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Abstract

 

Chest radiographs are the most routinely acquired exams, 

which makes their use for diagnosis cost effective. In this 

paper we present a dynamic programming approach for 

automated heart segmentation on posterior-anterior (PA) 

chest radiographs. The goal of the proposed algorithm is to 

provide an accurate and reproducible method for heart 

segmentation, which can then be used to detect certain 

cardiac abnormalities. Our method has several advantages 

over previous methods, and provides superior performance 

to previously published results.  

Introduction 

Heart segmentation in chest radiographs is a 

challenging task. One major difficulty in segmenting the 

heart is the low contrast found in the mediastinum and 

diaphragmatic regions. These areas are difficult to 

visualize even by radiologists. Other aspects that make the 

problem challenging include: the significant variation in 

heart size across patients, the presence of disease in the 

lungs, and poor breadth holds by patients (leading to lower 

contrast on the heart boundary). Despite the challenges, 

development of an automated method for heart 

segmentation could provide significant clinical value [1]. 

Several methods have been proposed [1][2][3] for 

segmenting the heart. Nakamori et al [1] discuss a method 

to segment the heart by detecting points along the heart 

boundary, which are then fitted using a Fourier shape 

model. This method was used in [2] to automatically 

compute the cardiothoracic ratio (CTR) in 400 

radiographs. Out of the 400 radiographs, 20% required 

manual intervention. It was also shown in [3] that the heart 

boundaries outlined by four experienced radiologists had a 

high degree of variability, which is an important result 

when considering how to assess automatic methods. 

 Van Ginneken et al [4] discuss several approaches to 

heart segmentation: active appearance model (AAM), 

active shape model (ASM) and pixel classification. The 

individual methods performed comparably well, though 

significantly better performance was obtained when a 

                                                 
 

hybrid voting scheme was used to combine the three 

methods. Shape models, such as the ASM, have the 

drawback that their fitting routine can get caught in local 

optima [5]. This effect can become quite pronounced when 

applied to images that differ significantly from those used 

to build the model. This point is particularly important in 

our application as abnormal hearts are precisely what we’re 

trying to detect. For this reason, we opted for a different 

approach. 

One important use of heart segmentation is the 

measurement of the cardiothoracic ratio. The CTR is an 

important measurement that can imply cardiomegaly 

(abnormally large heart) [1]. The CTR is defined as the 

maximum transverse diameter of the heart, divided by the 

maximum internal diameter of the thoracic cage [6] 

Research in to methods for automatic CTR extraction has a 

long history [6]. Later in the paper we show how the CTR 

can be used for assessing the quality of a heart 

segmentation. Although the CTR can be computed without 

segmenting the heart, segmentation is useful as it can help 

radiologists validate the result. Figure 1 illustrates the idea. 
       We use an algorithm based on dynamic programming 
(DP) to segment the heart. DP, an important algorithm in 
Artificial Intelligence [7], is used in applications such as 
finding the shortest path within a graph. DP decomposes a 
complicated problem into simpler sub problems; and, based 
on Bellman’s “Principle of Optimality”, the optimal 
solution to the original problem can be obtained by 
combining the solutions to each sub problem.  

In the proposed algorithm we formulate the DP sub 

problem in an innovative way. The cost matrix is generated 

using image information assigning minimum cost to the 

pixels having heart edge characteristics. The cost matrix is 

generated in the polar domain since the heart shape is 

mostly circular. By using this method we allow the shape 

to vary in regions where enough information is present, but 

force the shape to be circular in regions of uncertainty.  

In the next sections we describe our algorithm based 

on dynamic programming in detail, followed by a 

presentation of extensive experimental results and a 

conclusion.  
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Figure 1: Chest Radiograph with heart outline showing the 

maximum internal diameter of the thorax (ID) and maximum 

transverse diameter of the heart that is the sum of maximum 

right heart width (MR) and maximum left heart width (ML).  

 

Materials and Methods 

We used the 247 chest radiographs from the JSRT 

database to test the method. The JSRT database is 

available publicly and consists of screen-film images 

digitized with a 0.175mm pixel size and 2048×2048 image 

size [8]. The heart annotations for this dataset [9] are 

available and were used to evaluate our method. 

In Figure 2 a flowchart of the method is shown. 

 

 

Figure 2: Algorithm Flowchart 

Region of Interest around the Heart  

 
We first obtain the ribcage mask and the segmented lung 

masks from the chest radiographs. This is done using a 

method developed by Riverain Technologies. The lung 

masks are then used to detect locations where the air, 

heart, and diaphragm intersect as shown in Figure 3. These 

locations are computed based on a curvature detection 

method as discussed in [10]. The average of these two 

locations, as shown in Figure 3, is used as the end row 

value to define an approximate bounding box around the 

heart region. 

 The top row of the bounding box, as shown in Figure 3, 

is selected as the location where the heart and the left lung 

first meet. The bounding box column locations, as shown 

in Figure 4, are the locations along each lung mask that are 

at a maximum distance from the central column. 

  

                

 

 

 

Figure 3: Landmark points computed using curvature 

information on the lung masks 

 

 This bounding box is used to define a center and a radius 

around the approximate heart region. The center is selected 

as the midpoint of the bounding box and the radius is 

selected as half of the distance between the end column 

locations. 

 

 

Figure 4: The heart region determined using the lung mask 

Polar Transform 

The border of the heart is roughly circular. For this reason 

we apply a polar transform defined in equations (1)-(3) to 

the approximate heart region.  
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where  (   ) is the image in the Cartesian coordinate 

system and  (   ) is the image in the polar coordinate 

system. 

 The polar transform is applied to the image as shown in 

Figure 5(a) using the center and radius as defined in the 

previous section. To ensure all of the heart is included, the 

radius is multiplied by a factor α. In this paper we selected 

a α value of 1.5. The polar domain image as shown in 

Figure 5(b) is used to compute a cost matrix for the 

purpose of dynamic programming.  

 

 

 

 

 

 

 

 

 

Figure 5.(a): Cartesian system image with center and 

radius marked for conversion in the polar domain 

 

 

Figure 5.(b): Polar co-ordinate image expressed in terms 

of radial distance. 

Dynamic Programming 

In dynamic programming, the most important part is 

constructing the cost matrix. Each pixel in the cost matrix 

is assigned a local cost, where we use low cost values for 

pixels that have characteristics typical of the heart 

boundary. The local cost is defined as a linear combination 

of individual cost images: 

                                         (4) 

where       is the cost based on the gradient magnitude, 

      is the weight assigned to      ,      is the cost 

based on a smoothed gray scale image and      is the 

weight assigned to     . The gradient is calculated by 

computing the derivative along each column (derivative in 

the radial direction). The gray scale cost term is defined by 

first computing a nominal value for the heart-lung border. 

This is done for each column within a smoothed image. 

These nominal values are then used to measure each 

pixel’s deviation from the expected border value.  Each 

local cost term is scaled to the unit interval prior to 

combining.   

Given the local cost matrix, the next step is to compute 

the cumulative cost.  The cumulative cost accounts for 

both the local and transitional costs. The transitional term 

weights the cost of going from one pixel to the next. The 

transitional cost we use increases with pixel distance, thus 

enforcing a smoother result. The total cumulative cost 

matrix is defined as follows: 

 (   )            (   )                            (5) 
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where T represents the transition cost. The value “s” is the 

offset between pixels when going from one column to the 

next. The value of this offset is not allowed to be larger 

than a specified value, “k”, depending upon the desired 

path smoothness. The value of k for our experiments was 

set to 3 pixels.  

Pixels outside the lung mask, or those having cost 

values above a maximum acceptable threshold, are set to 

the maximum cost value as shown in Figure 6. This causes 

a straight line to be the optimum path for these regions 

(circular arc in Cartesian domain). 

 

 

Once we obtain the optimal DP solution path, the heart 

segmentation is obtained by transforming the path to the 

Cartesian domain, as shown in Figure 7. 
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(c) 

Figure 7: (a) The optimum path obtained from dynamic 

programing solution is converted into (b) Cartesian co-ordinate 

system to obtain the heart segmentation with (c) some post 

processing. 

 

Some morphological post processing is applied to make 

the heart shape smooth and convex, see Figure 7 for an 

example. 

 
Figure 6.(a): Original Cost Image 

 
Figure 6.(b): Cost Image with non-air pixels suppressed 

 
Figure 6.(c): Cost image with pixels having cost values above 

a maximum acceptable threshold value set to the maximum cost 

value 



Experiments 

We carried out two experiments to validate the proposed 

method. First, the algorithm output is compared to the 

manual outlines to evaluate the accuracy of the heart 

segmentation. In a second experiment, we compared CTR 

values extracted from the algorithm against those extracted 

from manual outlines. The specific aim of this experiment 

was to evaluate if a reliable CTR estimate can be obtained 

even with a low overlap score.   

The overlap score, Ω, between the manually outlined 

heart boundary and the output of our method is defined in 

equation (7).  

   
  

        
                               (7) 

where TP  is the true positive area, FP is the false positive 

area, and FN  is the false negative area.  

Figure 8 illustrates a summary of the overlap scores 

obtained by our method. 

 

 

Figure 8: Histogram of overlap scores on 247 chest X ray 

images. Most of the overlap scores concentrate around 0.87, 

indicating the high accuracy of our method. 

 

The CTR values are computed by detecting the internal 

diameter (ID) of the thorax and the transverse diameter of 

the heart (TD = MR+ML, Figure 1).  

     
  

  
                               (8) 

The ID value was derived from the ribcage mask. The 

TD values were computed using the heart mask derived 

from the algorithm output and the manual outlines.  

 A relative difference between the CTR values was 

computed using the above TD and ID values. Figure 9 

shows a scatterplot comparing the overlap score with the 

relative CTR measure. From this plot we can deduce that a 

good CTR estimate can be obtained even with a low 

overlap score. An example of such a case is shown in 

Figure 10. The reason this can occur is that the source of 

low overlap is generally from the mediastinal and sub 

diaphragmatic regions, which do not influence the 

transverse diameter of the heart. 

Figure 11 shows the only case with a low overlap score 

that was not due to the mediastinal or sub diaphragmatic 

regions.  The difficulty here is the fusion of the left lung 

and colon. This leads to an inaccurate estimate of the left-

lower landmark intersection location, which results in 

significant under segmentation. Fortunately, such an 

occurrence is rare and is left as an area for future 

improvement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Scatterplot comparing the overlap score with the 

relative CTR measure 

 

 

 

 

 

 

 

 

 

Figure 10: Example 1 with 

the lowest overlap score of 

0.63 

 

 

 

 

 

 

 

 

Figure 11: Example 2 

having low overlap score, 

but a more accurate CTR 

value 
 

Some typical output segmentations are presented in 

Figure 12. As can be seen, our proposed method captures 

the actual heart contour fairly accurately in most of the 

cases. 

Discussion 

An average overlap score of 0.867 ± 0.046 was obtained 

from the 247 JSRT images.  We find that our method 

produces outputs that are close to the human observer, 

while comparing favorably to the other methods discussed 

in the survey paper [4]. The overlap scores in Table 1 are 

for the three hybrid methods discussed in [4]. These hybrid 
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methods make use of multiple methods making them 

computationally intensive.  In addition, these methods are 

supervised approaches whose outputs might not extend to 

more atypical cases. By comparison, our method is far less 

complex and has the advantage of making very few 

assumptions about the shape of the heart. 
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Figure 12: Heart Segmentation. Blue represents user annotation 

and red represents output of the current method. 

Conclusion 

We presented an algorithm for segmenting the heart region 

using dynamic programming. The proposed algorithm 

provided an accurate and reproducible method for heart 

segmentation. The presented method makes few 

assumptions about the heart shape, has a simple 

implementation, and provides superior performance to 

previously published results.  
Future work will involve the collection of more data, 

which is needed for further evaluation and the 

development of strategies for handling outlier cases. Also, 

additional image features for improving the local cost term 

will be explored.  
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Table 1: Overlap score results compared to a human observer and various methods discussed in [4]. 
 

Heart µ±σ min Q1 median Q3 max 

Human Observer 0.878±0.054 0.571 0.843 0.888 0.916 0.965 

Dynamic Programming 0.867±0.0460 0.636 0.846 0.875 0.898 0.944 

Hybrid Voting 0.860±0.056 0.651 0.833 0.870 0.900 0.959 

Hybrid ASM/PC 0.836±0.082 0.430 0.804 0.855 0.889 0.948 

Hybrid AAM/PC 0.827±0.084 0.499 0.791 0.846 0.888 0.957 
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