
Computing Partial Solutions to Difficult AI Problems

Roman V. Yampolskiy

Computer Engineering and Computer Science

Speed School of Engineering

University of Louisville

roman.yampolskiy@louisville.edu

Abstract

Is finding just a part of a solution easier than finding the full

solution? For NP-Complete problems (which represent some

of the hardest problems for AI to solve) it has been shown

that finding a fraction of the bits in a satisfying assignment is

as hard as finding the full solution. In this paper we look at a

possibility of both computing and representing partial

solutions to NP-complete problems, but instead of

computing bits of the solution our approach relies on

restricted specifications of the problem search space. We

show that not only could partial solutions to NP-Complete

problems be computed without computing the full solution,

but also given an Oracle capable of providing pre-computed

partial answer to an NP-complete problem an asymptotic

simplification of problems is possible. Our main contribution

is a standardized methodology for search space specification

which could be used in many distributed computation project

to better coordinate necessary computational efforts.

Keywords: NP-Complete, Partial Solution, Search Space

Introduction

In “Computing from Partial Solutions” Gal et al. (Gal,

Halevi et al. 1999) consider the question: “Is finding just a

part of a solution easier than finding the full solution?” For

NP-Complete problems, such as 3-CNF, they prove that

finding a fraction of the bits in a satisfying assignment is

as hard as finding the full solution. Specifically they proof

that any CNF formula F can be encoded in another

formula F’, is such a way that given a small fraction of bits

in a satisfying assignment to F’, it is possible to recover a

full satisfying assignment to F (Gal, Halevi et al. 1999):

Theorem 1: For any ɛ > 0, there exist an efficient

probabilistic algorithm A, and an efficient deterministic

algorithm B such that:

1. If F is a CNF formula over n variables, then F’ =

A(F) is a CNF formula over N = n
O(1)

 variables, with

|F’| = |F| + n
O(1)

.

2. With probability 1-2
-n

 the formula F’ has the

following property: If s’ any assignment to N
.5+ɛ

 of the

variables in F’ which can be extended to a full

satisfying assignment, then B(F,F’,s’) is a satisfying

assignment for F.

Proof of Theorem 1. If we are given polynomial number

of random linear equations in n variables, then any

sufficiently large subset of these equations is of dimension

at least n-O(log n), and thus leaves only a polynomial

number of candidate solutions to the entire equation

system. This, combined with the ability to verify solutions,

yields an ‘erasure-code’ with the ability to correct n –

sqrt(n) erasures. This improved erasure code can be used to

satisfy the claims of Theorem 1. Which was to be shown

(Gal, Halevi et al. 1999).

The result is hardly surprising since if finding a part of the

solution was possible in polynomial time P = NP would

trivially follow. In fact numerous researchers have realized

that a related problem of NP-Complete problem re-

optimization is not polynomial time solvable unless P = NP

(Archetti, Bertazzi et al. 2003; Böckenhauer, Forlizzi et al.

2006; Kralovic and Momke 2007; Ausiello, Escoffier et al.

2009). The proof of that fact due to Archetti et al. follows

(Archetti, Bertazzi et al. 2003):

Theorem 2: No polynomial time algorithms can exist for

the Re-Optimization of TSPunless P = NP.

Proof of Theorem 2, by contradiction. Suppose that there

exists a polynomial time algorithm, for example

ReOptTSP, which accomplishes the Re-Optimization of

TSP. Then, an optimal solution of any TSP with n+1 nodes

can be obtained in polynomial time by applying n-2 times

the algorithm ReOptTSP. We begin by applying the

algorithm ReOptTSP to find an optimal solution of the Re-

Optimization of TSP with 4 nodes, given that any 3-city

TSP problem is trivially optimally solvable. Then,

ReOptTSP is applied to find an optimal solution of the Re-

Optimization of TSP with 5 nodes, given an optimal

solution of the TSP with 4 nodes, and so on until it is

applied to find an optimal solution of the Re-Optimization

of TSP with n+1 nodes. Thus, by contradiction, no

polynomial time algorithms exist for the Re-Optimization

mailto:roman.yampolskiy@louisville.edu

of TSP unless P = NP. Which was to be shown (Archetti,

Bertazzi et al. 2003).

In this paper we look at a possibility of both computing

and representing partial solutions to NP-complete

problems, but instead of considering bits of the solution

our approach relies on specifications in the problem search

space. We show that not only could partial solutions to

NP-Complete problems be computed without computing

the full solution, but also given a pre-computed partial

answer to an NP-complete problem an asymptotic

simplification of the problem is possible. Our main

contribution is a standardized methodology for search

space specification which could be used in many

distributed computation project to better coordinate

remaining computational efforts. NP-Complete problems

are inherently easy to parallelize and so could benefit from

a common language aimed at describing what has already

been evaluated and what remains to be analyzed.

Search Space Specification

Gal et al. conclusively demonstrate that computing a part

of an answer to an NP-Complete problem is as difficult as

computing the whole solution (Gal, Halevi et al. 1999)

their results are further reaffirmed in (GroBe, Rothe et al.

October 4-6, 2001). We propose representing a solution to

an NP-Complete problem as a mapping of the total search

space subdivided into analyzed and unsearched parts. A

full solution to an NP-Complete problem can be

represented by the sequential number of the string in an

ordered set of all potential solutions. A partial solution can

be represented by the best solution found so far along with

the description of the already searched potential solutions.

The already searched space need not be continuous; the

only requirement is that the remaining search space could

be separated from the already processed regions. It is easy

to see while the smallest possible partial solution can be

computed in constant time (this requires analyzing only

one potential answer) progressively larger partial solutions

are exponentially harder to compute with respect to the

size of the problem.

Let’s analyze a specific example of our representation of

partial solutions. Travelling Salesperson Problems (TSPs)

are easy to visualize and make for an excellent educational

tool. Let’s look at a trivial TSP instance with 7 cities

numbered from 1 to 7 as depicted in Figure 1. Assuming

that the first city in the list is connected to the last one,

potential solutions can be represented as a simple

numbered list of cities: [1, 2, 3, 4, 5, 6, 7]. The complete

search space for our problem consists of all possible

permutations of the 7 cities. This complete set could be

trivially ordered lexicographically or by taking the value of

the permutation condensed into an integer form resulting

in non-continuous numbers from 1234567 to 7654321. The

position number in which a potential solution appears in

the list could be taken as a pointer to that specific solution,

with solution 1 refereeing to the [1  2  3  4 5  6

 7  1] path in our example and solution 2 mapping to

[1  2  3  4 5  7  6  1], and so on. It is

obvious that the same approach can be applied to other NP-

Complete problems as they all could potentially be reduced

to an instance of TSP. Alternatively a specialized

representation could be created for any problem as long as

it could be mapped on a countable set of integers. The

specific type of ordering is irrelevant as long as it is

reproducible and could be efficiently included as metadata

accompanying any partial solution.

Figure 1. A seven city instance of TSP

Given an ordered set of potential solution it is trivial to

specify the regions which have already been processed. In

our 7 city TSP example the total search space consist of 7!

= 5040 possible paths. A partial solution may be

represented by stating that solutions from 1 to 342 have

been examined and the best solution is the one in position

187. This means that 4698 additional path remain to be

examined and that the partial solution could be said to

represent 6.79% of the final answer.

A simple visual diagram can be used to illustrate computed

partial solution via visualization of the search space. In

Figure 2 a search space of 400 potential solutions is

converted to a 2D representation by tilling 20-unit blocks

of solutions on top of each other. Solution number 1 is

represented by the top left most square with other solutions

being introduced sequentially from left to right. Bottom

right square is the potential solution numbered 400. Black

squares represent already analyzed solutions. White

squares are yet to be processed. The example in Figure 2 is

a particularly non-contagious partial solution, having no 3

or more continuously examined candidate solutions in a

row.

Figure 2. 2D visualization of the search space with respect to

searched/unsearched regions and optimal solution found so far

indicated by an X.

Pre-computed Partial Solutions

A more natural way of representing partial solution is to

directly look at a subset of bits comprising the answer to

the problem. Unfortunately finding such bits is as hard as

solving the whole problem (Gal, Halevi et al. 1999) and so

makes computation of partial solutions represented in this

way unfeasible for NP-Complete problems. But suppose

that such a partial solution could be computed by an

Oracle and provided to us at no additional computational

cost. In this section we will look at such situation and

analyze difficulty of NP-Complete problems with supplied

partial answers.

Returning to our 7-city TSP example and using decimal

instead of binary representation of solution (for better

readability) a partial solution could be represented as: [1,

2, ?, ?, ?, 6, 7], where “?” represent missing information.

The missing information need not be continuous as in: [?,

?, 3, ?, 5, ?, 7] and in the most trivial cases ([1, 2, 3, 4, 5, 6,

?]) may be computed in a constant number of steps. Under

this encoding for partial solutions an Oracle may provide

enough help to make the problem solvable either in

constant time (a small in comparison to N constant number

K of missing elements), polynomial time (log N of missing

elements), or essentially provide no help by providing only

a constant amount of information ([?, ?, ?, 4, ?, ?, ?]).

Essentially the Oracle for finding partial solutions to NP-

Complete problems has the power to make a problem as

easy to solve as it desires, all the way up to single

computation.

Conclusions

In this paper we presented a novel way of representing

solutions to NP-Complete problems in terms of search

space subsets. The proposed methodology allows for easy

parallelization of difficult computational problems and is

not limited only to NP-Complete problems. Any

computational effort can be expressed in terms of search

space locations making such computationally intensive

projects as Prime Search (mersenne.org), BitCoin

(bitcoin.org), Factoring (escatter11.fullerton.edu/nfs), SETI

(setiathome.berkeley.edu), Protein Folding

(folding.stanford.edu), Game Solving (Schaeffer, Burch et

al. September 2007), TSP (Yampolskiy and EL-Barkouky

2011) and Theorem Proving by Computer (Appel, Haken et

al. 1977) easier to formalize, verify and break up among

numerous computers potentially separated in space and

time. While the projects mentioned above all have an

internal way of representing the unexplored search space, a

common way of specifying such information may lead to

standard software capable of shifting unused computational

resources among all such efforts.

The proposed solution encoding approach does not

represent a breakthrough in our ability to solve NP-

Complete problems (Yampolskiy 2011) but it does provide

a way to store partial solutions to computationally

challenging problems some of which may span decades of

effort (Schaeffer, Burch et al. September 2007).

Consequently, we are no longer limited to describing

particular instances of such problems as solved or unsolved

but we can also talk about percentage of the solution we

have obtained so far. In the future we plan on addressing

such issues as compressibility of representations for

multiple non-contiguous sectors in the search space as well

as looking into finding optimal orderings for the space of

possible solutions to the NP-Complete problems.

Additionally, we would like to investigate if by combining

our approach with such methods as Monte Carlo simulation

(over multiple small partitions of the search space) one can

quickly arrive at sufficiently good solutions to very hard

problems in cases where optimal solutions are not required.

References

Appel, K., W. Haken, et al. (1977). "Every Planar Map is

Four Colorable." Illinois Journal of Mathematics 21: 439-

567.

Archetti, C., L. Bertazzi, et al. (2003). "Reoptimizing the

Traveling Salesman Problem." Networks 42(3): 154-159.

Ausiello, G., B. Escoffier, et al. (2009). "Reoptimization of

Minimum and Maximum Traveling Salesman's Tours."

Journal of Discrete Algorithms 7(4) 453--463.

Böckenhauer, H.-J., L. Forlizzi, et al. (2006). Reusing

Optimal TSP Solutions for Locally Modified Input

Instances 4th IFIP International Conference on Theoretical

Computer Science (IFIP TCS).

Gal, A., S. Halevi, et al. (1999). Computing from Partial

Solutions. Fourteenth Annual IEEE Conference on

Computational Complexity: 34-45.

GroBe, A., J. Rothe, et al. (October 4-6, 2001). Relating

Partial and Complete Solutions and the Complexity of

Computing Smallest Solutions. 7th Italian Conference on

Theoretical Computer Science. Torino, Italy, Springer-

Verlag: 339-356.

Kralovic, R. and T. Momke (2007). Approximation

Hardness of the Traveling Salesman Reoptimization

Problem. 3rd Doctoral Workshop on Mathematical and

Engineering Methods in Computer Science: 97-104.

Schaeffer, J., N. Burch, et al. (September 2007). "Checkers

is Solved." Science 317(5844): 1518-1522.

Yampolskiy, R. V. (2011). "Construction of an NP

Problem with an Exponential Lower Bound." Arxiv

preprint arXiv:1111.0305.

Yampolskiy, R. V. and A. EL-Barkouky (2011). "Wisdom

of Artificial Crowds Algorithm for Solving NP-Hard

Problems." International Journal of Bio-Inspired

Computation (IJBIC) 3(6): 358-369.

