
Linked data from your pocket

Jérôme David, Jérôme Euzenat, Maria-Elena Roşoiu

INRIA & Pierre-Mendès-France University
Grenoble, France

{Jerome.David,Jerome.Euzenat,Maria.Rosoiu}@inria.fr

Abstract. The paper describes a lightweight general purpose RDF framework
for Android. It allows to deal uniformly with RDF, whether it comes from the web
or from applications inside the device. It extends the Android content provider
framework and introduces a transparent URI dereferencing scheme allowing for
exposing device content as linked data.

1 Introduction

Smartphones are becoming the main personal information repositories. Unfortunately,
this information is stored in independent silos managed by applications and thus, it is
difficult to share data across them. Nowadays, mobile operating systems, such as An-
droid, deliver solutions in order to overcome this, but they are limited by the application
database schemas that must be known beforehand.

The difficulty to share phone data at the web scale can be seen as another drawback.
One can synchronize application data, such as the contacts or the agenda using a Google
account. However, they are not generic solutions and there it is no mean to give access
to data straight from the phone.

Our goal is to provide applications with a generic layer for data delivery in RDF. Us-
ing this solution, applications can exploit device information in an uniform way without
knowing from the beginning application schemas. This information can also be exposed
to the web and web information can be considered in the same uniform manner. More-
over, we propose to do it along the linked data principles (provide RDF, describe in
ontologies, use URIs, links to other sources).

For example, in the future, this application could be used as a personal assistant.
When one would like to know which of his contacts will participate to a scientific
conference, he can query the calendar of all his contacts in order to retrieve the answer.
For sure, according to the security settings of the corresponding contact, he may be
allowed or not to access the calendar.

The mobile device information can as well be accessed remotely, from any web
browser, by any persons who has granted the access to it. In this case, acts like a web
server.

We presented a first version of the RDF content provider in [2]. This layer, built on
top of the Android content provider, allowed to share application data inside the phone.
In this paper, we extend the previous version by adding capabilities to access external
RDF data and to share application data as linked data on the web.

We first describe the context in which the Android Platform stores its data, and how
it can be extended in order to integrate RDF. Then, we present two applications that
sustain its feasibility: the first one is an RDF browser that acts like a linked data client
and allows the navigation through the device information, and the second one is an RDF
server which exposes its information to the outside world. We continue to present the
challenges raised by such applications and solutions we implemented for them. Finally,
we conclude presenting future improvements and challenges in this field.

2 Android Content Providers

Inside the Android system, each application runs in isolation from other applications.
This Linux-based operating system assigns to each application a different and unique
user. Only this user is granted access to the application files. This allows one to take ad-
vantage of a secure environment, but prevents the exchange of data across applications.
To overcome this drawback, Android provides the content provider mechanism.

Content providers enable the transfer of structured data between device applica-
tions. They encapsulate the data and control the access to it through an interface. This
interface empowers one to query the data or to modify it ([4], [3]).

A content provider is a subclass of ContentProvider and implements the follow-
ing interface:

Cursor query(Uri id, String[] proj, String select, String[] selectArgs, String orderBy)
Uri insert(Uri id, ContentValues colValueList)
int update(Uri id, ContentValues colValueList, String select, String[] selectArgs)
int delete(Uri id, String select, String[] selectArgs)
String getType(Uri id) .

With the content provider API, each data (table or individual) is identified by a URI
having the following structure:

content://authority/path/to/data

The content: scheme is the cornerstone of each Content Provider URI, the
authority identifies the provider, i.e., the dataset, and the path/to/data iden-
tifies a particular table or individual (row) in the dataset. For example, the URI
content://contacts/people refers to all the people in the contact application, and
the URI content://contacts/people/33 identifies a specific instance of these,
namely the instance having the id 33.

When an application wants to access a particular piece of data, it queries its URI.
This is done through a call to the ContentResolver which is able to route the query
to the right content provider.

From a semantic web point of view, using URIs to identify data is a strong point of
the Android content providers. Still, there are several limitations if we would like to use
them as a linked data interface.

Specifically, URIs used by content providers are local to each device, i.e., not deref-
erenceable on the web, and not unique. The content scheme used by providers is not a
standard protocol. Furthermore, two distinct devices will use the same URI to identify
different data. For example, by using content://contacts/people one would be
able to access the contacts from both devices.

2

Another drawback is the SQL interface of the Android content providers. The
queries are issued in an SQL manner and the results are presented to the user as a
table.

3 The RDF Content Provider Framework

We designed the RDFContentProvider framework to give a semantic web flavour to
Android and to overcome these problems. It is composed of the RDFProvider API
and the RDFContentResolver application. The API must be included inside the ap-
plications that want to access RDF providers and inside the applications that want to
define new RDF content providers. The RDFContentResolver application is the one
that records all the RDF content providers installed on the device and routes queries to
the relevant provider. Figure 1 gives an overview of the framework architecture.

RDFBrowser RDFServer

RDFContentResolver

RDFHttpContentProvider RDFPhoneSensorsContentProvider RDFCalendarProvider RDFContactProvider

Calendar Contact

uri rdf uri
rdf

uri rdf

uri rdf

uri

rdf
uri

rdf
uri

rdf

uri

rdf
uri

rdf
query

tuples

query

tuples

Phone
Internet

Fig. 1. The architecture components and the communication between them. Components with
double square have a graphic user interface.

3.1 The RDF Provider API

The RDFProvider API delivers the following classes and interfaces:

– RdfContentProvider: An abstract class that should be extended if one wants to
create an RDF content provider. In fact, it subclasses the ContentProvider class
belonging to the Android framework;

– RdfContentResolverProxy: A proxy used by applications to send queries to the
RDFContentResolver application;

– Statement: A class used for representing an RDF statement;
– RdfCursor: An iterator on a set of RDF statements;

3

– RdfContentProviderWrapper: A subclass of RdfContentProvider which
allows for adding RDF content provider capabilities to an existing classical con-
tent provider.

RDFContentProvider follows primarily the same kind of interface as
ContentProvider. The minimal interface to implement linked data applications is:

– RDFCursor getRdf(Uri id)

The Cursor iterates on a table of subject-object-predicate (or object-predicate) which are
the triples involving the object given as a URI. If one wants to offer a more elaborate
semantic web interface, i.e., a minimal SPARQL endpoint, the following methods have
to be also implemented:

– Uri[] getTypes(Uri id): returns the RDF types of a local URI;
– Uri[] getOntologies(): ontologies used by the provider;
– Uri[] getQueryEntities(): classes and relation that the provider can deliver;
– Cursor query(SparqlQuery query): returns results tuple;
– Cursor getQueries(): triple patterns that the provider can answer.

The RDF providers that we have developed so far are implementing only the first three
primitives.

3.2 The RDF Content Resolver Service

The RDFContentResolver service has the same goal as the ContentResolver be-
longing to the Android framework. It maintains the list of all the installed RDF content
providers, and forwards the queries it receives to the corresponding one. This applica-
tion is never visible to the user, therefore we have implemented it as an Android service.

When an RDF Content Provider is instantiated by the system, this provider auto-
matically registers to the RDFContentResolver. A principle similar to the one from
the Android Content Provider framework is used.

The RDFContentResolver can route both the local (content:) and external
(http:) URI-based queries. In case of a local URI, i.e., starting with the content

scheme, the resolver decides to which provider it must redirect the query. In case of an
external URI, i.e., starting with the http scheme, the provider automatically routes the
query to the RDFHttpContentProvider (see Figure 1).

The RDFHttpContentProvider allows one to retrieve RDF data from the Web.
It parses RDF documents and presents them as RDFCursors. So far, only the minimal
interface has been implemented, i.e., the getRdf(Uri id) method.

3.3 RDF Providers for Address Book, Calendar and the Phone Sensors

The RDF Content Resolver application is also bundled with several RDF content
providers encapsulating the access to Android predefined providers. The Android
framework has applications that can manage the address book and the agenda. These
two applications store their data inside their own content provider.

4

In order to expose this data as RDF, we developed the RDFContactProvider

and the RDFCalendarProvider. These providers are wrapper classes for the Con-
tactProvider and the CalendarProvider residing inside the Android framework.

RDFContactProvider exposes contact data using the FOAF ontology. It provides
data about a person’s name (display name, given name, family name), about its phone
number, email address, instant messenger identifiers, homepage and notes.

RDFCalendarProvider provides access to the Android calendar using the RDF
Calendar ontology1. The data supplied by this provider contains information about
events, their location, their date (starting date, ending date, duration, and event time
zone), the organizer of the event and a short description.

RDFPhoneSensorsContentProvider aims to expose sensor data from the sen-
sors embedded inside the mobile device. Contrary to the others, they are not offered
as Content Providers. At the present time, it only delivers the geographical position
(retrieved using the Android LocationManager service). In order to express this infor-
mation in RDF, we use the geo location vocabulary2, the one that provides a namespace
for representing lat(itude) and long(itude).

4 RDF Browser

The RDF Browser acts like a linked data client. Given a URI, the browser makes an
HTTP URI request in order to retrieve the information from the specified location. If
the data contains other URIs, the user can click on them and the browser will issue a
new query with this URI.

An example can be found in Figure 2. In this case, the user uses the RDFBrowser
to get the information about the contact having the id 4. When the browser receives
the request, it sends it further to the RDFContentResolver. Since the URI starts with
the content:// scheme and has the com.android.contacts authority, the resolver
routes the query to the RDFContactProvider. This provider retrieves the set of triples
describing the contact and sends it to the calling application which displays it to the
user. Thereupon, the user decides that he wants to continue browsing and selects the
contact’s homepage. In this case, since the URI starts with the http:// scheme, the
resolver routes the query to the RDFHttpContentProvider. The same process repeats
and the user can see the remote requested file, i.e., Tim Berners-Lee FOAF file.

5 RDF Server

The RDF Server is a new component added to the architecture. This server provides
to the outside world the data stored into the device as RDF. Due to the fact that the
server must maintain a permanent connection to the Internet without user interaction,
we implemented it as an Android service, i.e., a background process.

One important issue appears when one would like to get data from a device because
the URI used to query the content providers has a local meaning. In the outside world,

1 RDF Calendar vocabulary: http://www.w3.org/TR/rdfcal/.
2 Geo location vocabulary: http://www.w3.org/2003/01/geo/ .

5

Fig. 2. An example of using the RDF Browser.

the URI used to query the address book of two different persons will be the same, but
the content of the address book will be different.

The server principles are quite simple. In the beginning, the server receives a request
from the outside. Then, it dereferences the requested URI, i.e., it translates the external
URI into an internal one, which has meaning inside the Android platform. The RDF
Server sends it further to the RDFContentResolver. In a manner similar to the one
explained for the RDF Browser the set of triples is obtained but, before sending this set
to the server, the URIs of the triples are externalized and the graph is serialized using a
port of Jena under the Android platform.

The URI externalization process translates the local URI
content://authority/path/to/data into the dereferenceable one
http://deviceIPAddress:port/authority/path/to/data. Reversing the
translation of such a URI is possible since both the authority and the path are kept
during the externalization process.

Usually, mobile devices do not have a permanent IP address and thus, the external-
ized URIs are not stable. To overcome this, a dynamic DNS client34 can be used.

In addition, the server supports a minimal content negotiation mechanism. If one
wants to receive the data in RDF/XML, it will set the MIME types of the Accept-type
header of its request to "application/rdf+xml" or to "application/*". In the opposite case
or when the client sets the MIME type to "text/plain", the data will be transmitted in an
N-TRIPLE format. Not only the requester has the opportunity to express its preferences
regarding the format of the received data, but the default format of the transmitted data
can be specified in the server settings, as well the port on which the server can listen on
and the domain name server for it.

3 Dynamic DNS Client: https://market.android.com/details?id=org.l6n.
dyndns&hl=en.

4 DynDNS: http://dyn.com/dns/ .

6

Fig. 3. RDF Server response.

An example can be found in Figure 3. In this scenario, the user retrieves information
about the fourth contact from the device address book. The request is processed by the
RDF Server in a manner similar to the one of the RDF Browser.

6 Technical Details

The RDF Server included in our architecture eases the access of the user to the RDF
data found on the web. For that purpose, we wanted to reuse an existing semantic web
framework, such as Jena or Sesame. Yet they are not suitable to be employed under
the Android platform (the code depends on some libraries that are unavailable under
Android). There are a few ports of these frameworks to Android: Microjena5 and An-
drojena6 are ports of Jena and there exists a port of Sesame to the Android platform
mentioned in [1]. We use Androjena.

A problem that arises when we use this framework is that the size of the application
increases substantially. This problem could have been avoided by reimplementing only
the Jena modules that are needed in our architecture. Still, we would like to improve
our architecture by adding more features (such as a SPARQL query engine) that require
additional modules to those used to read/parse/write RDF, available in Jena.

A tool that we found useful in our development process was ProGuard. ProGuard7

is a code shrinker, optimizer, and obfuscator. It removes the unused classes, methods
or variables, performs some byte-code optimizations and obfuscates the code. The tool
proved to be efficient in reducing the size of our application (our framework including
Androjena) by half, i.e., its initial size was 6.48MB, and after we applied the tool it
diminished up to 2.98MB.

The existence of such tools as ProGuard, is a step forward in the continuous battle
between applications that require a considerable amount of space for storing their code
and devices with a reduced memory storage.

We are currently examining how to query the device data using SPARQL. There are
two main ways of doing this:

5 http://poseidon.ws.dei.polimi.it/ca/?page_id=59.
6 http://code.google.com/p/androjena/.
7 http://proguard.sourceforge.net/.

7

– creating a new RDF content provider which relies on a triple store to deposit the
data [5], and then using SPARQL to query it; or

– translating SPARQL queries into SQL queries, and further decompose it in a form
compatible with the ContentProvider interface.

At the moment, we are investigating the second option. There are several available
tools that can make the translation from SPARQL to SQL, like Virtuoso or D2RQ.
However, these tools solve only half of the problem because the SQL queries have to be
adapted to the ContentProvider interface, i.e., the queries have a particular format, dif-
ferent than the SQL one. This interface allows for querying only one view of a specified
table at a time, hence it is not possible to ask Content Providers to perform joins.

Further challenges regarding security must be taken into account. The user of the
application should be able to grant or to deny the access to its personal data. A specific
vocabulary should be used in order to achieve this 8. More that that, the dangers of grant-
ing system access to a third-party user can be avoided by using a secure authentication
protocol 9.

As can be seen, there are still technical problems in implementing a full RDF frame-
work at the core of Android. Specific solutions must be developed.

7 Conclusion

Involving Android devices in the semantic web, both as consumers and providers of
data, is an interesting challenge. As mentioned, it faces the issues of size of applications
and URI dereferencing in mobility situations.

A next step is to provide a more fine grained and structured access to data through
SPARQL querying. This promises to raise the issue of computation, and thus energy,
cost on mobile platform.

A further issue will be the control of privacy in such a framework. But here too, we
think that semantic technologies can help.

References

1. Mathieu d’Aquin, Andriy Nikolov, and Enrico Motta. Building sparql-enabled applications
with android devices. 2011.

2. Jérôme David and Jérôme Euzenat. Linked data from your pocket: The android rdfcontent-
provider. In Proc. 9th demonstration track on international semantic web conference (ISWC),
Shanghai (CN), pages 129–132, 2010.

3. Marko Gargenta. Learning Android. O’Reilly Media, Inc., 2011.
4. Reto Meier. Professional Android 2 Application Development. Wrox, 2011.
5. Danh Le Phuoc, Josiane Xavier Parreira, Vinny Reynolds, and Manfred Hauswirth. RDF

On the Go: An RDF Storage and Query Processor for Mobile Devices. In 9th International
Semantic Web Conference (ISWC2010), November 2010.

8 http://www.w3.org/wiki/WebAccessControl.
9 http://www.w3.org/wiki/Foaf+ssl.

8

