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Abstract 

This paper presents a new five-valued knowledge 
representation of bipolar information. This representation is 
related to a five-valued logic that uses two logical values of 
truth (true, false) and three logical values of uncertainty 
(incomplete, inconsistent and fuzzy). The new approach is 
based on the concept of saturation function and ignorance 
function. In the framework of five-valued representation 
new formulae for union and intersection are constructed. 
Also, the paper presents a short application related to fuzzy 
preference modeling and decision making. 

Introduction 

Let X be a set of objects. We consider a property A , an 
object Xx  and the following sentence )(xPA :  x  has 
the property A . We want to know if the sentence )(xPA  
is true or false. After an evaluation, the information about 
logical value of sentence )(xPA  is described by a scalar 

]1,0[)( xTA . For the considered sentence, )(xTA  
represents its truth degree. In the same time, the function 

]1,0[: XTA defines a Zadeh fuzzy set associated to the 
property A (Zadeh 1965). Then, we compute the degree of 
falsity: 
 
      )(1)( xTxF AA                                 (1) 

 
Using the scalar )(xTA , we have obtained the following 
representation of information about sentence )(xPA . 
 
   ))(),(()( xFxTxW AAA                        (2) 

 
This information is normalized because the components of  
vector )(xWA  verify the condition of partition of unity: 
 
   1)()(  xFxT AA                                 (3) 

 
The representation (3) is related to a bi-valued logic based 
on true and false. The next step was done by Atanassov  
(Atanassov 1986). He considered that after evaluation, the  

                                                 
 

 
information about logical value of sentence )(xPA  is 
described by a vector with two components  
 
    )(),()( xFxTxV AAA                         (4) 

 
and supplementary these two components verify the 
inequality: 
   1)()(  xFxT AA                          (5) 
 
The information represented by vector )(xVA  is not 
normalized but, Atanassov has introduced the intuitionistic 
index: 
   )()(1)( xFxTxU AAA                    (6) 

 
Using the vector )(xVA , we have obtained an intuitionistic  
representation of information about sentence )(xPA . 
 
   ))(),(),(()( xFxUxTxW AAAA            (7) 

 
This information is normalized because the components of  
vector )(xWA  verify the condition of partition of unity: 
 
   1)()()(  xFxUxT AAA                   (8) 

 
The representation (8) is related to a three-valued logic 
based on true, neutral and false. 
In this paper we will consider the bipolar representation 
(Benferhat et al. 2006; Cornelis et al. 2003; Dubois et al. 
2004) without having the condition (5). In this case, we 
cannot obtain immediately a normalized variant like (8). In 
the following, we present a method for obtaining a 
normalized representation of bipolar information. 
The paper has the following structure: section two presents 
the concepts of saturation, ignorance and bi-fuzziness. 
Section three presents the construction method of five-
valued representation. Section four presents a five-valued 
logic based on true, false, incomplete, inconsistent and 
fuzzy. Section five presents some operators for the five-
valued structure. Section six presents the using of five-
valued knowledge representation for fuzzy modeling of 



pairwise comparisons. Finally we present some 
conclusions. 

Saturation, Ignorance and Bi-fuzziness 

Functions 

In this section, firstly, we introduce the concepts of 

saturation function and ignorance function. These two 

functions are complementary. Both functions are 

essentially characterized by symmetry, boundary and 

monotonicity properties. Secondly, we introduce the 

concept of bi-fuzziness related to the index of 

indeterminacy (Patrascu 2008).                                                                                                                                      

Definition 1: A saturation function is a mapping 

]1,0[]1,0[: 2 S  such that: 

i) ),(),( xySyxS   

ii) 0),( yxS  if and only if )0,0(),( yx  

iii) 1),( yxS  if and only if )1,1(),( yx   

iv) ),( yxS  increases with respect to x  and y  

The property a) describes the commutativity and the 

property d) describes the monotonicity. From property b) it 

results that the saturation value is low if and only if both 

arguments have low value and from property c) it results 

that the saturation value is high if and only if both 

arguments have high value. 

Example 1: 

2
),(

yx
yxS


 . 

 

Example 2: 

||1

),max(
),(

yx

yx
yxS


 . 

 

Example 3:  For any t-conorm    

)1()1(1
),(

yx

yx
yxS




 . 

 

Example 4:  For any t-conorm    

 

)1()1(
),(

yxyx

yx
yxS




 . 

 

Example 4: 

||
2

1

2
),( yx

yxyx
yxS 





 . 

Notice that these particular saturation functions are not 

associative. 

Definition 2: A ignorance function is a mapping 

]1,0[]1,0[: 2 U  such that: 

i) ),(),( xyUyxU   

ii) 0),( yxU  if and only if )1,1(),( yx   

iii) 1),( yxU  if and only if )0,0(),( yx  

iv) ),( yxU  decreases with respect to x  and y  

 

Example 1: 

2
1),(

yx
yxU


 . 

Example 2: 

||1

),min(1
),(

yx

yx
yxU




 .  

 

The following proposition shows the relation between 

saturation functions and ignorance functions and some 

supplementary properties. 

Proposition 1: Let S be a saturation function. Then 

 

)1,1(),( yxSyxU                         (9) 

 

is an ignorance function. 

Proof: It is evident because the properties of both functions 

are complementary.  

Proposition 2: Let U be an ignorance function.  Then 

 

),(1),( yxUyxS       (10) 

 

is a saturation function. 

Proof: It is evident because the properties of both functions 

are complementary.  

Proposition 3: Let S  be a saturation function let )1,0( . 

Then 

)),(1()1(),(

),(
),(

yxSyxS

yxS
yxP









    (11) 

 

is a saturation function. 

Proof: It is evident because in the new saturation function 

construction it was used the scalar addition based on the 

uninorm function.  

Proposition 4: Let S  be a saturation function let 

),0(  . Then 





)),(1(),(

),(
),(

yxSyxS

yxS
yxQ


     (12) 

 

is a saturation function. 

Proof: It is evident because in the new saturation function 

construction it was used the scalar multiplication based on 

the uninorm function.  

Proposition 5: Let S  be a saturation function. Then 

 



)1,1(),(

),(
),(

yxSyxS

yxS
yxR


                   (13)  

is a saturation function. 

Proof: It is results immediately that the new saturation 

function verifies the properties i), ii), iii) and iv).  

 

Definition 3: A bi-fuzziness function is a mapping 

]1,0[]1,0[: 2 I  such that: 

i) ),(),( xyIyxI   

ii) ),1(),( yxIyxI   

iii) )1,(),( yxIyxI   

iv) 0),( yxI  if and only if }1,0{, yx   

v) 1),( yxI  if and only if )5.0,5.0(),( yx  

vi) ),( yxI  increases with x  if  5,0x and ),( yxI  

decreases with x  if  5,0x  

vii) ),( yxI  increases with y  if  5,0y  and ),( yxI  

decreases with y  if  5,0y  

 

The bi-fuzziness function represents a measure of 

similarity between the point 2]1,0[),( yx  and the center 

of unit square, the point )5.0,5.0( . The index of bi-

fuzziness verifies, for each argument x  and y , the 

properties considered by De Luca and Termini for fuzzy 

entropy definition (De Luca and Termini 1972). 

 If we replace y  with the negation of x , namely 

xxy  1 , one obtains a fuzzy entropy function. 

 

Proposition 6: Let S  be a saturation function. Then 

 

|)),(),(|1(|)),(),(|1(),( yxSyxSyxSyxSyxI    

   

is a bi-fuzziness function. 

 

Proposition 7: Let S  be a saturation function. Then 

 

 |12||,12|1),(  yxSyxI   

   

is a bi-fuzziness function. 

 

Example 1: 

|5.0||5.0|1),(  yxyxI . 

 

Example 2: 

   
|1|||1

|1|1||1
),(






yxyx

yxyx
yxI .  

 

Example 3: 

|)1|1|)(|1(),(  yxyxyxI . 

Five-Valued Representation of Bipolar 

Information 

Let S  be a saturation function. For any pair ),( FT , we 

define the net truth  and the definedness   by:  

),(),(),( FTSFTSFT   

),(),(),( FTSFTSFT   

The uncertainty or the entropy (Kaufmann 1975; Patrascu 

2010) is defined by: 

                             ||1 h                                            (14)         

and the certainty will be its negation: 

||g               

The two functions define a partition with two fuzzy sets 

GX  and HX : one related to the certainty and the other to 

the uncertainty. 

The non-fuzziness id defined by:  

                              || z                                               (15) 

The index of bi-fuzziness will be computed by difference 

between uncertainty and non-fuzziness: 

                           ||||1  i                                     (16) 

The non-fuzziness and bi-fuzziness define two subsets of 

HX , namely: ZX  and IX . We compute the 

incompleteness (undefinedness) and inconsistency 

(contradiction) using the non-fuzziness: 

                                  u                                           (17)    (17) 

                                   c                                          (18) 

where ),0max( xx    and  ),0max( xx  .  

The incompleteness and inconsistency define two subsets 

of ZX , namely: UX  and CX . Notice that because  

0uc  it results: 

                                  CU XX                               (19) 

Next we compute the index of truth and falsity using the 

net truth  function  : 

                                t                                              (20) 

                                f                                             (21) 

The index of truth and index of falsity define two subsets 

of GX , namely: TX  and FX . Notice that because  

0 ft  it results: 



                                    FT XX                             (22)           

The index of truth (20), the index of falsity (21), the index 

of bi-fuzziness (16), the index of incompleteness (17) and 

the index of inconsistency (18) define a partition of unity:  

                               1 cuift                            

In the construction method presented above, it was used 
the schema shown in figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The construction schema for five-valued 

representation of bipolar information. 

 

 

Five Valued Logic Based on Truth, Falsity, 

Inconsistency, Incompleteness and Bi-

fuzziness 

This five-valued logic is a new one, but is related to our 

previous work presented in (Patrascu 2008). In the 

framework of this logic we will consider the following five 

values: true t , false f , incomplete (undefined) u , 

inconsistent (contradictory) c , and fuzzy (indeterminate) 

i .  We have obtained these five logical values, adding to 

the so called Belnap values (Belnap 1977) the fifth: fuzzy 

(indeterminate). Tables 1, 2, 3, 4, 5, 6 and 7 show the basic 

operators in this logic. 

 

Table 1. The union. 

 

 t c i u f 

t t t t t t 

c t c i i c 

i t i i i i 

u t i i u u 

f t c i u f 

 

Table 2. The intersection. 
 

 t c i u f 

t t c i u f 

c c c i i f 

i i i i i f 

u u i i u f 

f f f f f f 

 
 
The main differences between the proposed logic and the 
Belnap logic are related to the logical values  u  and c . We 
have defined  iuc   and iuc   while in the Belnap 
logic there were defined fuc   and tuc  . 

 
 

Table 3. The complement. 
 

  
t f 

c c 

i i 

u u 

f t 

 
 

Table 4. The negation. 
 

  
t f 

c u 

i i 

u c 

f t 

 
 

Table 5. The dual. 
 

  
t t 

c u 

i i 

u c 

f f 

 
 

The complement, the negation and the dual are interrelated 

and there exists the following equalities:              

                                        xx                                 (23) 

                                       xx                                 (24) 

                                       xx                                 (25) 

 

 

Certain 
 

Uncertain 
 

True 
t 

False 
f 

Non-fuzzy 
 

Incomplete 
u 

Inconsistent 
c 

Bipolar 

information 
T, F 

Fuzzy 
i 



                       Table 6. The S-implication  
 
 

 

 

 
The S-implication is calculated by: 
  
   yxyx      (26) 
 

 
                     Table 7. The equivalence  
 

 

 

 

 

The equivalence is calculated by: 

      

    )()( yxyxyx      (27) 

New Operators Defined on Five-Valued 

Structure 

There be 5]1,0[∈),,,,( fuictx  , For this kind of vectors, 

one defines the union, the intersection, the complement, 

the negation and the dual operators. The operators are 

related to those define in (Patrascu 2007a; Patrascu 

2007b). 

The Union: For two vectors 5]1,0[, ba  where 

),,,,( aaaaa fuicta  , ),,,,( bbbbb fuictb  , one 

defines the union (disjunction)  bad   by the formula: 

bad

babbaad

babbaad

bad

fff

fffufuu

fffcfcc

ttt









)()(

)()(
             (28) 

)(1 ddddd fucti   

The Intersection: For two vectors 5]1,0[, ba  one defines 

the intersection (conjunction) bac   by the formula: 

bac

babbaac

babbaac

bac

fff

tttutuu

tttctcc

ttt









)()(

)()(
         (29) 

)(1 ccccc fucti   

In formulae (28) and (29), the symbols “ ” and “ ” 

represent the maximum and the minimum, namely: 

],1,0[,  yx  

),max( yxyx   

),min( yxyx   

The union “ ” and intersection “ ” operators preserve 

de properties 1 fuct , 0 ft  and 0 cu , 

namely: 

1  babababa fuct  

0  baba ft  

0  baba uc  

 

1  babababa fuct  

0  baba ft  

0  baba uc  

 

We remark that after union or intersection the certainty 

increases and uncertainty decreases.  

 

The Complement: For 5]1,0[∈),,,,( fuictx   one defines 

the complement 
cx  by formula: 

  ),,,,( tuicfxc     (30) 

The Negation: For 5]1,0[∈),,,,( fuictx   one defines the 

negation 
nx  by formula: 

  ),,,,( tciufxn     (31) 

The Dual: For 5]1,0[∈),,,,( fuictx   one defines the dual 

dx  by formula: 

  ),,,,( fciutxd    (32) 

In the set 5}1,0{  there are five vectors having the form 

),,,,( fuictx  , which verify the condition 

1 uicft : )0,0,0,0,1(T  (True),  )1,0,0,0,0(F  

(False), )0,0,0,1,0(C  (Inconsistent),   )0,1,0,0,0(U  

(Incomplete) and )0,0,1,0,0(I  (Fuzzy). 

Using the operators defined by (28), (29), (30), (31) and 

(32), the same truth table results as seen in Tables 1, 2, 3, 4, 

5, 6 and 7. 

 t c i u f 

t t c i u f 

c t c i i c 

i t i i i i 

u t i i u u 

f t t t t t 

 t c i u f 

t t c i u f 

c c c i i c 

i i i i i i 

u u i i u u 

f f c i u t 



Fuzzy Preference Relation in The Framework 

of  Five-Valued Representation 

A fuzzy preference relation A  on a set of alternatives 

},...,,{ 21 xxxX 
 

is a fuzzy set on the product set 

XX  , that is characterized by a membership function  

]1,0[:  XXP (see Chiclana et al. 1998; Fodor et al. 

1994; Tanino 1988 ). When cardinality of  X  is small, the 

preference relation may be represented by the nn  matrix 

}{ ijaA   being ),( jiAij xxa   },...,2,1{, nji  . ija  

is interpreted as the preference  degree of the alternative 

ix  over  jx .  From a preference relation A , Fodor and 

Roubens (Fodor 1994) derive the following three relations: 

Strict preference:  ),( jiij xxPp   indicating that ix  

preferred to jx  but jx  is not preferred to ix . 

Indifference:  ),( jiij xxIi   indicating that ix  and jx  are 

considered equal in the sense that ix  is as good as jx . 

Incomparability:   ),( jiij xxJj   which occurs if neither 

ija nor jia . 

Taking into account the five-valued representation of 

bipolar information, we define five relations that 

characterize the following five fundamental attitudes: 

Strict preference ),( jiij xxTt   is a measure of strict 

preference of  ix  over jx , indicating that ix  preferred to 

jx  but jx  is not preferred to ix . 

Indifference:  ),( jiij xxCc   is a measure of the 

simultaneous fulfillment of  ija  and jia . 

Incomparability:   ),( jiij xxUu   is a measure of the 

incomparability of  ix  and jx , which occurs if neither ija
 

nor jia . 

Strict aversion: ),( jiij xxFf   that is a measure of strict 

preference of jx  over ix , indicating that ix  is not 

preferred to jx . 

Undecidability: ),( jiij xxIi   is a measure of 

undecidability between ix  and jx  which occurs when 

5.0ija  and 5.0jia . 

Next, we consider a decision making problem where, an 

expert supply the preferences over a set of n  alternatives: 

},...,{ 21 nxxxX  . The preferences are represented by the 

following fuzzy relation: 

                        





















0......

............

...0

...0

1

221

112

n

n

n

a

aa

aa

A

 

                     (38) 

where ]1,0[ija . 

The algorithm that we propose to obtain the best alternative 

is the next: 

Step 0: Initialize the matrix A  and define the saturation 

function S . 

Step 1: Compute the function ijt , ijc , iju , ijf  and iji  

using formulae (20), (21), (16), (17) and (18). 

Step 2: Compute the relative score function by: 

ijijijijij

ijijij
ij

fuict

ict
r






35.12

5.0
                             (39) 

Step 3: Compute the total score function by: 







n

ij
j

iji rR

1

                     (40) 

Step 4: Choose  

 k
nk

optim Rx
},...,2,1{

maxarg


                                                   (41) 

In the presented algorithm, the next five items hold: 

If  1ija  and 0jia , then 1ijr . 

If  1ija  and 1jia , then 5.0ijr . 

If  5.0ija  and 5.0jia , then 33.0ijr . 

If  0ija ,  and  0jia ,  then 0ijr . 

If  0ija ,  and  1jia ,  then 0ijr . 

Numerical example: Let },,,,{ 54321 xxxxxX   be a set of 

alternatives. Consider the fuzzy preference relation: 

























083.067.047.020.0

30.0020.093.027.0

43.068.0045.060.0

70.002.085.0020.0

50.084.042.006.00

X                          (42) 



If the saturation function is defined by  

                        
2

),(
yx

yxS


 , 

 it results: 

 


 jiijij aat                                                            (43) 

 


 1jiijij aac
                                                     

(44) 

 


 jiijij aau 1                                                        (45) 

 


 ijjiij aaf                                                       (46) 

|1|||1  jiijjiijij aaaai                                  (47) 

Using the presented algorithm one obtains: 

36.11 R , 26.12 R , 41.13 R , 24.14 R , 46.15 R  

It results    5xxoptim  . 

Conclusions 

In this paper, we propose a different functional approach to 
model the bipolar information. The new approach is based 
on two new information concepts: saturation function and 
ignorance function. Saturation function can be seen as way 
of generalizing t-conorms dropping out associativity. We 
must underline that the associativity is not crucial for the 
construction of five-valued representation. More than that, 
in our framework, the saturation function has only two 
arguments: the degree of truth and degree of falsity. 
Finally, we are dealing with a class of functions different 
from that of the t-conorms. 
The saturation function measures the excess of 
information, while, the ignorance function measures the 
lack of  information that an estimator suffers when trying 
to determine if a given sentence is true or false. 
 The third concept, bi-fuzziness function can be understood 
as an extension from fuzzy sets to bipolar fuzzy sets of the 
concept of fuzziness  defined by Zadeh. In addition, the 
index of bi-fuzziness can be understood as a measure of 
partial uncertainty of bipolar information. Both saturation 
function and ignorance function are related. Each of them 
can be recovered in a functional way from the other. 
If suitable saturation or ignorance functions are known that 
fit well for a given problem, they can be used to build a 
five-valued knowledge representation. In this way, we are 
able to provide a theoretical framework which is different 
from the usual one to represent truth, falsity, 
incompleteness, inconsistency and bi-fuzziness.  In this 
framework, a new five-valued logic was presented based 
on five logical values: true, false, incomplete, inconsistent 
and fuzzy. It was identified two components for certainty 
and three components for uncertainty. Based on this logic, 

new union and intersection operators were defined for the 
existing five-valued structure of information. 
We also propose an application in preferences under a 
novel score function. The using of the proposed five 
fundamental attitudes provides a new perspective in 
decision making and it offers a simple way to produce a 
comprehensive judgment.  
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