <= n 

             cost = n-(current number of edges on page) 

    if current number of edges on page is > n 

             cost = (current number of edges on page) – n 

 

   3. current page number > p 

               cost = current number of edges on page 

 

Bipartite graphs, such as the hypercube and �%,6 do 

not contain triangles, so the maximum number of 

edges per page of the book will be less than	� − 3.  

For such graphs, the custom cost function is adjusted 

accordingly. 

 
Mating Algorithms 
We also explored several types of mating algorithms, 

finally settling on the Order Crossover approach, 

which is well suited to the book embedding problem 

due to its ability to maintain the relative order of 

genes (Davis, 1985). In Order Crossover, the 

construction of a child chromosome from its parent 

involves two main steps.  First, a subsequence of 

genes with random start and end indices is selected 

from parent 1.  Each gene in the range [start, end], is 

copied into the child at the same index as it was 

found in the parent (Figure 3-Step 1).  Next, starting 

at end + 1, genes are selected from parent 2 and 

placed into the child at the first available index 

following the end index.  If a selected gene is already 

contained in the child, then it is skipped.  The 

algorithm continues to choose genes from parent 2 

until the child chromosome has been filled, wrapping 

around to the beginning of the parent and child 

chromosomes as needed (Figure 3-Step 2). 

 

  Step 1: 

        
Parent 1: 1 2 3 4 5 6 7 8 

         
Parent 2: 3 2 5 6 4 8 1 7 

         Child: __ 2 3 4 __ __ __ __ 

           Step 2: 

        Parent 1: 1 2 3 4 5 6 7 8 

         
Parent 2: 3x 2x 54 65 4x 81 12 73 

         
Child: 65 2 3 4 81 12 73 54 

 

Figure 3: The two main steps of Order Crossover.  In 

Step 2, numbered subscripts indicate the order of 

insertion into the child, while the subscript “x” indicates 

a gene which was skipped. 



Normalization 
The use of Order Crossover allowed us to optimize 

our cost function using a technique that we call 

“normalization.” Because the edge ordering is 

independent of the page numbers of the edges, the 

effectiveness of the mating algorithm was diluted.  

Normalization is the process of grouping the edges 

by their page numbers.  In other words, all edges that 

were embedded on page one occur first, followed by 

all of the edges from page two, etc.  When the edges 

are grouped in this manner, any sub-sequence of 

edges that gets swapped by the parents in the mating 

algorithm contains edges that are closely related by 

page.  Therefore, entire sections of the parent 

embedding can be preserved in the children.  

Normalization has enabled us to find optimal book 

embeddings for several kinds of graphs.    

 

 

 Results 
 

We have explored several kinds of graphs thus far: 

 

• Complete graphs  up to �1?   
 

• Complete bipartite graphs up to �@,@ 
 

• Hypercubes up to A� 
 

• Square grids up to 10×10 
 

• B-trees up to height 8 
 

 

 

Table 1   This shows the best results produced by 

our GA as they compare to the optimal bound for the 

book thickness of complete graphs.   

 
Graph  Our Results Optimal Bound 

K7 4 4 

K8 4 4 

K9 5 5 

K10 5 5 

K11 6 6 

K12 7 6 

K13 7 7 

K19 10 10 

Kn  C�/2D 
 

 

Table 2   This shows the best results produced by our 

GA as they compare to the best known lower bound 

for the book thickness of complete bipartite graphs. 

 

Graph  Our Results Best Known Bound 

K5,5 4 4 

K6,6 5 5 

K7,7 5 5 

Kn,n  E2�/3F + 1 

 

 

Table 3   This shows the best results produced by our 

GA as they compare to the best known lower bound 

for the book thickness of hypercube graphs. 

 

Graph  Our Results Best Known Bound 

Q4 4 4 

Q5 4 4 

Q6 5 5 

Q7 7 6 

Qn  � − 1 

 

 

Table 4   This shows the best results produced by our 

GA as they compare to the optimal bound for the 

book thickness of square grids.  

 

Graph Size Our Results Optimal Bound 

2×2 2 2 

3×3 2 2 

4×4 2 2 

5×5 2 2 

6×6 2 2 

7×7 2 2 

8×8 2 2 

9×9 2 2 

10×10 2 2 

n × n  2 

 

 



Table 5   This shows the best results produced by our 

GA as they compare to the optimal lower bound for 

the book thickness of X-trees.  

 

Graph Height Our Results Optimal Bound 

2 2 2 

3 2 2 

4 2 2 

5 2 2 

6 2 2 

7 2 2 

8 2 2 

n  2 

 

 

In every case, with the exception of	A@, our results 

have been equivalent to known or conjectured 

bounds.  We also have attained optimal bounds for 

much larger graphs than in previously published 

results.  Our GA has attained optimal book 

embeddings of the complete graph up to �1?, which 

has 19 vertices and 171 edges.  Clearly, the possible 

orderings of 171 edges would make an exhaustive 

search of the solution space intractable.   

 

It should be noted that for square grids and X-trees, 

convergence to an optimal two-page embedding 

occurred every time and the convergence time did not 

appear to increase as the size of the graph increased.  

For these graphs, the degrees of the vertices and the 

structure of the graph remain similar as the size 

increases.  We would expect duplicate results for 

much larger graphs of these types.  Whereas, for 

complete graphs, hypercubes, and complete bipartite 

graphs, the vertex degrees increase as the number of 

vertices grows.  For this reason, these three types of 

graphs are of interest in our continued research.  We 

are particularly interested in improving on the 

theoretical bounds for hypercubes and complete 

bipartite graphs, since the best bounds for these 

graphs are still unknown. 

 
Conclusion and Future Research 

 
Book embedding is easy to describe yet 

computationally intractable.  It is exactly the kind of 

problem for which the genetic algorithm shines.  

Whether one is constructing a near-optimal truss, a 

near-optimal book embedding, or, indeed, an 

organism adapted to a set of local conditions, the 

genetic algorithm has proven to be a useful guide.  

We have shown that the GA can produce book 

embeddings that are as good as known optimal 

bounds on large graphs.  Though we have yet to find 

a counter-example to conjectured bounds for other 

types of graphs, our dual-layered approach, a genetic 

algorithm within a genetic algorithm, represents a 

novel solution to the problem.  We are currently 

working in two directions.  We are attempting to 

generate book embeddings for complete bipartite 

graphs and hypercubes that improve upon known 

bounds for these graphs.  We also observe that 

computing the same cost function for each of 64 

chromosomes is embarrassingly parallel.  Our major 

effort over the next year will be to parallelize DUA 

for execution on a cluster.  Although the ability to 

search intractably large spaces will not necessarily 

generate a true optimal embedding, it should allow us 

to speak with confidence about currently conjectured 

bounds.  
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