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Abstract

This paper presents a new five-valued knowledge
representation of bipolar information. This representation is
related to a five-valued logic that uses two logical values of
truth (true, false) and three logical values of uncertainty
(incomplete, inconsistent and fuzzy). The new approach is
based on the concept of saturation function and ignorance
function. In the framework of five-valued representation
new formulae for union and intersection are constructed.
Also, the paper presents a short application related to fuzzy
preference modeling and decision making.

Introduction

Let X be a set of objects. We consider a property A, an
object x e X and the following sentence P5(x): X has
the property A. We want to know if the sentence P, (X)
is true or false. After an evaluation, the information about
logical value of sentence P, (x) is described by a scalar
Ta(x)€[01]. For the considered sentence, Ta(X)
represents its truth degree. In the same time, the function
Ta : X —>[0]1] defines a Zadeh fuzzy set associated to the
property A (Zadeh 1965). Then, we compute the degree of
falsity:

Fa(X) =1-Ta(x) @

Using the scalar T (x), we have obtained the following
representation of information about sentence Pp(X) .

Wa(x) = (Ta(x), Fa(x) 2

This information is normalized because the components of
vector W, (x) verify the condition of partition of unity:

Ta()+Fa() =1 @)
The representation (3) is related to a bi-valued logic based

on true and false. The next step was done by Atanassov
(Atanassov 1986). He considered that after evaluation, the

information about logical value of sentence Pp(x) is
described by a vector with two components

Va(X) =(Ta(X), Fa(x)) (@)

and supplementary these two components verify the
inequality:
Ta(X)+Fa(x) <1 ®)

The information represented by vector V(x) is not
normalized but, Atanassov has introduced the intuitionistic

index:
Ua(X) =1-Ta(X) - Fa(X) (6)

Using the vector V(X), we have obtained an intuitionistic
representation of information about sentence Pp(x) .

Wa(x) = (Ta(X),U a(X), FA(X) U]

This information is normalized because the components of
vector Wa (x) verify the condition of partition of unity:

TA()+UA(X)+Fa(x) =1 )

The representation (8) is related to a three-valued logic
based on true, neutral and false.

In this paper we will consider the bipolar representation
(Benferhat et al. 2006; Cornelis et al. 2003; Dubois et al.
2004) without having the condition (5). In this case, we
cannot obtain immediately a normalized variant like (8). In
the following, we present a method for obtaining a
normalized representation of bipolar information.

The paper has the following structure: section two presents
the concepts of saturation, ignorance and bi-fuzziness.
Section three presents the construction method of five-
valued representation. Section four presents a five-valued
logic based on true, false, incomplete, inconsistent and
fuzzy. Section five presents some operators for the five-
valued structure. Section six presents the using of five-
valued knowledge representation for fuzzy modeling of



pairwise  comparisons.
conclusions.

Finally we present some

Saturation, Ignorance and Bi-fuzziness
Functions

In this section, firstly, we introduce the concepts of
saturation function and ignorance function. These two
functions are complementary. Both functions are
essentially characterized by symmetry, boundary and
monotonicity properties. Secondly, we introduce the
concept of bi-fuzziness related to the index of
indeterminacy (Patrascu 2008).

Definition 1: A saturation function is a mapping
S :[0]%2 - [0] such that:

) S(xy)=5(y.x)

ii) S(x,y)=0 ifand onlyif (x,y)=(0,0)

i) S(x,y)=1 ifand only if (x,y)=(12)

iv) S(x,y) increases with respectto x and y
The property a) describes the commutativity and the
property d) describes the monotonicity. From property b) it
results that the saturation value is low if and only if both
arguments have low value and from property c) it results
that the saturation value is high if and only if both
arguments have high value.
Example 1:
X+Yy

;-

S(x,y) =

Example 2:
max( X,
S(x,y) = XX ).
| x-y|

Example 3: For any t-conorm @

_ X®y
St y)_1+(1—x)®(1— y)

Example 4: For any t-conorm @

X®
S(x,y)= y )
XOYy+@-xX)D(1L-y)
Example 4:
X+ 1-x-
St y) =Y 22 ey,

2 2
Notice that these particular saturation functions are not
associative.

Definition 2: A ignorance function is a mapping
U :[0,1]2 —[0]1] such that:
) U y)=U(y.x)
ii) U(x,y)=0 ifandonly if (x,y) =2
iii) U(x,y)=1ifand only if (x,y)=(0,0)
iv) U(x,y) decreases with respectto x and y

Example 1:
U(x,y)=1- x;y .
Example 2:
U(xy) = —11_+TT(_X}’IT) .

The following proposition shows the relation between
saturation functions and ignorance functions and some
supplementary properties.

Proposition 1: Let S be a saturation function. Then

U(xy)=SA-x1-y) 9)

is an ignorance function.

Proof: It is evident because the properties of both functions
are complementary.

Proposition 2: Let U be an ignorance function. Then

S(xy) =1-U(xy) (10)

is a saturation function.
Proof: It is evident because the properties of both functions
are complementary.
Proposition 3: Let S be a saturation function let 2 e (0,1) .
Then

A-S(x,Y)
A-S(xy)+(1-2)-A-S(x,y))

P(x,y) = (11)

is a saturation function.

Proof: It is evident because in the new saturation function
construction it was used the scalar addition based on the
uninorm function.

Proposition 4: Let S be a saturation function let

a €(0,) . Then

S”(x,y) (12)

Q% Y)=—; "
ST(xy)+@=S(x,y))
is a saturation function.
Proof: It is evident because in the new saturation function
construction it was used the scalar multiplication based on
the uninorm function.
Proposition 5: Let S be a saturation function. Then



S(X,
R(X,y) = (x.y) (13)
is a saturation function.

Proof: It is results immediately that the new saturation
function verifies the properties i), ii), iii) and iv).

Definition 3: A bi-fuzziness function is a mapping
I :[01]2 —[0,] such that:
)1 y)=1(y,%)
i) 1(xy)=11-xY)
i) 1 y)=1(x1-y)
iv) 1(x,y)=0 ifand only if x,y {01}
v) 1(x,y)=1 ifand only if (x,y) = (0.5,0.5)
vi) 1(x,y) increases with x if x<0,5and I(x,y)
decreases with x if x>0,5
vii) 1(x,y) increases with y if y<0,5 and I(x,Yy)
decreases with y if y>0,5

The bi-fuzziness function represents a measure of
similarity between the point (x,y) [0,1]2 and the center
of unit square, the point (0.5,0.5). The index of bi-
fuzziness verifies, for each argument x and vy, the

properties considered by De Luca and Termini for fuzzy
entropy definition (De Luca and Termini 1972).
If we replace y with the negation of x, namely

y =X =1-X, one obtains a fuzzy entropy function.
Proposition 6: Let S be a saturation function. Then

1%, y) =@=[S(x¥)=S(X,y) ) - A= S(x, ¥) =S(X,¥) ]
is a bi-fuzziness function.

Proposition 7: Let S be a saturation function. Then
I(x,y) =1-5(2x~1|,| 2y ~1|)

is a bi-fuzziness function.

Example 1:
I(x,y)=1-|x-05|-|y-0.5].
Example 2:
oy <Xy D)y -1))
Hx=yl-Ix+y-1]
Example 3:

1(xy) == x=y DA | x+y-1).

Five-Valued Representation of Bipolar
Information

Let S be a saturation function. For any pair (T,F), we
define the net truth 7 and the definedness & by:

z-(TiF)ZS(T!E)_S(-FIF)
5(T,F):S(T,F)—S(-|T, IE)

The uncertainty or the entropy (Kaufmann 1975; Patrascu
2010) is defined by:

h=1-|z] (14)

and the certainty will be its negation:

g7l
The two functions define a partition with two fuzzy sets
X and X : one related to the certainty and the other to

the uncertainty.
The non-fuzziness id defined by:
20| (15)

The index of bi-fuzziness will be computed by difference
between uncertainty and non-fuzziness:

i=1-|7|-|5] (16)

The non-fuzziness and bi-fuzziness define two subsets of
Xy, namely: Xz and X;. We compute the
incompleteness  (undefinedness) and  inconsistency
(contradiction) using the non-fuzziness:

u=o a7

c=97, (18)
where x_ =max(0,—x) and x, =max(0,Xx).

The incompleteness and inconsistency define two subsets
of Xz, namely: Xy and Xc. Notice that because

c-u=0 itresults:
Xy NXc =0 (19)

Next we compute the index of truth and falsity using the
net truth function 7 :

t=1, (20)

f=r (21)

The index of truth and index of falsity define two subsets
of Xg, namely: X1 and Xg. Notice that because

t-f =0 it results:



X1 NXE =@ (22)

The index of truth (20), the index of falsity (21), the index
of bi-fuzziness (16), the index of incompleteness (17) and
the index of inconsistency (18) define a partition of unity:

t+ f+i+u+c=1

In the construction method presented above, it was used
the schema shown in figure 1.

Bipolar
information
T.F

=
True False Non-fuzzy Fuzzy
t f i
Incomplete
u c

Figure 1. The construction schema for five-valued
representation of bipolar information.

Five Valued Logic Based on Truth, Falsity,
Inconsistency, Incompleteness and Bi-
fuzziness

This five-valued logic is a new one, but is related to our
previous work presented in (Patrascu 2008). In the
framework of this logic we will consider the following five
values: true t, false f, incomplete (undefined) u,
inconsistent (contradictory) c, and fuzzy (indeterminate)
i . We have obtained these five logical values, adding to
the so called Belnap values (Belnap 1977) the fifth: fuzzy
(indeterminate). Tables 1, 2, 3, 4, 5, 6 and 7 show the basic
operators in this logic.

Table 1. The union.

— |+ =+ | —+ | =+ | —+
o|=|=lo|~|o
cle|=—|~|c
| =[O ||

Table 2. The intersection.

—h (| = O ||~
—|=|=lo|o|o
N - ==
—h|—=h|—=h|—=h|=h|—

i
i
i
i
i
f

The main differences between the proposed logic and the
Belnap logic are related to the logical values u and c. We
have defined cu=i and cUu=i while in the Belnap
logic there were defined c(lu=f and cUu=t.

Table 3. The complement.

f
c
i
u
t

- |[=o |~

Table 4. The negation.

—_— |- |~

Table 5. The dual.

|| = O |+
| O [= = |~

The complement, the negation and the dual are interrelated
and there exists the following equalities:

~X=—X (23)
—X=—=X (24)
—X===X (25)



Table 6. The S-implication

= |tljc|iflul|f
t |[t|lc|ifulf
c |tlcl|i]i]c
it
u |[t]ifijlufu
f tjt|t|t|t

The S-implication is calculated by:

x—>y==xUy (26)

Table 7. The equivalence

Slit|c|ijulf
t|t|clijulf
clclclili]c
Pl il
ululilijulu
flflclijult
The equivalence is calculated by:
xoy=(=xUy)NxU-y) (27)

New Operators Defined on Five-Valued
Structure

There be x =(t,c,i,u, f)e [0,1]5, For this kind of vectors,
one defines the union, the intersection, the complement,
the negation and the dual operators. The operators are
related to those define in (Patrascu 2007a; Patrascu
2007b).

The Union: For two vectors a,b e[O,l]5 where
a=(tg,Cq,ig,Uy, fa), b=(y,Cp,ip, Uy, fp), ONE
defines the union (disjunction) d =aub by the formula:

tg =t vip

Cg =(catfa)nlcp+fp)—fanfy (28)
Ug =g + fa) A(up + fp) — fa A fp
fg=Ffanfy

ig =1-(tq +Ccq +uq + fg)

The Intersection: For two vectors a,b e[O,l]5 one defines
the intersection (conjunction) ¢ =anb by the formula;

te =ty Ath
Cc =(Ca tta) A(Ch +tp) —ta Aty (29)
Ue =(Ug +t3) A(up +tp) —tg Aty
fo="Tav Ty
ic =1—-(t; +Cc +uc + )
In formulae (28) and (29), the symbols “v ” and “A”
represent the maximum and the minimum, namely:
VX, y €[0]],

X vy =max(x,y)

XAYy=min(X,Y)
The union “u™ and intersection “N ™ operators preserve
de properties t+c+u+f <1, t-f=0 and u-c=0,
namely:

tab +Caub +Ualp + faup <1

tab - faun =0

Caub “Uaup =0

tar\b +Camb tUap + far\b <1
tarb - famb =0
Carb "Uarb =0

We remark that after union or intersection the certainty
increases and uncertainty decreases.

The Complement: For x=(t,c,i,u, f)e [0,1]5 one defines
the complement x° by formula:

x¢ =(f,c,i,u,t) (30)
The Negation: For x = (t,c,i,u, f)e [0,1]5 one defines the
negation x" by formula:

x" =(f,u,i,c,t) (31)
The Dual: For x=(t,c,i,u, f)e [0,1]5 one defines the dual
x4 by formula:

x% =(t,u,i,c, f) (32)
In the set {O,l}5 there are five vectors having the form
x=(t,c,i,u, f), which verify  the condition
t+f+c+i+u=1: T=(,0,0,0,0) (True), F=(0,00,0,2
(False), C=(010,0,0 (Inconsistent), U =(0,0,0,1,0)
(Incomplete) and 1 =(0,0,1,0,0) (Fuzzy).

Using the operators defined by (28), (29), (30), (31) and
(32), the same truth table results as seen in Tables 1, 2, 3, 4,
5,6and 7.



Fuzzy Preference Relation in The Framework
of Five-Valued Representation

A fuzzy preference relation A on a set of alternatives
X ={X{,X9,..,X } is a fuzzy set on the product set

X x X, that is characterized by a membership function
Lp : X x X —[01] (see Chiclana et al. 1998; Fodor et al.

1994; Tanino 1988 ). When cardinality of X is small, the
preference relation may be represented by the nxn matrix

A={ajj} being a;j = ua(X;,xj) Vi je{l2..n}. aj

is interpreted as the preference degree of the alternative
x; over x;. From a preference relation A, Fodor and

Roubens (Fodor 1994) derive the following three relations:

Strict preference:  pj; =P(x;,x;) indicating that x;

preferred to x; but X; is not preferred to x;.

Indifference: i;; = 1(x;,X;) indicating that x; and x; are

considered equal in the sense that x; is as good as x;.

Incomparability:  j;; = J(x;, ;) which occurs if neither
aij nor aji .
Taking into account the five-valued representation of

bipolar information, we define five relations that
characterize the following five fundamental attitudes:

Strict preference t; =T(x;,x;) is a measure of strict
preference of x; over X, indicating that x; preferred to
Xj but x; is not preferred to ;.

Indifference: cj; =C(X;,x;) isa measure of the
simultaneous fulfillment of a;; and aj; .

Incomparability:  u;; =U(X;,x;) is a measure of the
incomparability of x; and X;, which occurs if neither a;

nor aji .

Strict aversion: fj; = F(x;,X;) that is a measure of strict
preference of x; over x;, indicating that x; is not

preferred to x i-

Undecidability: i =1(x;,x;) is a measure of
undecidability between x; and X; which occurs when
3;j ~0.5 and a;; ~0.5.

Next, we consider a decision making problem where, an
expert supply the preferences over a set of n alternatives:

X ={Xq,X5,...X,}. The preferences are represented by the
following fuzzy relation:

0 ap an
a 0 a
A — 21 2n (38)
anl 0

where a; €[0].

The algorithm that we propose to obtain the best alternative
is the next:

Step 0: Initialize the matrix A and define the saturation
function S .

Step 1: Compute the function t;;, ¢, ujj, fj; and ij;
using formulae (20), (21), (16), (17) and (18).
Step 2: Compute the relative score function by:

tij + Cij +0.5- IIJ

rij = - (39)
tij +2-Cij +1.5~|ij +Uij +3- f”

Step 3: Compute the total score function by:
n

Ri = Zrij (40)
=1
J#1

Step 4: Choose

Xoptim = argmax {Rk} (41)

kefL2,...n}
In the presented algorithm, the next five items hold:

If aj=1and aj; =0, then r; =1.

If a;=1and aj; =1,then r; =05.

If a;=0.5and a; =0.5, then r; =0.33.
If a;=0, and a;; =0, then r;; =0.

If a;=0, and a; =1, then r; =0.

Numerical example: Let X ={xq, X5, X3, X4, X5} be a set of
alternatives. Consider the fuzzy preference relation:

0 006 042 0.84 0.50]
020 0 085 0.02 0.70
X=/060 045 0 0.68 043 (42)
027 093 020 0 0.30
1020 0.47 0.67 083 O




If the saturation function is defined by

X+
S(0y)="2
it results:
ti = (ayj _aji)+ (43)
cj = (aij +a;; —1)+ (44)
uij = [1-a; —aji)+ (45)
fiy = (e —ayy), (46)
lij =1 aj; —aji [—| & +aj —1] (47)

Using the presented algorithm one obtains:

R, =136, Ry =126, Ry =141, R, =1.24, Rg =1.46

Itresults  Xgptim = Xs -

Conclusions

In this paper, we propose a different functional approach to
model the bipolar information. The new approach is based
on two new information concepts: saturation function and
ignorance function. Saturation function can be seen as way
of generalizing t-conorms dropping out associativity. We
must underline that the associativity is not crucial for the
construction of five-valued representation. More than that,
in our framework, the saturation function has only two
arguments: the degree of truth and degree of falsity.
Finally, we are dealing with a class of functions different
from that of the t-conorms.

The saturation function measures the excess of
information, while, the ignorance function measures the
lack of information that an estimator suffers when trying
to determine if a given sentence is true or false.

The third concept, bi-fuzziness function can be understood
as an extension from fuzzy sets to bipolar fuzzy sets of the
concept of fuzziness defined by Zadeh. In addition, the
index of bi-fuzziness can be understood as a measure of
partial uncertainty of bipolar information. Both saturation
function and ignorance function are related. Each of them
can be recovered in a functional way from the other.

If suitable saturation or ignorance functions are known that
fit well for a given problem, they can be used to build a
five-valued knowledge representation. In this way, we are
able to provide a theoretical framework which is different
from the wusual one to represent truth, falsity,
incompleteness, inconsistency and bi-fuzziness. In this
framework, a new five-valued logic was presented based
on five logical values: true, false, incomplete, inconsistent
and fuzzy. It was identified two components for certainty
and three components for uncertainty. Based on this logic,

new union and intersection operators were defined for the
existing five-valued structure of information.

We also propose an application in preferences under a
novel score function. The using of the proposed five
fundamental attitudes provides a new perspective in
decision making and it offers a simple way to produce a
comprehensive judgment.
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