
   

 

 

   

Abstract 

In this paper, we present a two-stage process for developing 

feature extractors (FEs) for facial recognition. In this process, a 

genetic algorithm is used to evolve a number of local binary 

patterns (LBP) based FEs with each FE consisting of a number of 

(possibly) overlapping patches from which features are extracted 

from an image.  These FEs are then overlaid to form what is 

referred to as a hyper FE.  

The hyper FE is then used to create a probability distribution 

function (PDF). The PDF is a two dimensional matrix that records 

the number of patches within the hyper FE that a particular pixel 

is contained within. Thus, the PDF matrix records the consistency 

of pixels contained within patches of the hyper FE. 

Darwinian-based FEs (DFEs) are then constructed by sampling 

the PDF via k-tournament selection to determine which pixels of a 

set of images will be used in extract features from. Our results 

show that DFEs have a higher recognition rate as well as a lower 

computational complexity than other LBP-based feature 

extractors. 

 

Introduction 

Genetic & Evolutionary Biometrics (GEB) is the field of 

study devoted towards the development, analysis, and 

application of Genetic & Evolutionary Computation (GEC) 

to the area of biometrics (Ramadan and Abdel-kader 2009; 

Galbaby et al. 2007; Alford et al. 2012; Shelton et al. 

2012c). Over the past few years there has been a growing 

interest in GEB. To date, GEB has been applied to the area 

of biometrics in the form of feature extraction (Shelton et al. 

2011a; Adams et al. 2010), feature selection (Kumar, 

Kumar and Rai 2009; Dozier et al. 2011), feature weighting 

(Popplewell et al. 2011; Alford et al. 2011) as well as cyber 

security (Shelton et al. 2012a; Shelton et al. 2012b). 

   GEFEML (Genetic and Evolutionary Feature Extraction – 

Machine Learning) (Shelton et al. 2012c) is a GEB  method 

that uses GECs to evolve feature extractors (FEs) that have 

high recognition accuracy while using a small subset of 

pixels from a biometric image. The results of Shelton et al. 

(2012c) show that FEs evolved via GEFEML outperform the 

FEs developed via the traditional Local Binary Pattern 

(LBP) (Ojala and Pietikainen 2002) approach.  

   In this paper, we present a two-stage process for facial 

recognition (Tsekeridou and Pitas 1998; Zhao et al. 2003) 

known as Darwinian-based feature extraction (DFEs). The 

first stage takes a set of FEs evolved by GEFEML and 

superimposes each to create a hyper FE. From this hyper 

FE, a probability distribution function (PDF) is created. The 

PDF is represented as a two-dimensional matrix where each 

position in the matrix corresponds to a pixel within a set of 

images. Each value within the PDF represents the number 

of patches an associated pixel is contained within it.  

In the second stage of the process, a Darwinian feature 

extractor (dFE) is developed by sampling the PDF via k-

tournament selection (Miller and Goldberg 1996). The 

selected pixels are then grouped into c different clusters by 

randomly selecting α pixels to serve as centers.  Our results 

show that the computational cost of DFE (in terms of the 

total number of pixels being processed) via dFEs is far less 

expensive than the FEs evolved via GEFEML. The dFEs also 

outperform GEFEML evolved FEs in terms of recognition 

accuracy.   

   The remainder of this paper is as follows. Section 2 

provides an overview of the LBP feature extraction method, 

GECs, and GEFEML. Section 3 provides a description of the 

two-stage process for developing dFEs. Sections 4 and 5 

present our experiment setup and our results respectively. 

Finally, in Section 6, we present our conclusions and future 

work.  

 

Background 

Local Binary Pattern Method 

The LBP method (Ojala and Pietikainen 2002; Ahonen, 

Hadid and Pietikinen 2006) extracts texture patterns from 

images in an effort to build a feature vector (FV). It does 

this by segmenting an image into rectangular regions, 

referred to as patches, and comparing the grey-scale 

intensity values of each pixel with the intensity values of a 

pixel’s nearest neighbors. After pixels are compared with 

their nearest neighbors, a pattern is extracted. This pattern 

is represented by a binary string. A histogram is built using 

the frequency of occurring patterns for a patch. The 

histograms for every patch are concatenated to form a FV. 
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In the LBP method, images are traditionally partitioned 

into uniform sized, non-overlapping patches. Within each 

patch, pixels are sought out that have d neighboring pixels 

on all sides and that are a distance of r pixels away from a 

center pixel. Each of these pixels can be referred to as a 

center pixel, cp, due to it being surrounded by a 

neighborhood of pixels. A texture pattern can be extracted 

using Equations 1 and 2, where N is the set of pixel 

intensity values for each of the neighboring pixels. In 

Equation 1, the difference between a neighboring pixel and 

cp is calculated and sent to Equation 2. The value returned 

will either be a 1 or a 0, depending on the difference. The d 

bits returned will be concatenated to form a texture pattern.     
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Each patch has a histogram that stores the frequency of 

certain texture patterns extracted. The histograms for all 

patches of an image are concatenated together to create a 

FV for an image. This FV can be compared to another FV 

of an image using a distance measure such as the 

Manhattan Distance measure or the Euclidean distance 

measure.  

GECs 

  GEFEML uses GECs to evolve FEs (Shelton et al. 2012c). 

The resulting FEs have been shown to have high 

recognition rates. A GEC uses artificial evolution to evolve 

a population of candidate solutions (CSs) to a particular 

problem. Initially, a population of CSs is randomly 

generated. Each CS in the population is then assigned a 

fitness based on a user specified evaluation function. Parent 

CSs are then selected based on their fitness and allowed to 

create offspring using a number of recombination and 

mutation techniques (Spears and DeJong 1991). After the 

offspring are created, they are evaluated and typically 

replace the weaker members of the previous population. 

The process of selecting parents, creating offspring, and 

replacing weaker CSs is repeated until a user specified 

stopping condition is met.    

 

GEFEML 

 GEFEML evolves LBP-based FEs using some GEC, so FEs 

must be represented as a CS. GEFEML represents an FE, fei, 

as a six-tuple, <Xi,Yi,Wi,Hi,Mi,fi>. The set Xi = {xi,0, xi,1,…, 

xi,n-1} represents the x-coordinates of the center pixel of n 

possible patches and Yi = {yi,0, yi,1, … , yi,n-1} represents the 

y-coordinates of center pixel of n possible patches. The 

widths and heights of the n patches are represented by Wi = 

{wi,0, wi,1, … , wi,n-1} and Hi = {hi,0, hi,1,…, hi,n-1}. Because 

the patches are uniform,   Wk = {wk,0, wk,1, … , wk,n-1} is 

equivalent to, wk,0 = wk,1,…,  wk,n-2 = wk,n-1, and Hk = {hk,0, 

hk,1, … , hk,n-1} is equivalent to, hk,0 = hk,1,…,  hk,n-2 = hk,n-1, 

meaning that the widths and heights of every patch are the 

same.  Uniform sized patches are used because uniform 

sized patches outperformed non-uniform sized patches in 

(Shelton et al. 2011b). Mi = {mi,0, mi,1,…, mi,n-1} represents 

the masking values for each patch and fi represents the 

fitness of fei . The masking value determines whether a 

patch is activated or deactivated. If a patch is deactivated, 

by setting mi,j = 0, then the sub-histogram will not be 

considered in the distance measure, and the number of 

features to be used in comparisons is reduced. Otherwise, 

the patch is activated, with mi,j = 1. 

 The fitness fi is determined by how many incorrect matches 

it makes on a training dataset D and how much of the image 

is processed by fei. The dataset D is composed of multiple 

snapshots of subjects and is divided into two subsets, a 

probe and a gallery set. The fei is applied on both the probe 

set and gallery set to create FVs for each set. A distance 

measure is used to compare FVs in the probe to FVs in the 

gallery and the smallest distances are considered a match. If 

the FV of an individual in the probe is incorrectly matched 

with the FV of another individual in the gallery, then that is 

considered an error. The fitness, shown in Equation 3, is the 

number of errors multiplied by 10 plus the percentage of 

image space being processed. 
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To prevent overfitting FEs on a training set during the 

evolutionary process, cross-validation is used to determine 

the FEs that generalize well to a dataset of unseen subjects.  

While offspring are applied to the training dataset to be 

evaluated, they were also applied to a mutually exclusive 

validation dataset which does not affect the evolutionary 

process. The offspring with the best performance on the 

validation dataset is recorded regardless of its performance 

on the training set. 

The Two-stage Process for Developing a 

Hyper FE and a PDF 

Stage I: Hyper FE/PDF 

   The hyper FE is constructed by taking a set of FEs from 

GEFEML and overlaying them. Figure 1a shows a set of 

sample FEs while Figure 1b shows a sample hyper FE. 

After the hyper FE is constructed, a PDF, in the form of a 



   

 

 

   
matrix, is created. Each position in the matrix contains the 

number of patches a pixel was contained in. When patches 

in an FE overlapped on a position multiple times, the 

overlap is considered in the count. So if the hyper FE had n 

patches, and used κ FEs, the greatest number of times a 

pixel was contained in a patch would be n * κ. Figure 1c 

shows a 3D plot of a PDF, while Figure 1d shows the 3D 

plot laid over a facial image. 

 

     
                  (a)                         (b) 

 
 (c)                           (d) 

 

Figure 1: (a) Set of FEs (b) hyper FE (c) 3D plot of PDF 

and (d) overlay of 3D plot on a facial image  

Stage II: Developing dFEs  

   A dFE can be defined by the number of clusters it has, α, 

the selection pressure of tournament selection, µ, and the 

patch resolution, ρ.  The variables µ and ρ are represented 

as a percentage, or a value between 0 and 1. Assume that β 

represents the number of pixels a user would want for a 

cluster, there are α *ρ*β positions that will be selected to be 

clustered. Tournament selection selects µ*σ pixels to 

compete for clustering, where σ represents the total number 

of positions in the PDF that have been processed at least 

once.  When performing tournament selection, the position 

with the greatest consistency will be the winner. If there is a 

tie, then the first selected position is the winner. Winning 

pixels are selected without replacement. 

   After α *ρ* β pixels have been selected via tournament 

selection, α random centers for clusters are chosen to be 

placed within the PDF. The distance between each of the 

selected positions for clustering will be compared to the 

center positions, and the pixel will be clustered towards the 

closest one. After pixels have been assigned to clusters, 

those pixels undergo LBP feature extraction to extract 

texture patterns for a cluster. Due to the random placement 

of clusters, it is possible for different clusters to have 

different numbers of pixels clustered to it. 

  The clusters are similar to patches, therefore histograms 

are associated with each, and the patterns are used to build 

the histogram and ultimately create FVs for images.   

 

Experiments 

Two hyper FEs were used in this experiment: (a) a 

hyper FE composed of a set of FEs that performed well on 

the training set, HFEtrn and (b) a hyper FE composed of a 

set of the best performing FEs on the validation set, 

HFEval. The FEs were evolved using the experimental 

setup in Shelton et al. (2012c), which used GEFEML. 

GEFEML was run 30 times using increments of 1000, 

2000, 3000 and 4000 evaluations. An EDA instance 

(Larranga and Loranzo 2002) of GEFEML was used with a 

population of 20 FEs and an elite of 1, meaning every 

generation starting from the second contained the single 

best performing FE of the previous generation. On each 

run, GEFEML returned the best performing FE on the 

training set and the best performing FE with respect to the 

validation set.  

The FEs were trained and validated on two mutually 

exclusive sets, and they were then applied to a test set. The 

datasets were composed of subjects from the Facial 

Recognition Grand Challenge database (FRGC) (Phillips 

et al. 2005). The training set was composed of 100 

subjects (FRGC-100trn), the validation set was composed 

of 109 subjects (FRGC-109), and the test set was 

composed of 100 subjects (FRGC-100tst). The average 

number of patches used from the set of generalizing FEs 

as well as the average number of pixels processed in a 

patch were calculated in order to set a starting point for 

this experiment. On average, 12 patches were activated 

and 504 pixels were processed by each patch using 

GEFEML.  

In this experiment, instances of 16, 12, 8 and 4 clusters 

were tested. Different patch resolutions, or the amount of 

pixels that could belong to a cluster, were also used. In this 

experiment, σ = 504. This was the average number of 

pixels in patches of the set of FEs from GEFEML. Instances 

of DFE with patch resolutions of 1.0, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2 and 0.1 were run.  Each resolution used 

selection pressures from 0.0 (where number of pixels to be 

compared in tournament selection is actually 2) to 1.0 and 

every tenth percentage in between. A dFE is defined to be 



   

 

 

   
a cluster, patch resolution, then selection pressure, giving a 

total of 880 dFEs (4 clusters * 10 patch resolutions * 11 

selection pressures * 2 hyper FEs), and each DFE instance 

was ran 30 times. For each run, a dFE was applied to 

FRGC-100tst.  

 

Results 

   The results were obtained by running each dFE listed in 

Section 4 on FRGC-100tst. 

  To compare the effectiveness of each method, we compare 

the results of different selection pressures within a certain 

resolution and patch. The results of the best selection 

pressure for a resolution are compared to the best selection 

pressures of every other resolution within the cluster group, 

and this is done for results in every cluster. After the best 

performing FEs are obtained from each cluster, they are 

compared to each other as well as the results of GEFEML. 

Results are compared using an ANOVA test and a t-test on 

the recognition accuracies for a cluster-resolution-selection 

pressure instance. 

  Table I shows the results of this experiment. The first 

column shows the methods used. The method DFEval 

represents dFEs that sampled the HFEval, while the method 

DFEtrn represents dFEs that sampled the HFEtrn. The two 

methods are compared to the original GEFEML method, 

shown as GEFEML. The second column, Feature Extractor, 

shows the number of clusters used, the resolution and the 

selected pressure for a dFE. The third and fourth columns 

show the computational complexity (CC) and the average 

recognition accuracy (Acc) respectively for each method. 

The computational complexity is the number of pixels 

processed, or extracted, by each method. Though 880 dFEs 

were tested, the only ones shown are ones that produced 

superior results to GEFEML. 

  For DFEval, each dFE showed in Table I outperformed 

GEFEML in terms of recognition accuracy.  For DFEtrn, the 

dFE <12,0.5,0.2> was statistically equivalent to FEs 

evolved using GEFEML. Though we compare results based 

on recognition accuracy, we also considered computational 

complexity.  

  The results show that the <12,0.5,0.2> dFE (of DFEtrn) 

outperforms GEFEML in terms of computational complexity, 

and that the <12,0.9,0.1> instance of DFEval outperformed 

DFEtrn and GEFEMLin terms of recognition accuracy as well 

as computational complexity. These results are promising 

in terms of recognition and feature reduction of DFE. 

   

 

   Table I: Results of DFEval, DFEtrn and GEFEML 

 

Conclusion and Future Work  

   The results of the experiment suggest that the HFEval 

produces dFEs that generalize well to unseen subjects. The 

dFEs resulting from the HFEtrn also generalized well, but 

were not as effective as when using dFEs resulting from the 

HFEval. Using both hyper FEs performed better than the set 

of generalized FEs from GEFEML. Future work will be 

devoted towards using additional GECs for the DFE.  
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