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Abstract  
Logistic regression with L1-regularization has been recognized as 
a prominent method for feature extraction in linear classification 
problems.  Various optimization methods for L1 logistic 
regression have been proposed in recent years.  However there 
have been few studies conducted to compare such methods.  This 
paper reviews existing methods for optimization and then tests 
the methods over a binary dataset.  Results are recorded and 
comparisons are made.  After analyzing the results, the 
conclusion is that the GLMNET method is the best in terms of 
time efficiency. 

 

Introduction 

Digital information is growing at an extreme rate.  
Emerging technologies have created an environment that is 
information driven.  From social media to medical records, 
data is collected in all forms from around the world. 
Current trends suggest a jump in information gathered and 
collected over the next decade and beyond.  Never before 
has there been an abundance of data and information as we 
see today.    

As the amount of data collected continues to grow so does 
the challenge of processing and gathering information.  
The data is growing wide, and the amount of attributes and 
features that can be derived sometimes outnumber the 
sample size.  Now, more and more binary large objects are 
appearing in databases which require a different approach 
to identifying and extracting information.   
 
Researchers have turned to regularized general linear 
models to form relationships about the binary data.   
Regularization is required to avoid over-fitting when there 
are a large number of parameters. In particular, L1- 
regularized regression is often used for feature selection, 

                                                 
 

and has been shown to generate sparse models (Yuan, 
Chang, and Lin 2010). 
 
Recently, there has been a large amount of research 
conducted to related regularization methods.  Each method 
is differentiated by various aspects including: convergence 
speed, implementation, and practicability.  Therefore, there 
is significance in conducting a thorough comparison and 
evaluation (Yuan, Chang, and Lin 2010).  In this paper, we 
review prevailing methods for L1-regularized logistic 
regression and give a detailed comparison. 
 

Background 

Logistic regression is used for prediction of the probability 
of occurrence of an event by fitting data to a function. It is 
a generalized linear model used for binomial regression. 
Like other forms of regression analysis, it makes use of one 
or more predictor variables that may be either numerical or 
categorical. The logistic regression problem is an 
optimization problem, and can be solved by a wide variety 
of methods; such as gradient descent, steepest descent, and 
Newton. Once optimization is complete and maximum 
likelihood values are found, a prediction on the probability 
of the two possible outcomes can be made (Koh, Kim, and 
Boyd 2007). 

The logistic model has the form: 

                    [1] 

Where b  (-1, +1) denotes the associated binary output and 
where Prob(b|x) is the conditional probability of b. 
 
L1-regularized logistic regression has recently received 
attention.  The main motivation is that L1-regularized 



logistic regression yields a sparse vector and has relatively 
few nonzero coefficients (Koh et al. 2007).  A logistic 
model with sparse vectors is simpler and more efficient 
when dealing with data having a smaller number of 
observations than features. When compared to L2-
regularized logistic regression, L1-regularized logistic 
regression outperforms L2-regularized logistic regression 
(Wainwright, Ravikumar, and Lafferty 2007). 
The L1-regularized logistic regression problem minimizes 
the following equation: 
 
lavg(v,w)+l||w||1=(1=m) f(wTai+vbi)+l ||w||    [2] 
 
Where λ > 0 is the regularization parameter.  A solution 
must exist, but it need not be exclusive. The objective 
function in the L1-regularized Logistic regression problem 
is not differentiable so solving the problem is a 
computational challenge (Koh, Kim, and Boyd 2007). 
 
A regularization path is the set of solutions obtained from 
L1-regularized linear regression problems while solving 
for λ.   In many cases, the entire regularization path needs 
to be computed, in order to determine an appropriate value 
of λ.  The regularization path in a smaller L1-regularized 
linear regression problem can be computed efficiently 
(Friedman, Hastie, and Tibshirani 2010).  Hastie et al.  
describe an algorithm for computing the entire 
regularization path for general linear models including 
logistic regression models.   Path-following methods can 
be slow for large-scale problems, where the number of 
observations is very large.  

Optimization 

Each method uses a type of optimization approach to find 
the regularization path as well as λ.  The general model 
used in each method consists of iterations of the descent, 
where a chosen subset of variables is deemed the working 
set and all other variables become fixed.  With every step 
the resulting sub-problem contains fewer variables and 
therefore solved easier.    

Coordinate Descent Method 
Typically, a coordinate descent method sequentially goes 
through all variables and then repeats the same process.  
By solving the regression problem along an entire path of 
values, this method efficiently calculates the regularization 
parameters (Friedman, Hastie, and Tibshirani 2010). 
 
Generalized Linear Model with Elastic Net  
GLMNET applies a shrinking technique to solve smaller 
optimization problems.  GLMNET conducts feature-wise 
normalization before solving the optimization problem. 
Then, GLMNET measures the relative step change in the 

successive coordinate descent iterations (Yuan, Chang, and 
Lin 2010).  
 
Continuous Generalized Gradient Descent 
An effective regularization strategy in generalized 
regression is using validation methods to choose a suitable 
point in a trajectory or a family.  Due to the use of gradient 
information, the number of iterations is less than cyclic 
coordinate descent methods. However, the cost per 
iteration is higher (Zhang 2007).  
 
Least Angle Regression 
LARS relates to the classic model-selection method known 
as Forward Selection (described in Efron, Hastie, 
Johnstone and Tibshirani 2004). Given a collection of 
possible predictors, a selection is made based on the largest 
absolute correlation with the response y.  Thereafter simple 
linear regression is performed on the response y. This 
leaves a residual vector that can be considered the 
response. Projection is made over the other predictors 
orthogonally to the response.  The selection process is then 
repeated.  After n steps this results in a set of predictors 
that are then used to construct a n-parameter linear model.   
 
Relaxed Lasso 
Relaxo is a generalization of the Lasso shrinkage technique 
for linear regression. Both variable selection and parameter 
estimation is achieved by regular Lasso, yet both steps do 
not necessarily use the same penalty parameter. The results 
include all Lasso solutions but allow for sparser models 
while having similar predictive performance if many 
predictor variables are present. The package is based on the 
LARS package (Meinshausen 2007). 

Datasets 
All the experiments were done using the Leukemia dataset, 
a gene-expression data. This dataset was first mentioned in 
(Golub et al. 1999).  The pre-processed dataset using 
methods from (Dettling, 2004) was used. The datasets 
consists of 72 genes that are part of two classes 0 and 1. 
There are 47 genes are from class 0 and 25 are from class 
1.   

 
Figure 1. Histogram for Predictor Variable1 



 
Figure 2. Histogram for Predictor Variable 250 

 
There are 3,571 predictor variables that have numeric 
values in the interval [-10, 10] with most of the values 
close to 0.  
 
The two figures above represent the histograms for two of 
the variables, the first one and the 250th one. More than 
75% of the values of variable 1 are in the [-1, 0] interval. 
The values of variable 250 are normally distributed in the 
[-2.5, 2.5] interval. 

Experiments 
So far, we have described several large-scale optimization 
methods for solving L1-regularized logistic regression 
problems. In this section, we conduct experiments to 
investigate their individual and group performances. First 
we describe the experimental settings.  Then the 
optimization methods are compared in terms of accuracy 
and time. 
 
To be able to provide good predictions using the 
GLMNET algorithm, the regularized parameter λ has to be 
found first. That can be done in R using a grid search and 
functions from the caret package (Kuhn, 2012). First, the 
trainControl function is used to set the training parameters. 
Bootstrap sampling is done 25 times to increase the chance 
of getting high accuracy results.  
 
model <- train(FL,data=trainset,method='glmnet', 

 metric = "ROC", 

 tuneGrid = expand.grid(.alpha=c(0,1), 

 .lambda=seq(0.02,.4,length=20)), 

 trControl=MyTrainControl) 

  
The model is obtained by using the caret’s train function. 
The search interval for λ is [0.02, .4] with a step of 0.02. 
Parameter α can take 2 values 0 or 1. For α = 0 and all λ 

values the AUC (area under the curve) is maximum at 
0.992. These results are shown in Figure 3.  

 
Figure 3.Glmnet ROC curve for the grids search 

 
To run the experiments we used the GLMNET, CGGD, 
Relaxo, and LARS package in R. The LARS and Relaxo 
packages fit lasso model paths, while the GLMNET 
package fits lasso and elastic-net model paths for logistic 
and multinomial regression using coordinate descent. The 
algorithms are extremely fast, because they exploit sparsity 
in the data matrix. The CGGD is used for performing 
regressions while continuously varying regularization.  The 
method returns the models fit along the continuous paths of 
parameter modification. 
 
The coefficients from step 1 to 100 were recorded and their 
profile is plotted in figures 4, 5 and 6.  Unfortunately we 
were unable to plot the coefficients of the Relaxo package.   

 
Figure 4: Profile of estimated coefficients for GLMNET 

method 



 
Figure 5: Profile of estimated coefficients for CGGD 

method 
 

 
 

 
Figure 6: Profile of estimated coefficients for LARS 

method 
 
 
10 Fold cross validation was used, and timings were 
recorded. Timing in seconds for GLMNET, CGGD, 
Relaxo, and LARS over Leukemia data is presented.  The 
timings were performed on one HP TX2000 series laptop.   

Optimization 100 Steps 

GLMNET        0.036s 
Relaxo             0.064s 
LARS              0.116s 
CGGD             1.280s 
 

Cross-validation 100 Steps 

GLMNET        0.420s 
CGGD             1.38s 
LARS              1.932s 
Relaxo             4.076s 

Conclusions 
When compared, GLMNET is the more efficient algorithm.  
By the 100th step the predicted coefficients for GLMNET 
are stronger than both CGGD and LARS.   When 
comparing the timings, GLMNET is almost 4 times as 
quick as CGGD in both optimization and cross validation. 
Relaxo is the almost twice as slow as GLMNET when 
comparing optimization and almost 10 times as slow when 
cross validating.  We can conclude that the most efficient 
method for L1-regularized logistic regression is GLMNET.  
The Leukemia dataset has a larger number of features 
compare to the number of instances. Linear models work 
well with datasets with such characteristics. The data while 
large however contained a small number of samples.  
Testing over a dataset with a large sample and small feature 
should be further investigated. 
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