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Abstract 

In intuitive design steps, a fuzzy logic-based robust 
controller is designed to address the first 1990-1992 
American Control Conference benchmark problem. Using a 
conceptual transformation of the original flexible body into 
a perpetual rigid body mode, a final design which succeeds 
in stabilizing the system after a unit impulse disturbance is 
developed. The simulation results are shown to achieve and 
exceed the required design specifications of the benchmark 
problem, as well as those of other fuzzy logic-based 
solutions. 

Introduction 
As the complexity of engineered systems increased, it 
became imperative that the American Controls Conference 
(ACC) adopt a set of control design problems as robust 
control benchmark problems. This has led to several 
attempts by authorities in the field to come up with the best 
possible solutions, serving as a good basis for comparing 
the various heuristics and methodologies in designing for 
robust control. One of these problems, referred to by (Wie 
and Bernstein 1992) as ACC benchmark problem 1, was 
concerned with vibration control of a two-mass system 
with an uncertain spring constant (Figure 1). The flexible 
tow-mass system addresses, primarily, a disturbance 
rejection control problem in the presence of parametric 
uncertainty. This problem has been addressed in over 30 
papers, including papers in special issues of the Journal of 
Guidance, Control and Dynamics and the International 
Journal of Robust and Nonlinear Control (Linder and 
Shafai 1999).  
 Probably due to the linearity of this problem, most 
published solutions have appropriated linear controllers of 
some sort, from H-infinity to game theory. (Niemann et al 
1997) applied the μ-synthesis method for mixed 
perturbation sets using a modified D-K iteration approach, 
while (Wie and Liu 1992) proposed a solution using the 
H∞ controller design methodology. In addition, (Farag and 
Werner 2002) compared the performance of his robust  
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H2 design with a collection of existing controllers such as 
Pole Placement, and Minmax Linear Quadratic Gaussian 
(LQG). (Hughes and Wu 1996) also presented an observer-
based extension of a passive controller design, due to the 
fact that strictly passive feedback could no longer 
guarantee stability for the given problem. 
 
 
 
 
 
 
 
 

 
 
Figure 1: The ACC benchmark problem consisting of a dual mass, 
single spring system. 
 
 
 Some recent solutions, however, make use of qualitative 
approaches capitalizing on fuzzy reasoning, which have 
been shown to perform just as good as or even better than 
the existing quantitative methods (Cohen and Ben Asher 
2001). It is worth noting that the presence of design 
constraints, and plant, as well as parameter uncertainties, 
drastically increases the complexity of modeling plant 
behavior, and makes the application of non-linear solutions 
worthwhile.  
 In this paper, we build on a solution using fuzzy logic. 
We start by generating a detailed model of the system and 
highlight the required design objectives for the controller. 
Next we obtain a reduced or simplified model of the system 
in the rigid-body mode, where spring oscillations have 
been effectively damped out using fuzzy logic heuristics 
(Linder and Shafai 1999). Finally, an additional fuzzy 
controller produces a superimposition of stability and 
tracking behaviors to ensure the achievement of stated 
design objectives. 



Problem Description and Modeling 
The benchmark plant shown in Figure 1 consists of two 
masses connected via a spring, with the following 
characteristics. 
 

1) The system has a non-collocated sensor and 
actuator; the sensor senses the position of m2 
while the actuator accelerates m1. This introduces 
extra phase lag into the system, making control of 
the plant difficult (Cohen and Ben Asher 2001).  

2) The system is characterized by uncertainties in 
the temporal plant (spring constant that varies 
within a very wide range)  

3) The system exists in both the flexible body mode 
(due to the spring) and rigid-body mode (when 
relative movements due to the spring are damped 
out). 

 
For the above system, consider a simplification, where m1 
= m2 = 1   and k = 1 with the appropriate units. A control 
force acts on body 1 (m1), and x2, which is the position of 
body 2 (m2), is instead measured thus resulting in a non-
collocated control problem. The state space representation 
of the system is given as 
 

 
 

y = x2 
 
where x1 and x2 are the positions of body 1 and body 2, 
respectively; x3and x4 are the velocities of body 1 and body 
2, respectively; u is the control input acting on body 1; y is 
the sensor measurement, w is the disturbance acting on 
body 2, and k is the spring constant. The transfer function 
representation is 
 

 
 

and the corresponding transfer function between a 
disturbance to and plant output is 
 

 
 
This paper considers only problems 1 and 2 as described 
by (Wie and Bernstein 1992) and ignores the effect of 
sensor noise   (full state feedback) and disturbance acting 
on body 1. The constant-gain linear feedback controller 
design requirements are stated as 
 

1. The closed-loop system is stable for m1 = m2 = 1 
and 0.5 < k < 2.0. 

2. The disturbance w(t)=unit impulse at t=0 and y 
has a settling time of 15sec for the nominal plant 
parameters m1 = m2 = 1 and k = 1. 

3. Reasonable performance/stability robustness and 
reasonable gain/phase margins are achieved with 
reasonable bandwidth. 

4. Reasonable control effort is used. 
5. Reasonable controller complexity is needed. 
6. Settling is achieved when y is bounded by ± 0.1 

units. 
 
This problem addresses, primarily, a disturbance rejection 
control problem in the presence of parametric uncertainty.  
The plant has eigenvalues at (± j √(k(m1+ m2)/(m1m2)), 0,0), 
and a single-input/single-output (SISO) controller must 
close its loop around Tuy, which has a pole-zero surplus of 
four (Stengel and Marrison 1992). 

Robust Design Solution using Fuzzy Logic 

Fuzzy logic controller design was first started by (King and 
Mamdani 1977) on the basis of the fuzzy logic system 
generalized from the fuzzy set theory of (Zadeh 1965). It 
has gained wide practical acceptance providing a simple, 
intuitive, and qualitative methodology for control 
(Jamshidi, Vadiee, and Ross 1993), (Yen, Langari, and 
Zadeh 1992), (Zadeh 1994). In a typical implementation, a 
fuzzy controller consists of a set of if-then rules, where the 
controller output is the combined output of all the rules 
evaluated in parallel from the antecedents of the inputs. 
The inference engine, of a fuzzy logic controller, plays the 
role of a kernel that explores the fuzzy rules pre-
constructed by experts to accomplish inferences.  
 Since the rules specify the implication relationships 
between the input variables and output variables 
characterized by their corresponding membership 
functions, the choice of the rules along with the 
membership functions makes significant impacts on the 
final performance of the controller and therefore becomes 
the major control strategy in Fuzzy Logic Controller 
design. 
 Common classifications of fuzzy controllers include 
fuzzy Proportional Integral Differential (PID) controllers, 
fuzzy sliding-mode controllers and fuzzy gain scheduling 
controllers (Driankov, Hellendoom, and Reinfrank 1996), 
(Jang and Sun 1995). Even though all three categories 
realize closed-loop control action and are based on 
quantitative control techniques, the first and second are 
implementations of the linear quantitative PID controller 
and a nonlinear, quantitative sliding-mode controller. The 
last category, however, utilizes Sugeno fuzzy rules to 
interpolate between several control strategies, and are 
suitable for plants with time varying or piecewise linear 
parameters (Jang and Sun). 
 
 



A.  Fuzzy Logic for Benchmark 
 
For the robust control problem described above, plant 
stabilization is required first before performance 
objectives. Ensuring stability, however, entails the 
dampening of vibrations after an external disturbance is 
applied. (Linder and Shafai 1999) described an approach 
using Qualitative Robust Control (QRC) methodology, 
where stability and tracking behaviors are separately 
developed, and the superimposition of these behaviors 
achieves the final control objective. These behaviors 
exploit the rigid body mode of the plant, where the plant 
behaves as if the masses are rigidly connected. The 
stability behavior is derived from the heuristic that a 
control action is more effective in suppressing plant 
vibration if it is applied when the spring is neutral, and the 
control action opposes the motion of the spring.  
 Using fuzzy logic, a process model of the spring, needed 
to provide the qualitative state information that dampens 
plant vibrations and achieve stability, is achieved by 
abstracting the system to a state that indicates whether the 
spring is at its neutral length and whether the spring is in 
the process of compressing or elongating. In modeling the 
spring, the length of the spring and its rate of stretching or 
contraction are used as input parameters and the output, its 
state. The process utilizes a qualitative spring state that is 
specified by a qualitative partition of the spring length      
L = x2 – x1 and the spring length velocity . 
These parameters are partitioned using five membership 
functions as shown in Figure 2. A Mamdani Fuzzy 
Inference System (FIS) applies 25 rules, shown in the 
Fuzzy Association Memory (FAM) of Figure 3, to infer 
the qualitative spring state from inputs  L and  The fuzzy 
controller is developed using the minimum operator to 
represent the “and” in the premise, and the Center of 
Gravity (COG) defuzzification as the implication. 
  The qualitative behavior of the spring is based on a 
sense of direction and rate. Thus the parameters are 
defined on a bivalent range or universe of [-1, 1], and the 
outputs are described as follows; 
 
NSCN: Not Stretching or Compressing with Neutral spring 
CFN: Compressing Fast with Neutral spring 
SFN: Stretching Fast with Neutral spring 
 
The decision surface of Figure 4 is such that a vibration is 
observed when L is Small_positive or Small_negative, and 

 is Negative_large or Positive_large. A similar situation 
occurs when L is Zero and  is Small_negative or 
Small_positive. 
 

B. State Observers 
 

The above model is possible only if the states of the 
masses can be observed or correctly estimated. Due to the  
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Figure  2: Fig. 2(a) Membership functions of Spring Length  L = 
x2 – x1    Fig. 2(b) Membership functions of the velocity of spring 
contraction or stretching   Fig. 2(c) Membership 
functions of the output, spring state. 
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Figure  3:  Fuzzy association memory of the spring model. 

 

 
Figure  4: Output surface of the spring fuzzy process model. 

 
non-collocated nature of this problem, designing for robust 
disturbance rejection requires the use of state observers to 
model disturbances and other uncertainties, such as 
position of the masses. In the deterministic case, when no 
random noise is present, the Luenberger observer and its 
extension may be used for time-invariant systems with 
known parameters. When parameters of the system are 
unknown or time varying, an adaptive observer is 
preferred. The corresponding optimum observer for a 
stochastic system with additive white noise processes, with 
known parameters, is the Kalman filter. As indicated 
earlier, this project assumes full state feedback of masses 
1& 2. 
 
 

C. Robust Tracking and Stability 
 

With the system in a rigid-body mode, due to the damping 
effects on the interconnecting spring, it is evident that the 
position and velocity of body 2, x2 and , are fixed relative 
to body 1. Hence, measuring  gives us , while the 
displacement of x1 from its initial position at rest is 
equivalent to the displacement of x2 from its own initial 
position. Essentially, the problem has been reduced to one 
that can be solved with a collocated controller on body 1. 
In robust control, collocation guarantees the asymptotic 
stability of a wide range of SISO control systems, even if 
the system parameters are subject to large perturbations, 
while also enabling the achievement of desired 
performance objectives. 
 We also use an additional Mamdani fuzzy controller 
which receives the position and velocity of body 1, x1 and 

, as inputs and outputs an appropriate control action. This 
output is superimposed directly on the output of the spring 
controller to obtain the final control action on the system. 
The controller utilizes a qualitative partitioning of x1 and  
using five membership functions as shown in Figure 5. The 
input partitions of negbig (Negative), negsm 
(Negative_small), Zero, possm (Positive_small) and posbig 
(Positive) produce output partitions of nb (Negative), ns 
(Negative_small), Zero, ps (Positive_small) and pb 
(Positive), which  represent the control force on body 1.  
 
 

 
(a) 



 
(b) 

 

(c) 
Figure 5: Fig. 5 (a) Membership functions of position of body 1 
x1  Fig. 5 (b) Membership functions of the velocity of body 1   
Fig. 5 (c) Membership functions of output. 
 
The observed decision surface of Figure 6 shows that the 
corresponding output produced, for a given set of inputs, 
has a somewhat inverse linear relationship to those inputs. 
Two special membership functions, movingN and 
movingP, with output membership functions of guardP and 
guardN respectively, were also added to  (velocity of 
body 1) to ensure full stability. 

Simulation Results 
The performance of our fuzzy controller was investigated 
using computer simulations in Simulink® and 
MATLAB®.  Figure 7 shows the response to a unit 
impulse disturbance to m2, w(t) at t=0, for the nominal 
plant parameters m1 = m2 = 1 and k = 1. The controller 
shows excellent vibration suppression properties as the 
position initially increases from 0 to 1.068 units before 
returning and staying bounded within the required ± 0.1 
units of the final value in 4.8s. System stability was 
obtained as required in the design specifications, and a 

reasonable maximum value of u was obtained to be 1.262 
units as shown in Figure 8. 

 
 

Figure  6: Output surface of the controller. 

 
Figure 7: Time series of position of body 2, x2, after a unit 
impulse disturbance on m2 for nominal plant parameters m1 = m2 = 
1 and k = 1. Settling time (Ts) = 4.8 seconds, Peak time (Tp) = 
2.2 seconds and Peak Value (Pv) = 1.068 units. 

 

 
Figure 8: Time series of cumulative controller output u after a 
unit impulse disturbance on m2 for nominal plant parameters m1 = 
m2 = 1 and k = 1. Maximum value of u = 1.262 units. 



 Figure 9 shows the stability of the system to varying 
spring constants in the range 0.5<k<2.0, while Table 1 
summarizes the performances of the controller as 
compared to design objectives. 
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Figure 9: Time series of position of body 2, x2 after a unit 
impulse disturbance on m2 for nominal plant parameters            
m1 = m2 = 1. Fig. 9(a) k=0.5  Fig. 9(b) k=1.5  Fig. 9(c) k=2.0 

Table 1. Controller performances for nominal plant parameters  
m1 = m2 = 1 and , in comparison with other fuzzy-logic based 
solutions to the benchmark problem (base on Linder and Shafai 
1999, and Cohen and Ben Asher 2001) 

 
 
 
 
 

Our 
Controller 

Linder 
and 

Shafai 
A 

Linder 
and 

Shafai 
B 

Cohen 
and Ben 
Asher 

Design 
objectives  

Settling 
time (Ts) 4.8 15.0 8.0 8.8 15.0 

Max 
controller 
output u  

1.262 - - 0.53 -- 

 
 
 It is evident that the fuzzy logic-based controller solves 
the first two of the benchmark problems. It, however, 
achieves better settling time performance over other fuzzy 
logic solutions, while staying within the requirements of 
reasonable controller output. This is due to unique fuzzy 
membership function placements and tunings, especially 
for stability and robust tracking.   
 Also, as the value of the spring constant k is increased 
the peak time and peak value decreases simultaneously. 
This is due to the fact that an increase in the spring constant 
allows the system to exhibit more inherent natural 
dampness that ensures less oscillations or more rigidity. 
This, however, increases the settling time significantly as 
the controller has less “control” over the system. The 
designed controller has been optimized for the case where 
k=1. This can be repeated for other values of spring 
constants in order to achieve better performances. 

Conclusion 
This paper uses a superimposition of qualitative stability 
and tracking behaviors instantiated with fuzzy rules which 
have clear linguistic interpretations. The impressive 
performance of the fuzzy logic controller on the ACC 
robust control benchmark shows its suitability for 
designing and developing controllers for stability and 
performance robustness in view of plant uncertainties, and 
sensitivity to actuator/sensor noncollocation. Of significant 
interest is the fact that the developed control strategy leads 
to robust near time-optimal control while requiring a 
relatively small amount of control effort.  
 Further studies can be pursued to test and improve the 
controller presented herein for the vibration suppression of 
structures, such as beams, plates, shells, and those 
possessing very high modal densities at lower frequencies. 
Also, the effects of high frequency sensor noise can be 
modeled in to the system, and a stochastic robustness 
analysis, using Monte Carlo simulations, can be used to 
obtain performance metrics, as estimated probabilities of 
stability/performance. 
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