
Automatic Conformance Test Data Generation
Using Existing Ontologies in the Web

Irlán Grangel-González, Raúl Garćıa-Castro

Ontology Engineering Group,
Departamento de Inteligencia Artificial

Facultad de Informática, Universidad Politécnica de Madrid, Spain
irlangrangel2003@gmail.com, rgarcia@fi.upm.es

Abstract. Conformance evaluation is key in the semantic technology
landscape and semantic technologies should be continuously evaluated
in order to ensure their conformance using affordable evaluation meth-
ods. This paper presents two methods to automatically increase the ex-
pressivity of an ontology, using existing ontologies in the Web in one of
them and maximizing OWL 2 expressivity in the other; a process for
generating conformance test data that relies in these methods; and three
test suites that have been generated using Ontology Design Patterns as
input for the generation process.

1 Introduction

Conformance evaluations have the goal of evaluating the conformance of se-
mantic technologies with regards to existing specifications. Since for these tech-
nologies the most relevant specifications are those of ontology representation
languages (i.e., RDF(S), OWL and OWL 2), conformance evaluations deal with
evaluating up to what extent semantic technologies adhere to the specification
of ontology representation languages [1].

Conformance evaluation is key in the semantic technology landscape because,
on the one hand, existing specifications are not fully implemented by every tool
and, on the other hand, specifications evolve over time which leads to the coex-
istence of different tools and specifications in certain time periods.

For this reason, semantic technologies should be continuously evaluated in
order to ensure their conformance; however, this requires having affordable eval-
uation methods that cover the different aspects of evaluation: from the creation
of test data to the analysis of results.

The work presented in this paper aims to facilitate the definition of new
conformance test data. The manual definition of conformance test data followed
up to now does not scale and, therefore, the coverage of the resulting data is not
exhaustive enough.

The main contributions of this paper are: two methods to automatically
increase the expressivity of an ontology, using existing ontologies in the Web
in one of them and maximizing OWL 2 expressivity in the other; a process for

11

Proceedings of the Second International Workshop on 
Evaluation of Semantic Technologies (IWEST 2012) 
May 28th, Heraklion, Greece 
CEUR Workshop Proceedings Vol. 843



generating conformance test data that relies in these methods; and three test
suites that have been generated using Ontology Design Patterns as input for the
generation process.

The rest of the paper is organized as follows: Section 2 defines our scope
regarding conformance evaluation and section 3 presents existing conformance
test data for evaluations. Then, section 4 presents the two methods for increasing
ontology expressivity and section 5 details the process to generate test data
using such methods. Section 6 shows how we have generated different test suites
following such process and, finally, section 7 draws some conclusions from the
work presented in the paper and outlines future work.

2 Evaluating Semantic Technology Conformance

There are several aspects of semantic technology conformance with respect to
an ontology language specification, since it can be evaluated with regard to the
ontology language model (since different tools have different internal represen-
tation models), to the ontology language serialization (both normative and non-
normative ones), and to ontology manipulation (at different levels of granularity
and complexity).

In this work, we focus in conformance regarding the ontology language model
and in the evaluation approach proposed in [2]. In this approach, during the
evaluation, a common group of tests is executed in two steps. Starting with a
file containing an ontology, the execution consists in importing the file with the
ontology into the origin tool and then exporting the ontology to another file.

After a test execution, we have two ontologies, namely, the original ontology
and the final ontology exported by the tool. By comparing these ontologies we
can know up to what extent the tool conforms to the ontology language.

3 Existing Conformance Test Data

Different works have dealt with the creation of conformance test data for eval-
uating semantic technologies. In this section we present them and describe the
motivation of our work.

The W3C ontology language specifications include test case definitions for
RDF(S) [3], OWL [4] and OWL 2 [5], which illustrate the correct usage of the on-
tology languages and the resolution of issues considered by the Working Groups.
These test cases mainly cover conformance with regards to the ontology language
semantics but also cover ontology language model and serialization conformance,
both with correct and incorrect ontologies.

Conformance test data has also been defined for reasoners implementing the
OWL 2 RL/RDF rules language [6], this work complements the W3C OWL 2
test data and a fraction of it is part of the official OWL 2 test suite.

The RDF(S) and OWL Interoperability Benchmarking activities [7, 2] in-
volved the evaluation of the interoperability of semantic technologies using an

12



interchange language. Two test suites were used in these activities covering the
RDF(S) and OWL Lite languages. Besides information about tool interoperabil-
ity, these activities also provided information about their conformance, mainly
in terms of the ontology language model.

In the scope of the SEALS Yardsticks for Ontology Management evaluation
campaign [8], the abovementioned test suites were extended to cover OWL DL
and OWL Full. To define the OWL DL test suite, a keyword-driven ontology
generator1 was used to facilitate the manual creation of test ontologies; this
generator allowed to significantly increase the amount of test ontologies.

Current ontology generators (e.g., the Lehigh University Benchmark [9])
could be used in conformance evaluations; however, they cover a predefined part
of the specification regardless of the number or size of ontologies generated and
they are not customizable in terms of coverage.

The test ontologies defined in the abovementioned works share some charac-
teristics: they have been defined manually, which is costly and prone to errors;
are simple, so they can be used to test in isolation specific characteristics of the
language; and rarely include real-world uses in their ontology constructs.

Therefore, the expressivity covered with these ontologies is low and does
not allow making an exhaustive evaluation of tool conformance in terms of the
ontology language model.

In this work, we aim for the automated generation of conformance test data
(i.e., ontologies) that, besides being recognized as a best practice in software
testing [10], provides a scalable way of defining conformance test data. This will
allow us to obtain an affordable way of increasing the expressivity of ontologies
and, consequently, of increasing the exhaustiveness of conformance evaluations.
Furthermore, this expressivity increase comes from real-world ontologies so the
obtained test data resembles actual ontology modelling patterns.

4 Methods to increase ontology expressivity

This section presents two methods to increase ontology expressivity. First, we
define a method that increases ontology expressivity using existing ontologies in
the Web. Then, we define a method that maximizes ontology expressivity.

4.1 Method to increase ontology expressivity using existing
ontologies

The aim of this method is to increase the expressivity of an ontology taking into
account how its components are used in existing ontologies available in the Web.
Starting from an ontology (O), for each class (Ci) in the ontology the steps to
perform are

1 http://knowledgeweb.semanticweb.org/benchmarkinginteroperability/

OWLDLGenerator/

13



1. To search (discarding duplicates) those ontologies in the Web (Oi) that con-
tain the class identifier (i.e., the IRI fragment identifier of class Ci). In the
case of not finding the class identifier in the existing ontologies, the method
finishes without adding anything to the ontology.

2. To extract a module (Mi) from each of the ontologies found (Oi), taking as
the module signature the class with the same identifier as Ci. In practice,
there are cases where the module cannot be extracted, for example, when
the ontology is not available, causes parsing problems or is not in the OWL
ontology language.

3. To add the extracted modules (Mi) to the initial ontology (O), replacing the
namespace of the found ontologies (Oi) by the namespace of the starting one
(O).

4. To detect inconsistencies in the updated ontology after all the modules have
been included. In the case of finding any inconsistency, the axioms that cause
the inconsistency are removed from the ontology.

As an example, figure 1 shows a fragment of the ontology generated from the
Parameter Ontology Design Pattern ontology2 (the components of the initial on-
tology are shown in bold). The resulting ontology contains 177, classes 47 object
properties and 5 datatype properties (from the 8 classes, 8 object properties and
1 datatype property in the initial ontology). As can be seen, the initial ontology
has been enriched with class hierarchies, disjoint classes, transitive properties,
and universal, existential, and cardinality restrictions.

isLocationOf only min 1 

parameterizes only 

hasParameter 

owl:disjointWith 

hasPart (transitive) only 

SocialObject 

Concept Descrip0on Place 

Parameter 

En0ty 

Object 

UnitOfMeasure 

biologicalProcessConcept 

Abstract 

Region 

parameterizes some 

isParameterFor 

non-‐physical-‐object 

Fig. 1: Fragment of the ontology generated from the Parameter ODP.

There are two parameters that affect the results of this method. One is the
number of classes (Ci) that are selected from the starting ontology (O); the other
is the number of ontologies that are selected from those obtained in the Web

2 http://ontologydesignpatterns.org/wiki/Submissions:Parameter

14



search in the step 1 above (Oi). In section 6.2 we show how we have identified
that the method is more effective (in terms of expressivity increase and efficiency)
when it selects all the classes in the starting ontology and takes into account the
first 15 ontologies found in the Web.

4.2 Method to maximize ontology expressivity

The goal of this method is to increase the expressivity of an ontology to cover
all the existing constructs in the OWL 2 ontology language [11], that is, so
the ontology has a full expressivity (SROIQ(D)) and contains every OWL 2
construct not related to such expressivity (e.g., self-restriction, key and property
chain). Starting from an ontology (O), the steps to perform are

1. To calculate the expressivity of the ontology (O).
2. To identify the types of axioms needed in the ontology (O) to maximize its

expressivity. For example, if the ontology has SROIQ expressivity, axioms
for data values or data types should be added.

3. For each axiom type identified, to add one axiom of such type (Ai) to the
ontology (O). In order to build the axiom (Ai), the structure of the ontology
(O) is analysed to check whether the axiom can be defined by reusing existing
classes and properties in the ontology. Every required class and property that
cannot be reused from the ontology is created with a fictitious identifier.
For example, adding a reflexive property axiom requires having an object
property. To satisfy this requirement, if the ontology has object properties,
one of them is randomly chosen; if not, a fictitious object property is created.

4. To detect inconsistencies in the updated ontology after all the axioms have
been included. In the case of finding any inconsistency, the axioms that cause
the inconsistency are removed from the ontology.

5 Expressive test data generation process

This section presents the process followed to generate expressive test data for
conformance evaluations.

Our requirements for test data generation are: a) to use any set of OWL
ontologies as input, either OWL version 1 or 2; b) to generate ontologies that
reuse parts of real-world ontologies; and c) to generate valid OWL 2 ontologies.

The process, presented in figure 2, starts with a set of ontologies and ends
with three different test suites: one that includes the original ontologies (to be
used for baseline comparisons), another that includes the original ontologies
enriched with axioms found in existing ontologies, and a third one that includes
the original ontologies enriched up to a maximum expressivity.

To generate these test suites, we use the methods presented in section 4. To
generate the test suite with maximum expressivity, instead of starting from the
original set of ontologies, the enriched ontologies are taken as input.

15



Initial 
ontologies 

Original test suite 

Metadata 

Ontology Search 

Ontology generation process 

Ontology Module 
Extraction 

Increase 
expressivity 

Maximize 
expressivity 

Expressive test 
suite 

Metadata 

Full-expressive 
test suite 

Metadata 

Online Ontologies 

Fig. 2: Conformance Test Data Generation Process

We have implemented the previous process in the OWL2EG (OWL 2 Ex-
pressive Generator) Java application3, which has the following characteristics:

– For searching ontologies in the Web, there are multiple systems available
(e.g., Watson4, Sindice5, Swoogle6, or Falcon-S7); we chose Watson because
it is the only one that provides unlimited access to its functionalities through
programming interfaces, while the other systems have use limitations [12].

– For extracting ontology modules, there are multiple approaches available
[13–15]; we chose the locality-based module extraction approach proposed
by Cuenca-Grau et al. and implemented in the OWL API8.

There is one constraint when using the OWL API to extract ontology mod-
ules; the implemented algorithm only works with OWL ontologies and not
with ontologies in other languages (e.g., RDF-S or DAML). Because of this,
we only search for OWL ontologies in Watson, even if we disregard plenty
of ontologies in other languages.

– In each test suite, besides generating the ontologies, the tool also generates
metadata that allow managing these ontologies in an automated way. These

3 http://knowledgeweb.semanticweb.org/benchmarking_interoperability/

OWL2EG/
4 http://watson.kmi.open.ac.uk/
5 http://sindice.com/
6 http://swoogle.umbc.com/
7 http://ws.nju.edu.cn/falcons/
8 http://owlapi.sourceforge.net/

16



metadata are defined according to the SEALS ontologies9 and allow the test
suites to be processed by the SEALS Platform [16].

6 Generating expressive ontology test data

This section presents how we have generated a set of test suites using the genera-
tor presented in section 5, which implements the methods presented in section 4.
We describe the ontologies selected as input for the generation process, the tun-
ing of the generator parameters, and the resulting test suites.

6.1 Selecting input ontologies

One of the requirements for the test data generation process and also for the
test suites is that test ontologies reuse real-world ontologies. We have tackled
this requirement in two fronts: in the generation process by extending ontologies
with information from existing ontologies in the Web and in the selection of
input ontologies for such process by selecting ontologies created from content
Ontology Design Patterns.

Design patterns were first largely used in the Software Engineering field [17]
and in the last years their use has spread in the Ontology Engineering field
where they are defined as modelling solutions to solve recurrent ontology design
problems [18]. There are different types of Ontology Design Patterns (ODPs)
grouped into six families: Structural, Correspondence, Content, Reasoning, Pre-
sentation, and Lexico-Syntactic. In order to define test data for conformance and
interoperability evaluations, we will focus on Content ODPs.

Content ODPs provide solutions to recurrent domain modeling problems [18].
These patterns are relevant to our case because they represent best practices in
ontology modelling frequently used by ontology developers and they are defined
using simple OWL ontologies.

For defining the test suites, we have used as input for the generation pro-
cess the 81 Content ODPs available in the OntologyDesignPatterns.org pattern
repository10.

6.2 Tuning the configuration parameters

This section presents the experiment that guided us to choose the optimal con-
figuration parameters for the method to increase ontology expressivity using ex-
isting ontologies. As mentioned in section 4, two parameters affect the method
results: the number of ontologies selected from those obtained in the Web search
and the number of classes selected from the starting ontology.

For this analysis, we have defined an Ontology expressivity increase metric
that is calculated by counting the different types of expressivity added to an on-
tology. For example, if qualified cardinality restrictions (Q) and nominal concept

9 http://www.seals-project.eu/ontologies/
10 http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs

17



14	   12	  
16	  

26	  

11	  

2	  

0	  
5	  
10	  
15	  
20	  
25	  
30	  

0	   1	   2	   3	   4	   5	  

N
um

be
r	  o

f	  c
as
es
	  

Ontology	  expressivity	  increase	  

Fig. 3: Frequency of expressivity in-
crease for 10 ontologies and all
classes.

14	  
12	  

17	  
21	  

14	  

3	  

0	  

5	  

10	  

15	  

20	  

25	  

0	   1	   2	   3	   4	   5	  

N
um

be
r	  o

f	  c
as
es
	  

Ontology	  expressivity	  increase	  

Fig. 4: Frequency of expressivity in-
crease for 15 ontologies and all
classes.

14	  
12	  

17	  
21	  

13	  

4	  

0	  

5	  

10	  

15	  

20	  

25	  

0	   1	   2	   3	   4	   5	  

N
um

be
r	  o

f	  c
as
es
	  

Ontology	  expressivity	  increase	  

Fig. 5: Frequency of expressivity increase for 20 ontologies and all classes.

inclusion (O) are added to one ontology, we state that the expressivity increase
for that ontology is two.

Regarding the first parameter, we have executed the method twenty times
varying the number of ontologies selected from those found using every value
from 1 to 20; in every case all the classes in the origin ontology have been taken
into account. Figures 3, 4, and 5 present the histograms with the frequency of
Ontology expressivity increase for the values of 10, 15, and 20, respectively. The
X axis represents the Ontology expressivity increase value and the Y axis the
number of cases (i.e., generated ontologies) with a certain ontology expressivity
increase.

The histograms show, on the one hand, a significant expressivity increase
between 10 and 15 and, on the other hand, that between 15 and 20 the increase
is similar (this is also confirmed by the asymptotic behavior of the exponential
trend line in these two cases). Therefore, bearing in mind the trade-off between

18



21	  

13	   15	  
19	  

10	  

3	  

0	  
5	  
10	  
15	  
20	  
25	  
30	  

0	   1	   2	   3	   4	   5	  

N
um

er
	  o
f	  c
as
es
	  

Ontology	  expressivity	  increase	  

Fig. 6: Frequency of expressivity in-
crease for 15 ontologies and half of
the classes.

28	  

9	  

15	  
18	  

9	  

2	  

0	  
5	  

10	  
15	  
20	  
25	  
30	  

0	   1	   2	   3	   4	   5	  

N
U
m
be

r	  o
f	  c
as
es
	  

Ontology	  expressivity	  increase	  

Fig. 7: Frequency of expressivity in-
crease for 15 ontologies and one
class.

time efficiency and expressivity increase, we chose 15 as the preferred number of
ontologies to be selected from the Web search.

Regarding the second parameter, we have executed the method taking into
account one, half and all the classes in the ontology. Figures 4, 6, and 7 present
the histograms with the frequency of Ontology expressivity increase for the value
of 15 and taking into account all the classes, half the classes, and one class in
the ontology, respectively.

For this parameter, when all the classes are taken into account is when more
expressive ontologies are obtained. This is logical, since in this case there are
more chances of finding classes in the Web and, therefore, of adding more mod-
ules to the ontology.

6.3 Resulting test suites

After executing the OWL2EG generator using the ontologies and parameters
mentioned in the previous sections, we obtained three different test suites:

– The OWL Content Pattern Test Suite (OCPTS), which includes the on-
tologies extracted from the OntologyDesignPatterns.org pattern repository.

– The OWL Content Pattern Expressive Test Suite (OCPETS), which
includes the ontologies obtained after applying the method to increase on-
tology expressivity using existing ontologies to the OCPTS ontologies.

– The OWL Content Pattern Full Expressive Test Suite (OCPFETS),
which includes the ontologies obtained after applying the method to maxi-
mize ontology expressivity to the OCPETS ontologies.

Next, we analyze the expressivity increase obtained in the OCPETS through
the application of the method for increasing expressivity using existing ontolo-
gies; the histogram with the expressivity increase per ontology can be seen in
figure 4. As the figure shows, the method added new expressivity to 83% of the
ontologies. For 14 ontologies expressivity was not increased. This is due to:

19



Table 1: Percentage of expressivity types in the test suites.
OCPTS OCPETS OCPFETS

Expressivity type % % % inc. % % inc.

ALC 63.0 88.9 25.9 100 11.1

Transitive roles (R+) 14.8 70.4 55.6 100 29.6

Role hierarchies (H) 58.0 49.4 -8.6 100 50.6

Limited complex role inclusion (R) 2.5 2.5 0 100 97.5

Nominal concept inclusion (O) 2.5 64.2 61.7 100 35.8

Inverse roles (I) 87.7 95.1 7.4 100 4.9

Cardinality restrictions (N ) 49.4 76.5 27.2 100 23.5

Qualified cardinality restrictions (Q) 3.7 2.5 -1.2 100 97.5

Datatype properties, data values or data types (D) 40.7 88.9 48.1 100 11.1

– In 9 cases, the search for the class identifier in existing ontologies did not
return any ontology. This was because the Content ODP only contained
highly-specific domain classes that do not appear in other ontologies; for
example, the class RTMS Code that belongs to the RtmsMapping pattern
and the class AquaticSpecies that belongs to the SpeciesNames pattern.

– In 5 cases, when adding modules to the ontology no expressivity was added.
However, we still included the modules in the ontologies so the new classes
and properties could later support reaching full expressivity while using real-
world entities as much as possible.

Table 1 shows the percentage of ontologies in the three test suites that have
a certain expressivity type; it also shows the percentage of increase from one test
suite to the next one, i.e., the percentage of those ontologies that didn’t have the
expressivity type and that have it once the corresponding method is applied.

As can be seen, the method for increasing expressivity using existing ontolo-
gies is more effective for some types of expressivity (O, R+, and D) but for other
types there is no increase (R, Q, and H). Moreover, in some cases expressivity
decreases, this is because the method produced an inconsistent ontology and
axioms that produced that expressivity had to be removed.

Regarding the expressivity increase obtained in the OCPFETS through the
application of the method for maximizing expressivity (up to SROIQ(D)), the
table shows that most of the times the method had to add two types of expres-
sivity (R and Q) that were not present either in the original ontologies or in the
ontologies in the Web.

7 Conclusions and Future Work

This paper has presented an automated process for generating test data for
semantic technology conformance evaluations. This process takes as input a set
of ontologies and increases their expressivity using constructs from ontologies
available in the Web.

20



This process is implemented in the OWL2EG tool and, using the ontolo-
gies of an Ontology Design Pattern repository, we have generated test suites
with ontologies covering different degrees of expressivity up to the maximum
expressivity allowed in OWL 2.

These test suites will be used in the second SEALS Yardsticks for Ontology
Management evaluation campaign; the results of this campaign will be published
in the scope of the SEALS European project11.

We must highlight that the method is concerned with increasing ontology
expressivity and we disregard its effects in other aspects such as their usabil-
ity (e.g., that the generated ontologies make sense in a concrete domain); our
only requirements were that the resulting ontologies are syntactically valid and
semantically consistent.

Related to the previous point and to the real-world representativeness of the
ontologies available in the Web, not every ontology returned by Watson can be
considered as a real-world ontology; some of these ontologies are inconsistent,
some have been produced as examples for tutorials, etc.

From the results presented in section 6.3, we can see that using the ontolo-
gies available in the Web helps increasing expressivity but it is not a complete
solution, since not every type of expressivity is found.

Future improvements could be related to enhancing the method to improve
the amount of expressivity obtained and to use it with other groups of ontologies
and compare the expressivity increase obtained.

Furthermore, the method effectiveness clearly depends on the expressivity of
the input ontologies and of existing ontologies in the Web. The detailed effect of
these expressivity types in the method outcomes requires further analysis.

Finally, currently we search the Web for all the classes in the ontology. One
alternative to take into account would be to search only for the key classes in
the ontology (using an approach such as the one presented in [19]).

Acknowledgments

This work has been supported by the SEALS European project (FP7-238975)
and by the EspOnt project (CCG10-UPM/TIC-5794) co-funded by the Univer-
sidad Politécnica de Madrid and the Comunidad de Madrid.

References

1. Garćıa-Castro, R., Gómez-Pérez, A.: Perspectives in semantic interoperability. In:
Proceedings of the 1st International Workshop on Semantic Interoperability, Rome,
Italy (2011) 13–22

2. Garćıa-Castro, R., Gómez-Pérez, A.: Interoperability results for Semantic Web
technologies using OWL as the interchange language. Web Semantics: Science,
Services and Agents on the World Wide Web 8 (2010) 278–291

11 http://www.seals-project.eu/

21



3. Grant, J., Beckett, D.: RDF Test Cases. Technical report, W3C Recommendation
10 February 2004 (2004)

4. Carroll, J., Roo, J.D.: OWL Web Ontology Language Test Cases. Technical report,
W3C Recommendation 10 February 2004 (2004)

5. Smith, M., Horrocks, I., Krötzsch, M., Glimm, B.: OWL 2 Web Ontology Language
Conformance. Technical report, W3C Recommendation 27 October 2009 (2009)

6. Schneider, M., Mainzer, K.: A Conformance Test Suite for the OWL 2 RL/RDF
Rules Language and the OWL 2 RDF-based Semantics. In: Proceedings of the
OWL: Experiences and Directions Workshop 2009 (OWLED 2009), Chantilly, VA,
USA (2009)

7. Garćıa-Castro, R., Gómez-Pérez, A.: RDF(S) interoperability results for Semantic
Web technologies. International Journal of Software Engineering and Knowledge
Engineering 19 (2009) 1083

8. Garćıa-Castro, R., Toma, I., Marte, A., Schneider, M., Bock, J., Grimm, S.: D10.2.
Services for the automatic evaluation of ontology engineering tools v1. Technical
report, SEALS Project (2010)

9. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3 (2005) 158–182

10. Chillarege, R.: Software testing best practices. Technical Report RC 21457, IBM
Research (1999)

11. Motik, B., Patel-Schneider, P., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoek-
stra, R., Horrocks, I., Ruttenberg, A., Sattler, U., Smith, M.: OWL 2 Web Ontology
Language: Structural specification and functional-style syntax. W3C Recommen-
dation. 27 October 2009. Technical report, W3C (2009)

12. d’Aquin, M., Sabou, M., Motta, E., Angeletou, S., Gridinoc, L., Lopez, V., Zablith,
F.: What can be done with the Semantic Web? an overview of Watson-based
applications. In: Proceedings of the 5th Workshop on Semantic Web Applications
and Perspectives (SWAP 2008). Volume 426., Rome, Italy, CEUR-WS (2008)

13. d’Aquin, M., Sabou, M., Motta, E.: Modularization: a key for the dynamic selec-
tion of relevant knowledge components. In: Proceedings of the 1st International
Workshop on Modular Ontologies (WoMO 2006), Athens, GA, USA (2006)

14. Doran, P., Palmisano, I., Tamma, V.: SOMET: Algorithm and tool for SPARQL
based ontology module extraction. In: Proceedings of the International Workshop
on Ontologies: Reasoning and Modularity (WORM 2008), Tenerife, Spain (2008)

15. Cuenca-Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In: Proceedings of the 16th International
World Wide Web Conference (WWW 2007), Banff, AB, Canada, ACM (2007)
717–727

16. Garćıa-Castro, R., Esteban-Gutiérrez, M., Gómez-Pérez, A.: Towards an infras-
tructure for the evaluation of semantic technologies. In: Proceedings of the eChal-
lenges 2010 Conference, Warsaw, Poland (2010) 1–8

17. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison- Wesley (1995)

18. Gangemi, A., Presutti, V.: Ontology Design Patterns. International Handbooks
on Information Systems. In: Handbook on Ontologies. Second edition. Springer
(2009) 221–243

19. Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through
the integration of cognitive principles with statistical and topological measures. In:
Proceedings of the 3rd Asian Semantic Web Conference (ASWC 2008), Bangkok,
Thailand (2008) 242–256

22




