
Using WS-BPEL for Automation of Semantic
Web Service Tools Evaluation

Serge Tymaniuk1, Ioan Toma1, Liliana Cabral2

1 Semantic Technology Institute, Universität Innsbruck, Austria.
{serge.tymaniuk,ioan.toma}@sti2.at

2 Knowledge Media Insitute, The Open University, Manchester, UK
l.s.cabral@open.ac.uk

Abstract. Although a significant number of semantic tools have been
produced, there exists a shortage of approaches that allow tools bench-
marking in an automatic way. This paper presents an approach for au-
tomation of Semantic Web Service (SWS) tools evaluation by means of
WS-BPEL based Web services using the infrastructure provided by the
SEALS project. One of the objectives of the SEALS project is to pro-
mote advancement of semantic technologies state of the art by enabling
continuous mechanized evaluation. We describe the methodology, used
for automating SWS discovery tools evaluation, present an orchestra-
tion solution for enabling automation of evaluation workflow and discuss
implementation results and lessons learnt.

Keywords: Semantic Web service evaluation, automation, BPEL

1 Introduction

Although many initiatives that created Semantic Web Service (SWS) approaches
and semantic service descriptions have been completed recently, there have been
insufficient efforts in ensuring automatic evaluation of functional and non func-
tional aspects of respective systems and tools. Indeed, the significance of software
benchmarking should not be underestimated since the evaluation of efficiency,
effectiveness and performance costs of SWS tools allows discovering bottlenecks,
elaborating improvements and best-practices, which could provide feedback and
be advantageous not only for the tool providers but also for the whole SWS
community, and, in general, would facilitate further development of SWS field.

Furthermore, the evaluation process itself has to meet specific requirements
in order to provide quality, time and performance assessment in an inexpensive,
timely and effective way. Ideally, an automatic evaluation approach, in most of
the cases, is preferred over the manual testing while doing tools benchmarking.
However, the construction of complex automated evaluation systems often in-
volves different process management concepts that can support underlying IT
infrastructure and ease the design and implementation processes. In this case,
the Business Process Management (BPM) concept can act as a linking approach

49

Proceedings of the Second International Workshop on 
Evaluation of Semantic Technologies (IWEST 2012) 
May 28th, Heraklion, Greece 
CEUR Workshop Proceedings Vol. 843



that enables the modelling of an evaluation scenario at a higher level perspec-
tive and thus defining the means for its implementation. The BPM stack [1],
introduced by the Business Process Management Initiative group1, represents
a hierarchical systematization of a set of technologies for supporting business
process management, consisting of basic OASIS and W3C web services infras-
tructure technologies at the bottom such as SOAP (Simple Object Access Pro-
tocol)2, WSDL (Web Service Definition Language)3 and UDDI (Universal De-
scription Discovery Integration)4; choreography and execution standards such as
WS-CDL (Web Services Choreography Description Language)5 and WS-BPEL
(Web Services Business Process Execution Language)6 at the middle layer; and
business process extension layers (BPEL4People)7 and graphical notation stan-
dards (BPMN )8 at the top.

The goal of this paper is to describe an approach for the automation of
SWS tools evaluation based on the BPM view above, using WS-BPEL based
Web services and to discuss the implementation results and lessons learnt. The
research, provided in this paper builds on our initial work described in [2], in
which we have presented the data sets and tools that are candidates for the
evaluation, the evaluation goals and criteria against which tools benchmarking
should be conducted, and the tool wrapper, required for tool integration with
the evaluation platform.

Our work on automation of SWS tools evaluation is part of the SEALS
project9, which aims at creating a lasting reference infrastructure for semantic
technology evaluation. In SEALS we use WS-BPEL to represent an evaluation
scenario process. In particular, in this paper we discuss the representation and
execution of a WS-BPEL based process for evaluating SWS based discovery
tools. The SWS Discovery evaluation BPEL process contains several Web Ser-
vices, which enable access to testdata, execution of provider’s tools and execution
of measurements over tool’s results, among other evaluation tasks.

This paper is organized as follows. In Section 2, an overview of the related
work is provided. The automatic evaluation is implemented as a part of the
SEALS platform. An overview of this platform, including basic terms used in
the evaluation, and infrastructure components are presented in Section 3. The
evaluation methodology and the implementation of the SWS discovery workflow
in BPEL is described in Section 4. Implementation results and lessons learnt are
discussed in Section 5. Finally, the conclusion and future work is described in
Section 6.

1http://www.bpmi.org/
2http://www.w3.org/TR/soap/
3http://www.w3.org/TR/wsdl/
4http://www.oasis-open.org/committees/uddi-spec/
5http://www.w3.org/TR/ws-cdl-10/
6http://www.oasis-open.org/committees/wsbpel/
7http://www.oasis-open.org/committees/bpel4people/
8http://www.omg.org/spec/BPMN/
9http://www.seals-project.eu/

50



2 Related Work

The section provides an overview of the related research work, which can be
grouped according to the following areas: SWS tools evaluation and Workflow
automation.

With respect to SWS tools evaluation area, there have been several eval-
uation initiatives with the objective of comparatively accessing performance,
scalability and effectiveness of multiple SWS tools such as S3 (Semantic Service
Selection) [3], the IEEE Web Service Challenge (WSC) [4], SWS Challenge [5]
and the JGD Benchmark [6]. These initiatives produced a considerable amount
of SWS test data sets for SWS tools benchmarking such as OWLS Test Col-
lection10, SAWSDL Test Collection11 (counterpart of OWLS-TC that has been
semi-automatically derived from OWLS-TC), Jena Geography Dataset12 and
others. The WS Challenge describes a platform that allows evaluating Semantic
Web service composition based on the OWLS, WSDL, WS-BPEL schemas data
and contest data formats, by different tools [7]. The authors specify WS-BPEL
based orchestration format as the output format for the composition solutions.

In the S3 contest, the Semantic Web Service Matchmaker Evaluation Envi-
ronment (SME2)13 has been developed, which is a Java framework for evaluating
SWS matchmakers over specified test collections. The environment is managed
from a Graphical User Interface (GUI), where an end user can select a test col-
lection, a matchmaker, specify evaluation options and use the control panel to
manage the execution of the evaluation process itself [8]. Additionally, there ex-
ist particular requirements for the evaluation of a matchmaker into the SME2,
which include implementation of the provided interface, creation of an XML
plugin description file and deployment of created files into the plugin directory
of SME2. After the evaluation process is finished, the user can navigate through
the results tab in order to manage conducted experiments (i.e. merge, split, load,
save) and select the visualization type.

In addition, we investigated solutions that focus on automation of workflows
for software evaluation (i.e. graphical and execution standards and approaches).
In [9] the authors present a framework for comparing scientific workflow systems
based on their data/control flows properties and discusses the benefits and lim-
itations of the following major workflow systems: Discovery Net14, Taverna15,
Triana16, Kepler17, YAWL18 and WS-BPEL. Although all the workflow systems
offer the variety of data and control elements, only BPEL has been standardized
for the business process domain [9].

10http://projects.semwebcentral.org/projects/owls-tc/
11http://projects.semwebcentral.org/projects/sawsdl-tc/
12http://fusion.cs.uni-jena.de/professur/jgd/
13http://projects.semwebcentral.org/projects/sme2/
14http://www3.imperial.ac.uk/lesc/projects/archived/discoverynet
15http://www.taverna.org.uk/
16http://www.trianacode.org/
17https://kepler-project.org/
18http://www.yawl-system.com/

51



3 Evaluation Platform Overview

In this section we present the basic terms used in SEALS and provide an overview
of the evaluation components of the SEALS platform.

3.1 Terminology

In terms of SEALS by evaluation we imply behaviour examination of a par-
ticular tool under certain conditions and with particular input test data [10],
[11]. Evaluation workflow defines how the evaluation use case is addressed and
conducted; it specifies the way the input data is consumed and the output is
presented [11]. Evaluation description refers to the test data and tools partic-
ipating in a specific evaluation scenario and provides the evaluation workflow
for this scenario. By evaluation campaign we imply an activity, where partici-
pant’s tools are evaluated by executing evaluation campaign scenarios [11]. The
SEALS evaluation campaigns19 are organized for different types of tools, includ-
ing SWS tools evaluation, where tools can be benchmarked and compared by
tool providers.

3.2 Platform Evaluation components

The SEALS platform consists of four major components: Runtime Evaluation
Service (RES), which runs evaluation according to a specific evaluation descrip-
tion using a certain tool against particular datasets, SEALS Service Manager
(SSM), responsible for coordinating platform modules and ensuring consistency,
SEALS Repositories and SEALS Portal, represented by a web user interface,
which allows end user to interact with the SEALS platform [12]. In SEALS we
use repositories to store and retrieve test data, tools and results of an evalua-
tion, namely the Test Data Repository, the Tools Repository and the Results
Repository. Dedicated services called repository managers handle the interac-
tion with the repositories and process metadata and data, defined for SWS tools
evaluation. SEALS Test Data Repository Service (TDRS) provides access to the
test data repository and allows retrieving the whole test data in a ZIP file as
well as specific test items directly from the repository and iterate over the suite.
SEALS Results Repository Service (RRS) provides access to the results repos-
itory in order to add, retrieve raw results and interpretation. In SEALS Tools
Repository Service (TRS) tools, which are used in the evaluation, are stored. Fur-
thermore, several additional services are used in the workflow such as SEALS
Results Composer Service, which provides functionality for building results and
making a ZIP bundle out of them and SEALS Tool service, which provides access
to the deployed tool.

19http://www.seals-project.eu/seals-evaluation-campaigns/

52



4 Approach for SWS Tools Automatic Evaluation

In this section we provide an overview of the methodology used to implement
the SWS Discovery evaluation workflow and describe the workflow in details.

4.1 Methodology

In SEALS, a campaign organizer initiates the evaluation execution and the eval-
uation request is sent to internal platform components. At a higher level, or-
chestrations of the activities that enable the evaluation, originate in the SSM
component [13]. Afterwards, computing resources, required for executing an eval-
uation, are requested and scheduled. When the resources are ready for evaluation
the SSM notifies the RES component, which starts the evaluation workflow. At
the level of a specific evaluation scenario, the modelling and automatic execution
is enabled by using WS-BPEL, which was chosen as the language for evaluation
workflow specification.

We define and implement the following methodology for SWS tools automatic
evaluation using the SEALS platform. At the initial stage we create a set of Web
services that can be generically used to access testdata for SWS discovery. For
this purpose we define appropriate metadata according to the SEALS uniform
ontologies20.

Secondly, in order to ensure automatic tools benchmarking we specify a tool
plug-in, and a set of Web services, which can initiate discovery tasks for the
evaluation workflow.

Thirdly, the orchestration and automatic execution of the Web Services used
in a specific evaluation scenario are accomplished by using WS-BPEL technology
as explained in the next section.

Finally, the results of the SWS tools evaluation are stored in the SEALS
Repositories, where raw results and measurements are described using RDF/OWL.
The results in the repository can be mapped for different types of visualisation
and presented to the end user.

4.2 Evaluation Workflow Description

We describe the SWS discovery evaluation workflow as implemented in WS-
BPEL. The workflow, as shown in Figure 1, invokes a number of SOAP based
Web Services, which access the SEALS repositories for metadata and datasets
as well as invoke tool’s specific methods and apply evaluation measures (inter-
pretations).

As presented in Figure 1, the WS-BPEL activities represent services asso-
ciated with specific evaluation artifacts, to which different prefixes have been
assigned, as follows:

– tdrs: SEALS Test Data Repository Service.

20http://www.seals-project.eu/ontologies/

53



Fig. 1. SWS Discovery tools evaluation workflow. Eclipse WS-BPEL Designer was used
to construct the WS-BPEL workflow.

54



– rrs: SEALS Results Repository Service.
– tool: SEALS Tool service.
– rc: SEALS Result Composer Service.
– rdfutil: Customized services specific to SWS evaluation, which extends basic

functionality provided by the SEALS platform.
– interpret: Customized services used for handling interpretation results (mea-

surements) within the evaluation.

Below in a sequential way we describe each WS-BPEL activity from the
evaluation workflow.

– RecieveInput: receives initial input parameters such as tool identifier and
tool version, test data identifier and results identifiers specified by user.

– CleanBundleResults: initializes the results’ bundle.
– InitResultSuiteMetadata: creates metadata header and repository meta-

data consuming as an input test suite, tool and results identifiers. This
method creates constant metadata, which is invoked from the WS-BPEL
workflow only once before loading a test collection. The repository meta-
data is needed when the ZIP files with raw results and interpretations are
uploaded to the Result Repository from a local temporary directory.

– LoadTestSuite: loads a test suite specified by end user in an evaluation
request.

– LoadMetadata: loads the information that is contained within the test
data metadata and will be used by the following methods to provide their
functionality.

– HasNextTestCase: searches next test case in a test data and returns a
boolean value.

After the initialization phase the evaluation is carried out in a while loop,
where an iteration over all discovery tests cases is performed. The tests are
loaded sequentially by executing the nextTestCase operation. In each iteration
we extract all necessary data for a discovery test.

– NextTestCase: locates next test case in the test data.
– GetServiceDocuments: analyzes the metadata and for a given goal ex-

tracts identifiers (dc:identifier) for all relevant service documents’ URLs.
This list of URLs is passed to the workflow engine and then forwarded to
the tool, which uses the URLs to perform the SWS discovery.

– Initialize: initializes SWS tool.
– LoadServices: invokes a tool and loads service documents.
– GetGoalDocument: retrieves the goal document location for a relevant

test case from the TDRS.
– Discover: invokes tool’s discovery method.
– AlignResult: obtains the result of discovery tools evaluation as input and

exchanges the URLs that are used by the URIs, which consecutively are
applied to reference goal and service documents.

– AddDataItemMetadata: serializes results for a particular test case.

55



– Tdrs:GetRelevanceValue: extracts relevance value document location from
the Testdata Repository.

– Rdfutil:GetRelevanceValue: XML document, which contains relevance
values is parsed by Rdfutil custom service.

– ClearResponse: initializes all components that are necessary to calculate
discovery interpretation.

– AddResultToInterpreter: adds the result to interpretation service.
– LoadReferences: adds reference values for a given goal document to the set

of results, which will be considered when calculating overall interpretation.
– GetInterpretation: retrieves the latest raw result and set of reference val-

ues that have been provided to the Web service and calculate interpretation
from these values. The interpretation object is returned to the workflow
engine to be serialized to RDF format.

– GetResultSuiteMetadata: the whole raw results and interpretation meta-
data models are built up.

– AddMetadataResultComposer: results are passed to the results com-
poser, which structure them for the following operation.

– CreateBundleResult: creates a ZIP bundle with the raw result and inter-
pretation.

– AddResults: adds the results′ bundles to the Result Repository Service.
– CleanBundleInterpretation: cleans bundle’s generation functionality in

order to be reused for bundling interpretation.
– CallbackClient: asynchronous WS-BPEL callback is used in order to han-

dle long-lived invocations.

SWS discovery results can be queried from the SEALS portal using results
identifier or name. Furthermore, in our discovery workflow error handling is
used. By an evaluation error or fault we imply any kind of faults, which prevent
WS-BPEL from completing its processes successfully [14]. Multiple scopes and
faults types were introduced in WS-BPEL to tackle multiple errors, which could
occur at runtime such as tool scope that handle tool bridge and tool wrapper
errors, unexpected platform faults or custom service faults. Depending on the
faults criticality the evaluation workflow is either forced to stop and throw a
platform fault or if an error does not have a serious effect on the normal flow,
the workflow resumes its execution with the next test case.

5 Discussion

According to the general objective of the SEALS project, in order to ensure au-
tomation of semantic technologies evaluation we aimed at providing a flexible,
scalable, reusable and robust evaluation service. The section reports on the im-
plementation results and discusses lessons learnt with respect to the evaluation
workflow implementation at the current stage.

In [15] the authors introduce requirements for scientific workflow assessment
such as modular design, exception handling, compensation handler, adaptivity

56



and flexibility, and, finally, management of workflow. These criteria will be used
as a basis for examination of the SWS tools evaluation workflow.

With respect to modular design, the usage of WS-BPEL allowed decoupling
business logic and treating each service separately, which was important for the
platform and increased the reusability of components within different semantic
evaluation workflows.

As discussed in Section 4 the SWS workflow implements exception han-
dling and compensation mechanisms, which are critical issues in order to
debug problems during the evalution.

The authors in [15] associate adaptivity with an ability of swift and effective
adjustment (redesign) to meet the changing requirements. In SEALS SWS tools
evaluation adaptability is supported at WS-BPEL side since the SEALS plat-
form supports integration of custom services in SWS tools evaluation description
by means of creating a custom service definition, implementing business logic,
specifying how the service is connected to the platform’s components and, fi-
nally, integrating it within the WS-BPEL. It can be stated that adaptability
supports flexibility in this case since custom procedures allow redefining or
replacing workflow activities; moreover, the SEALS platform supports generic
tool interface, which provides a possibility for any tool to be integrated in the
evaluation workflow. Depending on the requirements for workflow flexibility in
order to model and orchestrate business processes of a system, the suitable trade-
off orchestration standard should be considered since tight restrictions, imposed
on Web services composition, allow ensuring control and monitoring while less
restricted environment may threaten system’s stability at runtime [16].

A workflow management perspective involves breakpoints mechanisms
that provide a possibility to split the workflow into the following sub-components
to facilitate persistence and fault tolerance: steering, used for established break-
points, monitoring, tasks rescheduling and reordering [15]. Regarding SWS tools
evaluation workflow, its management is handled by the RES and SSM compo-
nents of the SEALS platform to ensure robustness and scalability of the evalu-
ation.

Moreover, from usability view point we recommend to use proprietary en-
gines in large scale projects, which has considerable amount of built-in functions
that ease implementation process and aids in debugging the code. Besides, it
is important to verify in advance if the version of executing engine, which was
Apache ODE21 in our case, supports all the required elements and components
of WS-BPEL specification. Additionally, in our evaluation workflow XSL trans-
formation22 (doXslTransform function) was used to dynamically query web ser-
vices response and present it in a format to be suitable for the input of the next
operation, as defined in WSDL data types. In our case the usage of XSL transfor-
mation replaced the need of creating additional custom service that could also
parse the response and align the output message according to XML schema.

21http://ode.apache.org/
22http://www.w3.org/TR/xslt

57



However, it should be also considered that the version of execution engine, used
in the evaluation, supports XSLT.

6 Conclusions and Future Work

To the best of our knowledge, the automatic evaluation workflow of SWS tools
is a unique approach in tool evaluation field for SWS discovery. In the project
we sought constructing a workflow with the ultimate focus on ensuring seemless
interaction with the platform, and minimizing the need for user interaction.

In contrast to the S3 contest described in section 2, in SEALS we aimed
at ensuring automatic evaluation for large spectrum of semantic technologies.
Hence, enhancing the current state of the art, the SEALS SWS tools evaluation
was elaborated using a top-down structured approach, with a particular focus
on modularity required for establishing efficient reuse among different types of
evaluations of semantic technologies.

Similarly to the S3 contest, the wrapped tool name, its version, and the
test data are specified in the evaluation execution request, and, thereafter, the
evaluation is run. In contrast to the SME2, in SEALS the end user does not
interact with the evaluation platform directly, rather manages it from the SEALS
web portal. Furthermore, alternatively to the S3 contest, where an end user can
specify which metrics to use from the platforms GUI, the SEALS evaluation
provides a Web Service interface for measurements, which can be extended for
applicable evaluation criteria for all SWS discovery tools.

In the SEALS project the automation of workflow evaluation is implemented
using WS-BPEL orchestration language. The WS-BPEL technology is chosen
since it represents a standardized solution for managing Web services based on
clear XML standards, allows separating business logic and ensures reusability.

The current version of the SWS tools evaluation workflow at the time of
writing has been integrated in the SEALS platform in the virtual environment
and allowed the tools, deployed in advance, to be executed at runtime. How-
ever, while elaboration of services is done iteratively, the work towards their
implementation for the automatic evaluation of SWS tools will be continued.

As future work we are planning to use our approach for evaluation of other
types of SWS activities, not only discovery as presented in this paper.

Acknowledgements

The authors would like to thank the members of the SEALS consortium. This
work has been partially supported by the SEALS EU FP7 project (IST-2009-
238975).

References

1. BPMI: BPMI.org: Phase 2 Insight, Innovation, Interoperability (2004) Available
at: http://www.bpmi.org/, Accessed: 09/02/2012.

58



2. Cabral, L., Toma, I.: Evaluating semantic web service tools using the seals plat-
form. In Gómez-Pérez, A., Ciravegna, F., Harmelen, F., Hefflin, J., eds.: Pro-
ceedings of the International Workshop on Evaluation of Semantic Technologies
(IWEST 2010). Volume 666., http://CEUR-WS.org (Nov 2010)

3. S3: Annual International Contest S3 on Semantic Service Selection - Re-
trieval Performance Evaluation of Matchmakers for Semantic Web Services
(2011) Available at: http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html,
Accessed: 09/02/2012.

4. WSC: Introducing the Web Service Challenge (2008) Available at: http://

ws-challenge.georgetown.edu/ws-challenge/, Accessed: 09/02/2012.
5. SWSC: Semantic Web Service Challenge: Evaluating Semantic Web Services

Mediation, Choreography and Discovery Wiki (2011) Available at: http://

sws-challenge.org/, Accessed: 09/02/2012.
6. Küster, U.: An Evaluation Methodology and Framework for Semantic Web Services

Technology. PhD thesis, Friedrich-Schiller-University Jena (Feb 2010)
7. Bleul, S., Weise, T., Geihs, K.: The web service challenge - a review on semantic

web service composition. In Wagner, M., Hogrefe, D., Geihs, K., David, K., eds.:
Service-Oriented Computing (SOC’2009), The European Association of Software
Science and Technology (2009)

8. Klusch, M., Dudev, M., Misutka, J., Kapahnke, P.: Semantic Web Service Match-
maker Evaluation Environment, SME2, Version 2.1. Technical report, S3 Contest:
Performance of Semantic Web Service Matchmaking Tools (2010) Available at:
http://projects.semwebcentral.org/projects/sme2/, Accessed: 20/02/2012.

9. Curcin, V., Ghanem, M.: Scientific workflow systems - can one size fit all? In:
Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International. (Dec
2008) 1–9

10. Esteban-Gutiérrez, M., Garćıa-Castro, R., Gómez-Pérez, A.: Executing Evalu-
ations over Semantic Technologies using the SEALS Platform. In: Proceedings
of the International Workshop on Evaluation of Semantic Technologies (IWEST
2010). Volume 666., http://CEUR-WS.org (2010)

11. Schneider, M., Grimm, S., Abecker, A., Titov, A.: SEALS D8.1: Design of the Ar-
chitecture and Interfaces of the Evaluation Descriptions Repository Service. Tech-
nical report, SEALS Project (2009)

12. Wrigley, S., Garćıa-Castro, R., Trojahn, C.: Infrastructure And Workflow for the
Formal Evaluation of Semantic Search Technologies. In: In Proceedings of the 2011
workshop on Data infrastructures for supporting information retrieval evaluation.
DESIRE ’11, ACM Press (2011) 29–34

13. Esteban-Gutiérrez, M.: SEALS D4.4: Iterative Evaluation and Implementation of
the SEALS Service Manager v.1.0-FR. Technical report, SEALS Project (2011)

14. Esteban-Gutiérrez, M.: SEALS D9.1: Iterative Avaluation and Implementation of
the Runtime Evaluation Service v.1.1. Technical report, SEALS Project (2011)

15. Akram, A., Meredith, D., Allan, R.: Evaluation of bpel to scientific workflows. In:
Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International
Symposium on. Volume 1. (may 2006) 269–274

16. Regev, G., Bider, I., Wegmann, A.: Defining business process flexibility with the
help of invariants. Software Process: Improvement and Practice 12(1) (2007) 65–79

59




