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Abstract 

 
Is finding just a part of a solution easier than finding the full 

solution? For NP-Complete problems (which represent some 

of the hardest problems for AI to solve) it has been shown 

that finding a fraction of the bits in a satisfying assignment is 

as hard as finding the full solution. In this paper we look at a 

possibility of both computing and representing partial 

solutions to NP-complete problems, but instead of 

computing bits of the solution our approach relies on 

restricted specifications of the problem search space. We 

show that not only could partial solutions to NP-Complete 

problems be computed without computing the full solution, 

but also given an Oracle capable of providing pre-computed 

partial answer to an NP-complete problem an asymptotic 

simplification of problems is possible. Our main contribution 

is a standardized methodology for search space specification 

which could be used in many distributed computation project 

to better coordinate necessary computational efforts.  
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Introduction 
 

In “Computing from Partial Solutions” Gal et al. (Gal, 

Halevi et al. 1999) consider the question: “Is finding just a 

part of a solution easier than finding the full solution?” For 

NP-Complete problems, such as 3-CNF, they prove that 

finding a fraction of the bits in a satisfying assignment is 

as hard as finding the full solution. Specifically they proof 

that any CNF formula F can be encoded in another 

formula F’, is such a way that given a small fraction of bits 

in a satisfying assignment to F’, it is possible to recover a 

full satisfying assignment to F (Gal, Halevi et al. 1999):  

 

Theorem 1: For any ɛ > 0, there exist an efficient 

probabilistic algorithm A, and an efficient deterministic 

algorithm B such that: 

  

1. If F is a CNF formula over n variables, then F’ = 

A(F) is a CNF formula over N = n
O(1)

 variables, with 

|F’| = |F| + n
O(1)

. 

 

2. With probability 1-2
-n

 the formula F’ has the 

following property: If s’ any assignment to N
.5+ɛ

 of the 

variables in F’ which can be extended to a full 

satisfying assignment, then B(F,F’,s’) is a satisfying 

assignment for F.  

 

Proof of Theorem 1. If we are given polynomial number 

of random linear equations in n variables, then any 

sufficiently large subset of these equations is of dimension 

at least n-O(log n), and thus leaves only a polynomial 

number of candidate solutions to the entire equation 

system. This, combined with the ability to verify solutions, 

yields an ‘erasure-code’ with the ability to correct n – 

sqrt(n) erasures. This improved erasure code can be used to 

satisfy the claims of Theorem 1. Which was to be shown 

(Gal, Halevi et al. 1999). 

 

The result is hardly surprising since if finding a part of the 

solution was possible in polynomial time P = NP would 

trivially follow. In fact numerous researchers have realized 

that a related problem of NP-Complete problem re-

optimization is not polynomial time solvable unless P = NP 

(Archetti, Bertazzi et al. 2003; Böckenhauer, Forlizzi et al. 

2006; Kralovic and Momke 2007; Ausiello, Escoffier et al. 

2009). The proof of that fact due to Archetti et al. follows 

(Archetti, Bertazzi et al. 2003): 

 

Theorem 2: No polynomial time algorithms can exist for 

the Re-Optimization of TSPunless P = NP.  

 

Proof of Theorem 2, by contradiction. Suppose that there 

exists a polynomial time algorithm, for example 

ReOptTSP, which accomplishes the Re-Optimization of 

TSP. Then, an optimal solution of any TSP with n+1 nodes 

can be obtained in polynomial time by applying n-2 times 

the algorithm ReOptTSP. We begin by applying the 

algorithm ReOptTSP to find an optimal solution of the Re-

Optimization of TSP with 4 nodes, given that any 3-city 

TSP problem is trivially optimally solvable. Then, 

ReOptTSP is applied to find an optimal solution of the Re-

Optimization of TSP with 5 nodes, given an optimal 

solution of the TSP with 4 nodes, and so on until it is 

applied to find an optimal solution of the Re-Optimization 

of TSP with n+1 nodes. Thus, by contradiction, no 

polynomial time algorithms exist for the Re-Optimization 
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of TSP unless P = NP. Which was to be shown (Archetti, 

Bertazzi et al. 2003).  

 

In this paper we look at a possibility of both computing 

and representing partial solutions to NP-complete 

problems, but instead of considering bits of the solution 

our approach relies on specifications in the problem search 

space. We show that not only could partial solutions to 

NP-Complete problems be computed without computing 

the full solution, but also given a pre-computed partial 

answer to an NP-complete problem an asymptotic 

simplification of the problem is possible. Our main 

contribution is a standardized methodology for search 

space specification which could be used in many 

distributed computation project to better coordinate 

remaining computational efforts. NP-Complete problems 

are inherently easy to parallelize and so could benefit from 

a common language aimed at describing what has already 

been evaluated and what remains to be analyzed.    
   

Search Space Specification 
 

Gal et al. conclusively demonstrate that computing a part 

of an answer to an NP-Complete problem is as difficult as 

computing the whole solution (Gal, Halevi et al. 1999) 

their results are further reaffirmed in (GroBe, Rothe et al. 

October 4-6, 2001). We propose representing a solution to 

an NP-Complete problem as a mapping of the total search 

space subdivided into analyzed and unsearched parts. A 

full solution to an NP-Complete problem can be 

represented by the sequential number of the string in an 

ordered set of all potential solutions. A partial solution can 

be represented by the best solution found so far along with 

the description of the already searched potential solutions. 

The already searched space need not be continuous; the 

only requirement is that the remaining search space could 

be separated from the already processed regions. It is easy 

to see while the smallest possible partial solution can be 

computed in constant time (this requires analyzing only 

one potential answer) progressively larger partial solutions 

are exponentially harder to compute with respect to the 

size of the problem.  

 

Let’s analyze a specific example of our representation of 

partial solutions. Travelling Salesperson Problems (TSPs) 

are easy to visualize and make for an excellent educational 

tool. Let’s look at a trivial TSP instance with 7 cities 

numbered from 1 to 7 as depicted in Figure 1. Assuming 

that the first city in the list is connected to the last one, 

potential solutions can be represented as a simple 

numbered list of cities: [1, 2, 3, 4, 5, 6, 7]. The complete 

search space for our problem consists of all possible 

permutations of the 7 cities. This complete set could be 

trivially ordered lexicographically or by taking the value of 

the permutation condensed into an integer form resulting 

in non-continuous numbers from 1234567 to 7654321. The 

position number in which a potential solution appears in 

the list could be taken as a pointer to that specific solution, 

with solution 1 refereeing to the [1  2  3  4 5  6 

 7  1] path in our example and solution 2 mapping to 

[1  2  3  4 5  7  6  1], and so on. It is 

obvious that the same approach can be applied to other NP-

Complete problems as they all could potentially be reduced 

to an instance of TSP. Alternatively a specialized 

representation could be created for any problem as long as 

it could be mapped on a countable set of integers. The 

specific type of ordering is irrelevant as long as it is 

reproducible and could be efficiently included as metadata 

accompanying any partial solution. 

 
Figure 1. A seven city instance of TSP 

 
Given an ordered set of potential solution it is trivial to 

specify the regions which have already been processed. In 

our 7 city TSP example the total search space consist of 7! 

= 5040 possible paths. A partial solution may be 

represented by stating that solutions from 1 to 342 have 

been examined and the best solution is the one in position 

187. This means that 4698 additional path remain to be 

examined and that the partial solution could be said to 

represent 6.79% of the final answer.  

 

A simple visual diagram can be used to illustrate computed 

partial solution via visualization of the search space. In 

Figure 2 a search space of 400 potential solutions is 

converted to a 2D representation by tilling 20-unit blocks 

of solutions on top of each other. Solution number 1 is 

represented by the top left most square with other solutions 

being introduced sequentially from left to right. Bottom 

right square is the potential solution numbered 400. Black 

squares represent already analyzed solutions. White 

squares are yet to be processed. The example in Figure 2 is 

a particularly non-contagious partial solution, having no 3 

or more continuously examined candidate solutions in a 

row.  



 
Figure 2. 2D visualization of the search space with respect to 

searched/unsearched regions and optimal solution found so far 

indicated by an X. 

 

Pre-computed Partial Solutions 
 

A more natural way of representing partial solution is to 

directly look at a subset of bits comprising the answer to 

the problem. Unfortunately finding such bits is as hard as 

solving the whole problem (Gal, Halevi et al. 1999) and so 

makes computation of partial solutions represented in this 

way unfeasible for NP-Complete problems. But suppose 

that such a partial solution could be computed by an 

Oracle and provided to us at no additional computational 

cost. In this section we will look at such situation and 

analyze difficulty of NP-Complete problems with supplied 

partial answers.  

 

Returning to our 7-city TSP example and using decimal 

instead of binary representation of solution (for better 

readability) a partial solution could be represented as: [1, 

2, ?, ?, ?, 6, 7], where “?” represent missing information. 

The missing information need not be continuous as in: [?, 

?, 3, ?, 5, ?, 7] and in the most trivial cases ([1, 2, 3, 4, 5, 6, 

?]) may be computed in a constant number of steps. Under 

this encoding for partial solutions an Oracle may provide 

enough help to make the problem solvable either in 

constant time (a small in comparison to N constant number 

K of missing elements), polynomial time (log N of missing 

elements), or essentially provide no help by providing only 

a constant amount of information ([?, ?, ?, 4, ?, ?, ?]). 

Essentially the Oracle for finding partial solutions to NP-

Complete problems has the power to make a problem as 

easy to solve as it desires, all the way up to single 

computation.  

 

Conclusions 
 

In this paper we presented a novel way of representing 

solutions to NP-Complete problems in terms of search 

space subsets. The proposed methodology allows for easy 

parallelization of difficult computational problems and is 

not limited only to NP-Complete problems. Any 

computational effort can be expressed in terms of search 

space locations making such computationally intensive 

projects as Prime Search (mersenne.org), BitCoin 

(bitcoin.org), Factoring (escatter11.fullerton.edu/nfs), SETI 

(setiathome.berkeley.edu), Protein Folding 

(folding.stanford.edu), Game Solving (Schaeffer, Burch et 

al. September 2007), TSP (Yampolskiy and EL-Barkouky 

2011) and Theorem Proving by Computer (Appel, Haken et 

al. 1977) easier to formalize, verify and break up among 

numerous computers potentially separated in space and 

time. While the projects mentioned above all have an 

internal way of representing the unexplored search space, a 

common way of specifying such information may lead to 

standard software capable of shifting unused computational 

resources among all such efforts. 

 

The proposed solution encoding approach does not 

represent a breakthrough in our ability to solve NP-

Complete problems (Yampolskiy 2011) but it does provide 

a way to store partial solutions to computationally 

challenging problems some of which may span decades of 

effort (Schaeffer, Burch et al. September 2007).  

Consequently, we are no longer limited to describing 

particular instances of such problems as solved or unsolved 

but we can also talk about percentage of the solution we 

have obtained so far. In the future we plan on addressing 

such issues as compressibility of representations for 

multiple non-contiguous sectors in the search space as well 

as looking into finding optimal orderings for the space of 

possible solutions to the NP-Complete problems. 

Additionally, we would like to investigate if by combining 

our approach with such methods as Monte Carlo simulation 

(over multiple small partitions of the search space) one can 

quickly arrive at sufficiently good solutions to very hard 

problems in cases where optimal solutions are not required. 
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