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Abstract

A significant amount of academic research in criminology
focuses on spatial and temporal event analysis. Although
several efforts have integrated spatial and temporal analyses,
most previous work focuses on the space-time interaction and
space-time clustering of criminal events. This research ex-
pands previous work in geostatistics and disease clustering by
using a Bayesian hierarchical framework to model criminals’
spatial-temporal preferences for site-selection across a con-
tinuous time horizon. The development of this Bayesian hi-
erarchical feature-space model (BHFSM) offers law enforce-
ment personnel a method for accurate crime event forecast-
ing while improving insight into criminal site-selection at the
strategic level. We compare the BHFSM to other feature-
space modeling techniques using both a long range and short
range criminal event dataset collected from police reporting.
While the BHFSM remains sufficiently accurate for event
prediction, current computational requirements limit the ap-
plicability for “just-in-time” crime modeling.

Introduction

Although much theoretical and practical work has been done
on the use of Bayesian hierarchical modeling for geostatis-
tics and disease clustering, applications within the crimi-
nal site-selection problem have been limited. This article
merges the feature-space model of Liu and Brown (1998)
with the Markov random field construct of Zhu, Huang, and
Wu (2006) to model the criminal’s preference for initiating
a crime within a specific spatial-temporal zone. By adapting
theoretical and computational work from disease mapping
and environmental studies, we develop a Bayesian hierar-
chical feature-space model (BHFSM) for the criminal event
prediction problem in order to examine both parameter esti-
mation and predictive inference. The remainder of this sec-
tion provides a quick review of applicable crime theory and
feature-space modeling for criminal site-selection problems.
The subsequent sections discuss the Bayesian hierarchical
framework, introduce the dataset used for this article, and
review the performance of the BHFSM against the dataset
for both a long term and a short term temporal study hori-
zon. In the final section, we review conclusions from this
initial research and propose paths for future research.

Crime Theory
Much of the work in crime studies proceeds from a frame
of reference built upon the location of the crime (Towns-
ley, Homel, and Chaseling 2000; Groff and LaVigne 2002).
This frame of reference is conditioned upon Tobler’s first
law of geography: “everything is related to everything else,
but near things are more related than distant things” (Tobler
1970). For the crime analyst, this means that if a crime hap-
pened yesterday at the corner of Main Street and Broadway,
then the most likely location for a crime tomorrow is the
corner of Main and Broadway. Hotspotting and crime clus-
tering are built upon the assumption that future crimes are
likely to occur at the same location as past crimes (Ratcliffe
2004; Cohen, Gorr, and Olligschlaeger 2007).

Rational criminal theory assumes that individuals have
specific reasons for committing a crime at a certain time and
a certain location (Clark 1980). By examining the histor-
ical criminal activity data within a spatial region, we can
discover patterns that might indicate criminals’ preferences
for executing crimes at certain locations (Brantingham and
Brantingham 1984). Spatial choice models offer analysts a
methodology for identifying a criminal’s preference for one
site over another within a spatial region.

Spatial choice models assume an actor will select a site
(e.g., for migration, retail establishment, or criminal event)
based on the perceived utility, or worth, of that site from a set
of alternatives (Ewing 1976; McFadden 1986). The use of
spatial choice models nests well within the rational criminal
theory since it assumes that spatial point processes involving
actors are a result of the actors’ mental processes and per-
ceptions (Burnett 1976). This article expands on the spatial
choice problem to examine the impact of both geographic
and temporal features on the criminal’s site-selection pro-
cess.

Feature-Space and Criminal Site-Selection
This work is inspired by the following question: What if,
instead of focusing on where the crime happened on the
ground, we focus on where the crime initiation took place
in the mind of the criminal? The idea of spatial choice
presents a framework of decision processes for a rational
actor to choose a location based on the perceived value of
that location. Consider a criminal who wants to steal a car.
Will he choose a parking garage at the center of town with



restrictive traffic flows or will he choose the mall parking
lot near a major freeway on the outskirts of town? Pre-
vious work has shown that the car thief will take the car
from the mall since features surrounding a location are as
critical as the location itself (Rengert 1997). Brown, Liu,
and Xue (2001) showed that data mining previous crimi-
nal events provides insight to what spatial features might
be considered by a criminal in selecting a location to com-
mit a crime. We define this set of spatial considerations
to be the feature-space. Several investigations have shown
that feature-space modeling performs as well, or better, than
density based methods (Brown, Dalton, and Holye 2004;
Smith and Brown 2004).

Criminal site-selection is the process by which a crimi-
nal selects the time and space to execute an event based on
their feature-space preferences (Porter 2006). Rather than
using a latitude and longitude to describe each location in
a study region, we use spatial distances to environmental
features — such as schools, streets, or stadiums — and
spatial representations of social demographics — such as
population, percent rental properties, and household income
— to examine which locations are preferred by criminals
for certain types of crimes (Bannatyne and Edwards 2003;
Liu and Brown 2003; Huddleston and Brown 2009).

Bayesian Hierarchical Modeling

Hierarchical models allow us to deconstruct complex prob-
lems into a series of smaller tractable problems. Using the
methodology developed by Wickle (2003), we formulate
the criminal site-selection problem into three basic stages:
a data model, a process model, and a parameter model.
Our data model accounts for our knowledge of the spatial-
temporal patterns of crime within the study region. The
process model provides insight to the criminal site-selection
process while accounting for spatial and temporal effects.
Finally, our parameter model accounts for the uncertainty in
both the data and process models (Wickle 2003).

Formulation

The goal of this article is to develop a Bayesian hierarchi-
cal model that uses the feature-space methodology to accu-
rately predict crime events across an irregular lattice while
providing insight into the criminal site-selection process. To
estimate the criminal’s spatial preferences, our data model
represents the criminal’s site-selection process as a binary
random variable where Ys,t ∈ 0, 1 is the observation of the
presences, or absence, of crime at location s at time t given
a set of featuresX .

Ys,t|X ∼ Bern(µs,t) (1)

For our least complex model, we assume that the prob-
ability µs,t is a function of the criminal’s preferences for
certain features and a random effects term. Mathematically,
we represent the process model as:

µs,t = logit−1 (β0 + β1Xs1 + . . .+ βkXsk + θs,t) ,
for s = 1, ..., S and

for t = 1, ..., T .
(2)

Equation 2 uses a set of featuresX as a vector of length k for
each location s combined with the estimated β values from
the parameter model to estimate the probability µs,t. For
this article, we use a set of demographic variables to repre-
sent a portion of the feature-space considered by the criminal
in their site-selection process. Analyzing previous criminal
event data gives us a method to account for the criminal’s
site-selection process. By modeling the relationship be-
tween the features and the probability of crime, we estimate
the preferences criminals have for locations with a specific
set of features. However, just as the criminal’s preferences
for certain locations might change depending on proxim-
ity to freeways or vacant houses, the criminal site-selection
process can also change depending on the time of day or
other seasonal events (Rossmo, Laverty, and Moore 2005;
Gorr 2009a). The variable θs,t provides a method for in-
cluding other random effects.

The first random effect considered is the temporal com-
ponent. We consider a temporal effect gt ∼ N(gt−1, τg).
Based on previous research (Gorr, Olligschlaeger, and
Thompson 2003; Eck et al. 2005), we believe that criminal
activity often preceeds criminal activity. Using this tempo-
ral component allows us to account for periods of criminal
activity that match the routine activities and population dy-
namics of the study region. We will discuss the inital condi-
tions for the variance estimates in the parameter model.

We use a Markov random field (MRF) construct as the
second random effect by assuming that the likelihood of a
crime at a specific location is dependent only on its neigh-
bors and its previous temporal state (Zhu, Huang, and Wu
2006). Recent work on point processes uses MRFs as a sec-
ondary structure that results from an aggregation process of
event counts. For our crime data, we construct the MRF
along an irregular lattice structure defined by political and
cultural boundaries using the construct provided by Illian et
al. (2008). We consider a MRF effect that accounts for the
past value at the location s and the second-order neighbors
such that ωs ∼ N(ωj−1, τo). The index j accounts for the
second-order neighbors of location s. The inclusion of the
neighborhood spatial effects gives us a method to include
criminal repeat information into the feature-space model.
Studies on criminal repeats have shown that for short tem-
poral intervals, locations that have experienced crime have
an increased likelihood for repeat victimization (Townsley,
Homel, and Chaseling 2000).

The third random effect considered for this article is an
interaction term. We consider an interaction term ψs,t ∼
N(0, τp). The interaction term is uncorrelated but can iden-
tify potential spatial-temporal interactions within the data
that are not accounted for in the base feature-space model
(Lawson 2009). The final random effect is an uncorrelated
error term vs ∼ N(0, tauv) that accounts for any uncorre-
lated spatial components of the criminal site-selection pro-
cess. The research design section outlines the four primary



models considered for this article using different combina-
tions of these random effects.

Finally, we specify the parameter models by establish-
ing the initial distributions for the parameters. As seen in
Figure 1, the β vector appears in the process model. How-
ever, we provide initial estimates for the individual βs within
the parameter model. Estimating the β values increases the
complexity of the parameter model, since for both the long
term and short term data study, we initially estimate each
β for each feature during the model fitting phase. In order
to reduce the computational requirements, we substitute a
feature-space prior calculated from linear model regression
(Lunn et al. 2000). The initial assumptions for the parameter
model follow:

β ∼ N(β̂, τb)
τb ∼ N(0, svb), svb ∼ U(0, 10)
τu ∼ N(0, svu), svu ∼ U(0, 10)
τg ∼ N(0, svg), svg ∼ U(0, 10)
τo ∼ N(0, svo), svo ∼ U(0, 10)
τp ∼ N(0, svp), svp ∼ U(0, 10)

(3)

The parameter model sets the initial conditions for the simu-
lation methods used to estimate the process and data model
and completes the model hierarchy (Wickle 2003). More
details on the simulation methods can be found in (Lawson
2009; Kery 2010).

Figure 1: Directed acylic graph for Bayesian hierarchical
feature-space model.

Bayesian methods provide a means to calculate the pos-
terior distribution from our three stage-hierarchical model.
Using the example from Wickle (2003), our posterior distri-
bution is proportional to our data model conditioned upon
the process and parameter models times the process model
conditioned upon the parameters:

[process, parameters|data] ∝
[data|process, parameters] ×

[process|parametersl][parameters]
(4)

Since our goals in modeling criminal site-selection prob-
lems include both predictive inference and parameter under-
standing, we desire to solve for the left hand side of Equa-
tion 4. However, the complexity of the posterior distribution

makes obtaining a closed form solution almost, if not com-
pletely, unobtainable. Using simulation methods, built upon
empirical knowledge from the data and expert knowledge on
the prior distributions, we obtain samples that provide esti-
mates of our target variables (Lawson 2009).

Research design
The Bayesian hierarchical feature-space model (BHFSM) is
a limited feature-space logistic regression model with an
auto-regression on the state of the neighboring locations
across an irregular lattice at discrete temporal intervals. Fol-
lowing work from disease mapping and geostatistics, we ex-
amine four models of random effects for our variable θs,t.
The models considered provide several methods for includ-
ing other random effects (Lawson 2009). The four models
considered for random effects include:
• A time-varying trend gt plus an uncorrelated error vs
• A Markov random field ωs accounting for the sum of the

neighboring effects at a previous time plus vs
• gt plus ωs plus vs
• gt plus ωs plus vs and an interaction term ψs,t

Figure 1 displays a graphical representation of the third
model developed for this article without an interaction term.

Study dataset
The primary source of data for this article is an incident
database for the city of Charlottesville, Virginia. We sam-
ple the complete dataset to develop a subset that contains a
time horizon spanning four years with over 2,000 incidents.
We restrict the crime types analyzed for this article to as-
saults, both simple and aggravated. We drape an irregular
lattice over the study area and aggregate the criminal inci-
dents at the daily level. Although the aggregation introduces
some level of discreteness, we treat the temporal intervals as
continuous points along the temporal horizon. The irregu-
lar lattice structure is based on the thirty-seven US Census
block-groups for the city. Using the this lattice structure fa-
cilities inclusion of demographic information at the block-
group level. We use the census information as proxies for
complex factors that actually affect criminals. We are not
claiming that a criminal actually considers the percent of
houses in area that are rentals when deciding to execute a
crime. However, the percentage of rental houses in an area
might correlate with other factors that are part of the crimi-
nal site-selection process. Figure 2 depicts the study region
draped with the irregular lattice and shows spatial-temporal
patterns of assaults over four distinct temporal intervals. The
analysis that follows uses a second-order neighbor structure
over the irregular lattice depicted in Figure 2.

We set Yi,t = 1 if a criminal assault occurs within the
specified block-group i = 1, ..., 37 during one of the days
t = 1, ..., 1095 of the study horizon. The block-group and
daily aggregation results in a 37 × 365 matrix for a total of
40,515 observations in space-time. Figure 3 depicts a one
year snapshot of criminal events across the entire spatial re-
gion.



Figure 2: Evolution of spatial patterns over continuous temporal horizon. Since we identify changes in the map over time, we
hypothesize that we have spatial and temporal effects within the criminal site-selection process.

Model comparison
For this article, we compare each model’s predictive per-
formance against a test set from the dataset. For the long
term study, we use a 365 day temporal window for model
fitting and then evaluate against a ninety day test. For the
short term study, we use a thirty day temporal window sur-
rounding special events in Charlottesville for model fitting
and then evaluate against the thirty day temporal window
surrounding the same special event in the following year.

Prior to comparing predictive performance, we use a
goodness of fit measure to evaluate each model. Borrow-
ing from conventional generalized linear modeling, we use
deviance as a measure of how well the model fits the data. In
the software used for this article, we can expect the deviance
to decrease by 1 for each predictor added to the model (Gel-
man and Hill 2007).

As an additional method for comparing goodness of fit,
we use the mean squared predictive error (MSPE). Given
our known spatial-temporal dataset from the test period, Y ,
our estimated spatial-temporal dataset, Ŷ , and a number of
observationsm from a simulation sample ofG, we use Law-
son’s (2009) formulation such that:

MSPE =
|Y − Ŷ |2

(G×m)
(5)

One of the challenges for spatial-temporal data is select-
ing an appropriate statistical measure for examining model
performance. Originally used to assess radar performance
in World War II, the receiver operating characteristic (ROC)
curve are particularly useful for evaluating the ability of
a model to predict the occurrence of an event accurately
while minimizing the number of false positive predictions
(Bradley 1997; Swets, Dawes, and Monahan 2000). Simil-
iar to the ROC curve, the surveillance plot provides a method
for evaluating model performance in spatial-temporal clas-
sification problems. The surveillance plot gives the analyst
a method for monitoring the amount of area within the study
region that needed to be observed in order to identify the
highest percentage of crimes (Huddleston and Brown 2009;
Kewley and Evangelista 2007). Using a contingency table,
or decision matrix, similar to Table 1, we record the possi-
ble outcomes of prediction estimated with the model being
considered against the true conditions observed in the test
set.

Table 1: Contingency Table
True Condition

Test Result Positive Negative Measures

Positive TP FP TP + FP

Negative FN TN FN + TN

Measures TP + FN FP + TN

We build the surveillance plot by plotting the rate of ac-
curate crime predictions against the rate of crime incidents
predicted where crimes did not occur. Although the surveil-
lance plot provides a measure for comparing model perfor-
mance visually, translating the surveillance plot into a nu-
merical measure provides a method for comparing the per-
formance of multiple models against a common test set. A
model with high accuracy — predicting all the crime loca-
tions perfectly — would have a ratio of all true positives
versus zero false positives while a model with an equal ra-
tio of true positives and false positives is basically guessing
(Bradley 1997; Swets, Dawes, and Monahan 2000).

PLR =
n× TP

(TP + FN)× (TP + FP )
(6)

The performance limit ratio (PLR) measures the model’s
trade-off in accuracy and precision by focusing on the
model’s better-than-chance ratio (Gorr 2009b) of correctly
predicting crimes within a test set of size n. A model that
is more accurate in predicting crimes across the space-time
surface will have a higher PLR. Rather than focusing on the
entire area under the curve, we reduce the focus to the first
20% of the space-time surface observed while discounting
the area under the curve that accounts for random guessing.

Long Term Study Results
For the long term study, the block-group and daily aggrega-
tion results in a 37×365 matrix for a total of 13,505 observa-
tions in space-time. We use a second-order neighbor model



Figure 3: Space-time lattice for study domain. The arrangement of spatial regions along the y axis might falsely identify spatial
clusters, however, the temporal horizon along the x axis does allow for visual identification of temporal clusters for assaults
within the study region. When using the surveillance plot for measuring model performance, we iteratively evaluate all spatial
locations within each temporal interval.

to account for all the criminal activity in all the surround-
ing census blocks. Table 2 outlines the specific models ex-
amined using both the demographic features and a feature-
space prior obtained from a generalized linear regression
similar to the work of (Liu and Brown 2003). As discussed
in the research design section, we consider four alternatives
to model the random effects using our variable θs,t in the
process model: 1) a time-varying trend; 2) a Markov ran-
dom field accounting for the sum of the neighboring effects
at a previous time; 3) a time-varying trend with a Markov
random field; 4) a time-varying trend with a Markov ran-
dom field and an interaction term. For every alternative we
include a space-time independent noise term. For the first
four alternatives, we attempt to account for the criminal site-
selection preference by modeling β as seen in Figure 1. Af-
ter model fitting, we evaluate performance using the MSPE
discussed above.

Although the predictive performance of the BHFSM is
not significantly better than the base feature-space model,
we were expecting to see significant lift in the parameter
estimation related to identifying criminal preferences for
certain spatial features. In fact, even with all four mod-
els converging, the only feature-space variable with signif-
icantly better estimation was the preference for areas with
high percent vacancy. However, (Lawson 2009) shows that
the combination of spatially-referenced explanatory vari-
ables within a Markov random field construct often yields
poor estimates of the regression coefficients and produces
computational challenges related to multi-collinearity. Both
of our approaches to reduce the impact of correlation cre-
ated additional challenges. First, removing the features that
are spatially dependent limits our insight into the criminal
site-selection process for identifying feature-space prefer-
ences. Second, introducing new variables that have a station-
ary spatial attribute but are non-stationary temporally lim-
its our ability to identify how the criminal’s feature-space
preferences evolve over time. Overall, the Bayesian ap-

proach offers promise for reducing uncertainty in the pre-
dictive surfaces. However, as discussed in (Withers 2002;
Zhu et al. 2008), the computational time required for sam-
pling from the posterior distribution for Bayesian inference
for criminal site-selection problems is a major drawback.
We discuss an alternative approach in the conclusion that of-
fers computational advantages while remaining sufficiently
accurate for prediction. In the next section, we scale down
the horizon of the study period as an additional step in ex-
amining the BHFSM.

Short Term Study Results
Although applying the Bayesian framework to the long term
study data did not result in significant gains in predictive per-
formance, the initial disappointment was not entirely unex-
pected. Previous research shows that spatial-temporal anal-
ysis focused on criminal site-selection requires focused ef-
forts on periods of temporal transition and local knowledge
of the environment (Kerchner 2000; Bernasco and Block
2009). A more appropriate methodology for including tem-
poral information into the BHFSM reduces the scope of the
temporal horizon to those intervals with the greatest variance
in crime rates. Research has also shown that spatial regions
experience great variance in crime rates for certain locations
depending on the temporal proximity to special events (Co-
hen, Gorr, and Olligschlaeger 2007). Reducing the tempo-
ral horizon to a smaller scale — such as a thirty day win-
dow before and after large spikes in crime rates — makes it
easier to examine the impact of these special events on the
criminal site-selection process. More importantly, including
additional data from local law enforcement personnel takes
advantage of their local knowledge of the temporal environ-
ment (Cressie and Wikle 2011).

As with the long term study, we consider all four alterna-
tives to model the random effects using our variable θs,t in
the process model. Table 3 outlines the specific models ex-



Table 2: Bayesian Hierarchical Feature-Space Model Development for Long Term Data Study
Model Predictors Time Deviance MSPE
Spatial Choice and Trend 35 3049 4632 0.0430
Spatial Choice and MRF 35 2587 4622 0.0429
Spatial Choice and MRF and Trend 36 4694 4625 0.0429
Spatial Choice and MRF and Trend and Interaction 43 19481 4609 0.0428
Feature-Space Prior and Trend 31 2273 4785 0.0435
Feature-Space Prior and MRF 30 2314 4632 0.0430
Feature-Space Prior and MRF and Trend 38 7219 4614 0.0429
Feature-Space Prior and MRF and Trend and Interaction 40 9515 4619 0.0429

Table 3: Bayesian Hierarchical Feature-Space Model Development for Short Term Data Study
Model Predictors Time Deviance MSPE PLR
Feature-Space Model 7 5 423 0.0479 0.46
Spatial Choice and Trend 19 182 423 0.0479 0.52
Spatial Choice and MRF 19 303 423 0.0479 0.53
Spatial Choice and MRF and Trend 22 332 422 0.0478 0.53
Spatial Choice and MRF and Trend and Interaction 23 900 421 0.0477 0.53
Feature-Space Prior and Trend 8 180 420 0.0477 0.49
Feature-Space Prior and MRF 8 138 420 0.0477 0.47
Feature-Space Prior and MRF and Trend 10 371 419 0.0476 0.48
Feature-Space Prior and MRF and Trend and Interaction 12 1022 417 0.0475 0.50

amined using both the demographic features and a feature-
space prior obtained from a generalized linear regression
similar to the work of (Liu and Brown 2003) and as seen
in our visual graph from Figure 1. Again, the only feature-
space variable with significantly better estimation was the
preference for areas with high percent vacancy. After model
fitting, we evaluate performance using the PLR discussed
above. While each BHFSM performs better than the base
feature-space model, the computational time required for
sampling from the posterior distribution for Bayesian infer-
ence is still several orders of magnitude greater than the time
required for using generalized linear regression on the base
feature-space model.

Conclusions
For city-wide, or regional-level, crime monitoring, the
BHFSM offers a methodology for modeling criminal ac-
tivity across continuous time. For this article, we added a
Bayesian framework to the base feature-space model to in-
clude variables that account for both spatial and temporal
patterns within the criminal site-selection process. We ap-
plied this methodology to both a long term and short term
data study for criminal events in a small US city. Using data
aggregated at the census block-group level for a medium
temporal resolution, the BHFSM allowed us to model an
actor’s spatial-temporal preferences within a limited tem-
poral period. Incorporating elements of the feature-space
methodology into the Bayesian construct allowed us to blend
the benefits gained from understanding multiple covariates
within the actor’s spatial-temporal decision process with the
basic elements of geographic recency and spatial depen-

dence found in hotspot modeling. Although the overall pre-
dictive performance is not significantly improved, by reduc-
ing the variance on estimates for a criminal’s feature-space
preferences, we gain understanding into the temporal vari-
ations of the criminal site-selection process. Enhanced un-
derstanding of the criminal site-selection process allows law
enforcement personnel to adjust resource allocation strate-
gies to better mitigate short term changes in the criminal
site-selection process.

Several challenges remain for further consideration of
the Bayesian framework for feature-space modeling of the
criminal’s site-selection process. The methodology exam-
ined in this article is computationally intensive. Although
the BHFSM did provide improvement in predictive perfor-
mance over the base feature-space model for the short term
data study, the increased computational requirements hinder
the application of the BHFSM for “just-in-time” crime mod-
eling. Extending the Bayesian framework for modeling data
at either a finer temporal or spatial resolution would increase
the computational complexity since the size of the spatial-
temporal event matrix is a multiple of the temporal intervals
and the spatial dimensions. Future work will attempt to re-
duce this computational complexity by adding temporal and
neighborhood indicator functions to the base feature-space
model (Diggle, Tawn, and Moyeed 1998). Using indicator
functions allows for faster sampling from the data while still
accounting for temporal preferences in the criminal’s site-
selection process.

Structural vector autoregressive models (SVARs) show
promise for forecasting employment rates given spatially
based economic indicators (Rickman, Miller, and McKen-
zie 2009). Using an SVAR construct for modeling criminal



site-selection might improve predictive ability if temporal
changes in other features affect a criminal’s temporal con-
siderations for certain sites. However, the computational re-
quirements for SVARs, like the Bayesian construct, are still
rather demanding (Petris, Petrone, and Campagnoli 2009).

The social sciences offer another approach for reducing
the computational demands of criminal site-selection mod-
eling. Spatial-temporal designs for environmental research
often include panel methods for monitoring and detecting
temporal patterns and spatial relationships (Dobbie, Hender-
son, and Stevens 2008). We are not designing a method for
collecting criminal event data, but rather examining histori-
cal collections of crime data. And as mentioned above, stud-
ies at fine temporal and spatial resolutions require a large
spatial-temporal event matrix. Using a variation of stratified
sampling (Gilbert 1987; Dobbie, Henderson, and Stevens
2008) on the spatial-temporal event matrix might reduce the
computational time while retaining comparable predictive
performance.
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