A User Friendly Software Framework for Mobile Robot Control

Jesse Riddle, Ryan Hughes, Nathaniel Biefeld, and Suranga Hettiarachchi
Computer Science Department, Indiana University Southeast
New Albany, IN 47150

Abstract

We are interested in designing applications for autonomous
mobile robots and robot swarms to accomplish tasks such
as terrain analysis, search and rescue, and chemical plume
source tracing. These tasks require robots to avoid obstacles
and reach a goal. We use X80Pro mobile robots designed and
developed by Dr.Robot Inc. for task applications. The ven-
dor provided software framework with graphical user inter-
face(GUI) allows robots only to be controlled remotely. The
development of new robot control applications require devel-
opers to acquire in-depth knowledge of MicrosoftActiveX
controls and C# programming language. In this paper, we
present a new software framework for X80Pro robots that will
allow even a novice C++ programmer to design and imple-
ment autonomous mobile robot applications. We demonstrate
the feasibility of our software framework using behavior-
based and physics based control algorithms where a X80Pro
robot avoid obstacles to reach a goal.

Introduction

Itis important to have a stable software framework for devel-
oping applications for autonomous mobile robots, especially
a software framework that allows quick prototype develop-
ment, code implementation, and testing. A software frame-
work with architectural deficiencies may increase develop-
ment time and reduce the performance of robot applications.
These issues become much more relevant when the develop-
ers are undergraduate research students with limited knowl-
edge in multiple languages and complex software frame-
work. Therefore, we are motivated to develop a user friendly
software framework based on a commonly used program-
ming language for mobile robot application development.

One of the major issues of the vendor provided software
framework is the flexibility to modify it to provide suffi-
cient user friendliness. Though these frameworks are user
friendly for some tasks, they may not be user friendly for
other applications. We are interested in designing applica-
tions for mobile robotic tasks such as terrain analysis, search
and rescue, and chemical plume source tracing using physics
based control algorithms. The vendor provided software

framework for X80Pro robots provides insufficient flexibil-
ity and user friendliness required to developing applications
for above tasks. Our effort is not to make superior software
framework to vendor provided framework, but only to have
a flexible software framework that suits our needs.

In this paper, we present our work with preliminary re-
sults from two robot control algorithms, behavior based and
physics based. The algorithms make use of sonars, infrared
sensors, and the camera of the X80Pro robot. The task of
the robot is to navigate through a simple obstacle course and
reach a light source as the goal. The rest of this paper pro-
vides an introduction to X80Pro robot, a description of the
software framework, the two control algorithms, results and
analysis of the robot behavior, a discussion on related work,
and conclusion and future work.

X80Pro Robot

The X80Pro robot hardware framework developed by
Dr.Robot is a off the shelf product for researchers that offers
full WiFi (802.11g) wireless with dual serial communication
channels, multimedia, sensing and motion capabilities (Dr.
Robot 2012). The hardware framework contains two 12
volts motors, seven inch driving wheels, DC motor driver
module with position and current feedback, six ultrasonic
range sensors, seven Sharp infrared distance measuring sen-
sors, one pyroelectric human motion sensor, color image
camera, and audio modules (speaker and microphone), suf-
ficient hardware components to serve in variety of applica-
tions. The Figure 1 shows the front and back views of the
X80Pro robot with all the components.

X80Pro Software Framework

The software framework provided by the vendor for X80Pro
robot is unique in that it depends on Win32 ActiveX Control.
An ActiveX control is a reusable software component based
on the Component Object Model (COM) that supports a
wide variety of Object Linking and Embedding (OLE) func-
tionality and can be customized to fit many software needs.

Robaot WiFi
Module Antenna

Temperature
Sensor

Infrared :.
Remate A

Contraller

Module S

Graphic LCD

man Sensar

Tt/ Aeceleration

Main Powsr Switch

Ultrasonic Sensar

Btrasomec Sensar

7.2Y Battery
Pack

|5 Range

Figure 1: Front and back views of the X80Pro robot with the sensors mounted on the bottom.

Application:CWnd Application:CWnd
Graphical User Interface

Robot:CWnd
Robot (ActiveX) ActiveX

Graphical User Interface

Event Handlers

Event Handlers
Robot objects

Robot objects

Figure 2: The vendor provided software framework(left) and
user friendly software framework(right).

The developers can also create ActiveX controls with Mi-
crosoft Foundation Classes (MFC) (MFC ActiveX. 2005).

The complex software framework with multiple libraries im-
plemented in C# treats the procedure calls as native. Behind
the scenes though, when the ActiveX control is created in
a C# application, the ActiveX component catches onto the
application’s message dispatcher automatically, without any
extra special handling on the part of the application. In C#
environment, the developer never have to work with the mes-
sage dispatcher directly and can call the procedures as if they
are native. However, when it comes to alternative program-
ming languages, we realize that we could easily lose this
simplicity. This is entirely because the vendor provided li-
brary is a framework dependent on Win32 ActiveX control,
i.e. the application and the ActiveX representation builds
an‘““is-a” relationship. Though the vendor’s software frame-
work provides sufficient development capabilities, one of
the major inflexibility is the developed application’s com-
plete dependency on ActiveX controls making developers
spend time trouble shooting software content possibly ir-
relevant to the task on hand. The left side box of the Fig-
ure 2 shows the high level architecture of the vendor pro-
vided software framework.

The right side box of the Figure 2 shows the high level ar-

chitecture of the new user friendly software framework. In
our new framework, the application keeps the event han-
dlers contained in a class with an ActiveX representation
for each robot by wrapping each ActiveX representation
(“Robot:CWnd” in the inner box of the right box) into a
Robot class, i.e. the application and the ActiveX representa-
tion builds a “has-a” relationship.

The simplest means to incorporate the provided library into
an application in this framework is to first create either a
Windows Forms Application using an MFC based applica-
tion using C++. Next, using Microsoft Visual Studios form
designer, developer should place the ActiveX control into a
window container from the available toolbox. This causes
the Visual Studio to automatically create a wrapper class to
dispatch methods available in the ActiveX control. Finally
the developer can assign methods to handle events coming
from the ActiveX controls (ActiveX Events. 2005). We have
also examined other possibilities, such as windowless acti-
vation of the control, with several container instances run-
ning asynchronously. However, without any special provi-
sion for multiple threads, the design of the framework be-
comes cumbersome, since we found that the event handlers
are called asynchronously with up to 256 instances running
in parallel.

Though the vendor supplied software framework seems sim-
ple, having all event handlers embed inside of the GUI de-
sign is a problem during application implementation and
testing. We overcame this issue by compartmentalizing Ac-
tiveX controls with event handlers into an inner object inde-
pendent of the GUI design. Though the implementation of
our user friendly framework may be somewhat complicated,
our main focus of robotic application development becomes
much simpler with less time consumed on ActiveX trouble
shooting.

Control Algorithms

We implemented two different control algorithms to test the
feasibility of our user friendly software framework. The
purpose of our experiments is to provide predictable results
of control algorithms using our software framework. This
allows us to evaluate the stability of our friendly software
framework. The stability we refer here includes the accu-
racy of simple GUI for a control algorithm implemented
with event handling to test sonar, infrared and motors.

Behavior Based X80Pro Control

The behavior-based approach is a methodology for design-
ing autonomous agents and robots; it is a type of an intelli-
gent agent architecture. Architectures supply structure and
impose constraints on the way robot control problems are
solved. The behavior-based methodology imposes a general
biologically-inspired, distributed, bottom-up philosophy, al-
lowing for a certain freedom of interpretation (Matarié
1999).

The behavior based algorithms demonstrates a variety of
behaviors in a heuristic manner. Behavior-based and rule-
based techniques do not make use of potential fields or
forces. Instead, they deal directly with velocity vectors and
heuristics for changing those vectors.

Physics Based X80Pro Control

In physics based approaches, virtual physics forces drive a
agents and robots to a desired configuration or state. The
desired configuration is one that minimizes overall system
potential energy, and the system acts as a molecular dynam-

ics (F' = ma) simulation (Spears et al. 2005).

“Physicomimetics” or artificial physics (AP) is motivated by
classical physics. This approach provides excellent tech-
niques for distributed control of large collections of mobile
physical agents as well as theoretical foundations for analyz-
ing swarm behaviors. The Physicomimetics framework pro-
vides an effective basis for self-organization, fault-tolerance
and self-repair of robot control (Spears et al. 2011).

Our control algorithm AP-lite (i.e. artificial physics lite)
uses the physics based approaches with Hooke’s law as our
force law.

Experimental Methodology

Since we are at the initial stages of our research we decided
to conduct all of the experiments with one robot though the
control algorithms have the capability to scale to swarm of

robots. Our robots are nonholonomic and they always move
in the forward direction.

The robot environment is modeled with two parallel walls
and four obstacles in between with sufficient space for the
robot to navigate. The Figure 3 shows the robot view of
this environment. The goal, a light source, is kept at the far
end of the two walls and all lights in the lab were turned
off during the experiments. We do not make use of filters to
filter out the noise in the environment.

Our behavior based control algorithm uses two sonars (the
left and right most sonars in the front of the robot) to model
the robot behavior of moving from start location to a goal
location where goal is a light source. The robot constantly
move forward searching for the light source using the robot
camera, and reacts to obstacles in the environment depend-
ing on the sonar readings by turning left or right by 35° angle
(rule-based). The motors are powered with consistent rate of
voltage, increasing or decreasing the power with the same
consistency. For the clarity of the graphs presented in the
Results and Analysis section, we scaled the data differently.

Our AP-lite control algorithm uses two infrared sensors to
model the robot behavior of moving from start location to
a goal location where goal is a light source. The algorithm
maintains a global attractive goal force that is always active;
this drives the robot forward with an equal amount of power
to both motors. Again, the clarity of the graphs presented
in the Results and Analysis section, we scaled the data dif-
ferently. When the robot reaches an obstacle, AP-lite com-
putes the repulsive forces acting on the robot, and changes
the power supply to the motors to change the robot head-
ing. If the robot senses an obstacle from the right (i.e. right
infrared sensor reads a low value), AP-lite reacts to this re-
pulsion by decreasing power to the left motor and/or increas-
ing power to the right motor. If the robot senses an obstacle
from the left (i.e. right sensor reads a high value), AP-lite re-
acts to this repulsion by decreasing power to the right motor
and/or increasing power to the left motor. AP-lite measures
the turning angle based on the virtual attractive and repulsive
forces acting on the robot. The force vector of the AP-lite is
computed every four milliseconds giving sufficient time for
wireless data communication between the robot and the host
computer.

We present results of our experiments in next section. All
experiments are conducted indoor and averaged over five
runs.

Results and Analysis

We test the stability of our software framework using a be-
havior based control algorithm and a physics based control
algorithm, Ap-lite. The Figure 4 shows the sonar readings
during navigation of the robot in the y-axis over time in the
x-axis, where robot uses the behavior based control algo-

i
il

Figure 3: Robot view of the environment. Light source at
the far end.

rithm. According to the robot view (see Figure 3) the first
obstacle to the right is detected by the right sonar between
the time 100 and 150, and both the left and the right sonars
detect the last obstacle to the left before the robot reaches
the goal at time 250 and 350. This is due to the fact that our
robot is directly facing the last obstacle.

Average Readings of Left and Right Sonars-Behavior Based

250 i i ‘ sonar left
! sonar right||f--—--

200

150

100

Average Sonar Readings

50

0 50 100 150 200 250 300 350
Time

Figure 4: The sonar readings of the robot using behavior
based algorithm.

The Figure 5 shows the power to motors during navigation
of the robot in the y-axis over time in the x-axis, where robot
uses the behavior based control algorithm. Though not very
significantly, the power supply to the right motor increases
when the robot reaches the first obstacle to the right, while
the power to left motor remains unchanged. Then the robot
takes several turns that we believe due to the fact that the
robot is directly facing the last obstacle to the left before
reaching the goal. This is also evident in the sonar readings
in the Figure 4. The robot constantly change the power to
two motors to keep the power consistent during these turns.
We believe that this behavior can be corrected by finding an
accurate balance of proper turning angle and proper filters to

remove noise in the environment.

Average Readings of Left and Right Motor Power - Behavior Based
20000 T

T T
left motor ------—--
right motor —+—

19000

18000 [
17000

16000

Power Reading

15000

14000

13000

12000 : : . : : : :
0 50 100 150 200 250 300 350
Time
Figure 5: The power use by two motors of the robot using
behavior based algorithm.

The Figure 6 shows the infrared sensor readings during nav-
igation of the robot in the y-axis over time in the x-axis,
where robot uses the AP-lite control algorithm. The results
clearly show the robot reaching the first obstacle to the right
where the right most infrared sensor reading decreases at
times between 125 and 175, and the robot reaching last ob-
stacle to the left before the goal at time 200 and 260. This
behavior can clearly be seen in the power supply to the motor
in the Figure 7 and the change in robot angle in the Figure 8.

Average Readings of Left and Right IR Sensors - AP Lite
100 T T

IR left —+—

IR right
’ 0Ty

40 - 1

Average IR Sensor Readings

20 F E

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Time

Figure 6: The infrared sensor readings of the robot using
AP-lite algorithm.

The Figure 7 shows the power to motors during navigation
of the robot in the y-axis over time in the x-axis, where
robot uses the AP-lite control algorithm. When the robot
reaches the first obstacle to the right, repulsive forces are
high from the right side of the robot. The resulting force
vector causes the robot to reduce power to the left motor,
but increase power to the right motor, allowing the robot to

take a quick and sharp turn. Since this sharp turn causes the
robot to keep an easy focus on the goal robot does not reach
the last obstacle to the right, but detects the last obstacle to
the left before the goal. To avoid the obstacle to the left of
the robot at time 180, AP-lite control algorithm reduces the
power to right motor while keeping the power to left motor
the same.

Average Readings of Left and Right Motor Power - AP Lite
30000 T T T T T

T T
left motor --------
ngntmaotor

25000 [

20000 [

Power Reading

15000 - b

10000 B

L L L L L
0 50 100 150 200 250 300 350
Time

Figure 7: The power use by two motors of the robot using
AP-lite algorithm.

We also measure the turning angle of the robot in AP-lite
algorithm, since AP-lite computes the turning angle based
on the attractive and repulsive forces exerted on the robot
by obstacles and the goal. The Figure 7 shows the turning
angle during navigation of the robot in the y-axis over time
in the x-axis. Once again, it is apparent that the robot’s left
turn occurs with the first obstacle to the right, and the robot’s
right turn occurs with the last obstacle to the left before the
goal. We believe that the robot force vector computation
favors the least resistant path from the starting point to the
goal.

Related Work

Both behavior-based and rule-based systems have proved
quite successful in exhibiting a variety of behaviors in a
heuristic manner. Fredslund and Matari¢ studied the prob-
lem of achieving global behavior in a group of distributed
robots using only local sensing and minimal communica-
tion, in the context of formations (Fredslund and Matarié
2002). The key concept of their algorithm is that each robot
follows a designated “friend” robot at the appropriate an-
gle and distance using a proximity sensor that can provide
the angle and distance information of the friend. By pan-
ning the sensor appropriately, the algorithm simply keeps
the friend centered in the sensor’s view. They presented
their results using four and eight robots in different forma-
tions. Balch and Arkin accomplished robot formations using
the following two step process: “detect-formation-position”
which is a perceptual process that determines the robot’s

Average Change of Robot Angle - AP Lite
100 T T T T T T

Angle Readings

-100 1 L L L L L L
0 50 100 150 200 250 300 350

Time

Figure 8: The turning angle of the robot using AP-lite algo-
rithm.

position in the formation based on the current environment
data, and “maintain-formation” which generates motor com-
mands to direct the robot towards the correct location (Balch
and Arkin 1998).

One of the earliest physics-based techniques is the poten-
tial fields approach (e.g., (Khatib 1986)). Most of the PF
literature deals with a small number of robots (typically
just one that is similar to our experimental setup) that nav-
igate through a field of obstacles to get to a target loca-
tion. The environment, rather than the robots, exert forces.
Obstacles exert repulsive forces while goals exert attractive
forces (Kim 1991; Koren 1991).

The social potential fields (SPF) framework is highly related
to physicomimetics framework (Reif 1998). Reif and Wang
rely on a force-law simulation that is similar to the physi-
comimetics approach, allowing different forces between dif-
ferent robots. Their emphasis is on synthesizing desired for-
mations by designing graphs that have a unique potential
energy (PE) embedding.

Conclusion and Future Work

We are interested in designing applications for autonomous
mobile robots and robot swarms. We use X80Pro mo-
bile robots designed and developed by Dr.Robot Inc. for
our applications. The vendor provided software framework
was inflexibility and lack user friendliness required to de-
velop software applications with undergraduate student re-
searchers. We presented a user friendly software framework
for X80Pro robots that will allow even a novice C++ pro-
grammer to design and implement autonomous mobile robot
applications. We explored the feasibility of our software
framework using behavior-based and physics based control
algorithms where a X80Pro robot avoid obstacles to reach
a goal. We are capable of producing predictable robot be-

havior using these control algorithm. We believe that the
behavior based control algorithm needs to be studied further
to provide a proper conclusion. The AP-lite shows signifi-
cant predictability of the robot behavior in our user friendly
software framework.

Future work of this research will focus on a Java based soft-
ware framework for X80Pro robots and improved control
algorithms to test the feasibility of the software framework.
We would also extends the implementation of our algorithms
to multi-robot systems since the algorithms are already theo-
retically extended to handle swarm of robots. This will also
allow us to make use of techniques presented in (Reif 1998).
Another improvement would be to implement filters to elim-
inate noise in the environment and test the robot behavior in
more complex environments.

Acknowledgements

Authors are especially greatful to the IU Southeaset research
and grant committee for providing financial support to this
work. Authors would like to acknowledge the valuable sup-
port by IU Southeast Dean for Research, Dean of School
of Natural Sciences, Department of Computer Science, and
contributions by all the students who took C458 Intelligent
Robots course in spring 2011.

References

Dr. Robot Inc. (2012). Dr. Robot Inc - Extend
Your Imagination. http://www.drrobot.com/
products_item.asp?itemNumber=X80Pro

Matari¢, M. (1999). Behavior-Based Robotics. MIT En-
cyclopedia of Cognitive Sciences, Robert A. Wilson and
Frank C. Keil, eds., MIT Press,: 74-77.

MFC ActiveX Controls (2005). Microsoft Vi-
sual Studio - MFC ActiveX Controls. http:
//msdn.microsoft.com/en—-us/library/
k194shk8 (v=vs.80) .aspx

ActiveX Controls: Events (2005). Microsoft Vi-
sual Studio - ActiveX Controls: Events. http:
//msdn.microsoft.com/en—-us/library/
aa268929 (v=vs.60) .aspx

Spears, W., Spears, D., Hamann, J. and Heil, R. (2005).
Distributed, Physics-Based Control of Swarm of Vehicles.
Autonomous Robots, Kluwer, 17: 137-164.

Balch, T. and Arkin, R. (1998). Behavior-based Forma-
tion Control for Multi-Robot Teams. /IEEE Transactions on
Robotics and Automation, 14: 1-15.

Spears, W. and Spears, D., eds. (2011). Physicomimetics-
Physics Based Swarm Intelligence. Springer.

Fredslund, J. and Matari¢, M. (2002). A General Algorithm
for Robot Formations Using Local Sensing and Minimal
Communication. I[EEE Transactions on Robotics and Au-
tomation, 18: 837-846.

Khatib, O. (1986). Real-time obstacle avoidance for ma-
nipulators and mobile robots. International Journal of
Robotics Research,5, (1): 90-98.

Kim, J. and P. Khosla (1991). Real-time obstacle avoid-
ance using harmonic potential functions. IEEE Interna-
tional Conference on Robotics and Automation,: 790796.
Koren, Y. and J. Borenstein (1991). Potential eld methods
and their inherent limitations for mobile robot navigation.
IEEE International Conference on Robotics and Automa-
tion, 1398-1404.

Reif, J. and H. Wang (1998). Social potential elds: A dis-
tributed behavioral control for autonomous robots. Work-
shop on the Algorithmic Foundations of Robotics.

