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Abstract 

This paper aims first at implementing two algorithms to extract 

Region Of Interest (ROI) from 2D (mammography) and 3D 

images (tomosynthesis) so that to gather ROI databases and 

second, at analyzing anisotropy of these images textures using an 

anisotropic fractional Brownian field to check whether the model 

being studied helps apprehend the breast anisotropy. This 

analysis includes the estimation and the comparison of indices 

(already presented in [17]). We detail two algorithms: the 

automatic and the manual extraction of ROI implemented to 

gather 2D and 3D Region Of Interest (ROI) databases. Tests 

performed are described and results are reported. 

Keywords-medical imaging, fractional Brownian fields, 

tomosynthesis, mammography, anisotropy, texture. 

I.  INTRODUCTION  

Medical imaging techniques have revolutionized health 
care delivery around the world. Melding medical imaging 
advances with the power of digital and information technology 
that is offering highly personalized and targeted means of 
powerful diagnosis generation is fostering greater quality and 
efficiency in health care.  

Depending on the imaging modality, the resulting images 
are whether 2D or 3D. In the present work, we will be 
restricted to the analysis of mammographic images as 2D ones 
and tomosynthesis images as 3D ones. To take advantage from 
information provided by these images, these ones are analyzed 
based on different aspects. Texture consists one of these 
aspects. 

Considered as a periodic aspect of images, texture has been 
modeled using various mathematical approaches. 

In the current work based on the model definition of [17], 
texture analysis is performed from a probabilistic point of view 
considering the image as a realization of a random field whose 
properties reflect those of the texture. 

Model definitions have varied depending on texture 
properties among which texture anisotropy is one of the most 
important. It can be apprehended using some directional 
processes that are either defined as a restriction of the image on 
an oriented line or as a projection of the image along a given 
direction [17]. Anisotropy can then be analyzed by looking at 
regularity variations of these processes when the extraction 
direction changes. 

In this work we propose two algorithms to extract ROI 
from either mammography or tomosynthesis. We describe a 
tool for image segmentation and region of interest (ROI) 
extraction (under some specific conditions) to end-up with 
gathering the 2D and 3D extracted ROI into two databases.  
We also analyze anisotropy of the images textures using an 
anisotropic fractional Brownian field whose definition is 
presented in the next section of this paper. We perform 
statistical tests on the ROI databases to check whether the 
model being studied is adequate and if it helps apprehend the 
anisotropy of the breast. In this context, it makes sense to note 
that images segmentation, which is a key step for the ROI 
extraction, is a difficult and very important part of the current 
work. A wrong segmentation can invalidate all the processing 
steps that come after and thus lead to a wrong analysis.  

This paper is organized as follows: In the first part, we 
summarize materials and methods: We make an overall 
presentation of the anisotropic fractional Brownian field model 
used as well as a brief description of mammography and 
tomosynthesis . We also describe the algorithms used and the 
different steps followed so that to exploit and analyze the 
images database. In the second part, we expose the different 
statistical tests performed and discuss results. 

II. MATERIALS AND METHODS 

A. Anisotropic Fractional Brownian Field (AFBF) 

a) Introduction 



SIDOP’12 : 2
nd

 Workshop on Signal and Document Processing 

 Textures are normally ranging from micro (statistical 
textures) to macro (structural textures), and depending on the 
texture type, several models (namely structural models, 
probabilistic models,...) can be used to represent it [4]. In the 
current work, tissues we analyze via mammograms and 
tomosynthesis will restrict us to statistical textures and the 
approach is to consider it as a realization of a random field. 

b) Model presentation 

It has been put forward that anisotropy can be captured from 

processes extracted from the image [3] [17], either line-

process defined by restricting the image on oriented lines of 

the image domain, or projection-process obtained by 

projecting the image parallel to a given direction. From these 

processes, anisotropy can be analyzed by looking at their 

regularity variations when the extraction direction changes. 

In the sequel, we present the AFBF model used in this work 

referring to the model presented by Frederic Richard and 

Hermine Bierme in [16] and [17]. 

Description: 

The anisotropic fractional Brownian field is mathematically 

defined as the unique centered Gaussian field, null at origin, 

with stationary increments and self similar of order H ϵ (0, 1). 

Parameter H, called the Hurst index, is a fundamental 

parameter which is an indicator of texture roughness. [3], [16], 

[10] and [17]. 

Its variogram, which is of the form (1.1) is characterized by a 

positive function f called spectral density. This function is 

of the form (1.2). 

 

 

 
where arg ( ) is the direction of the frequency  and h is a 

measurable periodic function ranging in [H;M](0;1) with:  

H =essinf h() and M=esssup h(). 

Since its spectral density f depends on the spectral direction 

arg( ), this model is anisotropic. 

Its anisotropy is characterized by parameters whose estimation 

characterizes the anisotropy of the field. 

In [3], Bonami and Estrade proposed to use windowed Radon 

transforms of a field to get information about its anisotropy. 

These transforms are defined for any direction  of R3 by 

projecting a field X along lines of R3 directed by  With:  

 . 

Given a window function  of the Schwartz class such that 

 = 1, the projection of X along lines oriented in the 

direction  through the window  is defined as follows: 

 

 
 

As mentioned, the Hurst index h(q) of an anisotropic 

fractional Brownian field in a given direction can be 

deduced from the Hurst index of the projected field  

perpendicular to this direction. Consequently the problem of 

estimating the directional Hurst index of an AFBF 

reduces to the problem of estimating the Hurst indices of 

projected fields [16]. Let f be a projection angle and let  

 = ( x,  y,  z) then, if we refer to fig.1 

 
Figure1. The  projection 

 

 
 

In [17], some estimators of the parameters h(x), h(y ) and 

h(z ) are proposed based on projections and quadratic 

variations. 

These estimators differ in two categories defined as follows: 

 Estimators obtained by projecting the field X along 

lines oriented in the direction  through the 

window  (previously described) which are: 

hˆ1: estimator of h(x) 

 hˆ2: estimator of h(y ) 

 Estimators obtained by restriction of the field X on a 

line, which are: hˆ 01 and hˆ 02, estimators of  

min h() (The reader is referred to [14] and [17] for 

detailed explanation). 

 

It was proved in [3] that the Hölder regularity of the projected 

field Px, is equal to h()+1/2(d-1) for all directions  of Rd. 

In the case of d = 3, Px, regularity is equal to h()+1. 

 

 
 

whose regularity is h(x)+1. 

 

 
 

whose regularity is h(y )+1. 

B. Imaging Modalities 

a) Mammography 
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Mammography is a type of imaging that, by the use of a dose 

of x-ray system, helps examine breasts and detect changes in 

tissues before they are noticeable or visible. 

This technique provides two-dimensional information that 

allows the radiologist to make a diagnosis. 

b) Tomosynthesis 

A technique, which, from a set of projection images acquired 

as the X-ray tube moves along a prescribed path, enables the 

reconstruction of multiple section images. In fact, by 

combining projections, it is possible to reconstruct the three-

dimensional projected volume and thus to obtain 3D 

information on the organ examined. [7] fig.2 illustrates one 

among Tomosynthesis acquisition techniques. 

  image receptor 

Figure2. Tomosynthesis acquisiton technique 

 

C. Database description 

 

The current work is done in collaboration with the department 

of Radiology, University of Pennsylvania, that have provided 

the database of breast tomosynthesis and mammography on 

which we have performed our tests.  

This database includes information about 40 patients: For each 

patient, nine projections for the breast  tomosynthesis and 

three mammographies are provided.  

For the tomosynthesis cases, each projection was done under 

6.25 degrees to each other. The distance from the detector to 

the pivot point (i.e., the center of tube rotation) was 20 cm. 

The distance from the pivot point to the x-ray tube (i.e., focal 

spot) was 46 cm. (Thus the distance from the detector to the 

focal spot for the orthogonal projection was 66cm.)  

This information is usefull to implement the second algorithm 

described in the next section. 

 

D. Methods 

Two Region of Interest (ROI) extraction methods were 

developed:  

a) An automatic method: where the extraction of the 

ROI is automatically computed according to specific 

conditions.   

To automatically extract the region of interest, it comes to 

distinguish the three big parts that form a given image in the 

database previously described. These three parts are visible 

to the unaided eye, namely, the collimator, the breast and the 

backgroud. 

 Background segmentation 

It makes sense here to note that the threshold value is 

computed based on Otsu’s method.  

 Collimator segmentation 

A collimator is a device that allows only the rays 

going parallel to a particular direction to pass, and 

this is by filtering these rays. For this reason, 

depending on the source angle, some of the resulting 

images lose some or most of their information. 

After being exposed to the x-rays, in the resulting 

image, the collimator area appears to be less opaque 

than the whole image. 

A possible solution to segment the collimator is to 

use the standard deviation. 

In fact, for each line in the image, its standard 

deviation is calculated (as shown in fig.3 (a) and   

(2.1)) with line= image(i,:)  

 

s(i) = std(line),          (2.1) 

 

 
 

Figure3.Collimator segmentation 

 

The derivative is applied, computing thus the rate at 

which the standard deviation changes with respect to 

the change in the image lines (2.2 ). 

S’= diff (s),                 (2.2) 

 

This standard deviation derivative with respect to the 

image lines allows locating and thus segmenting the 

collimator (as illustrated in fig.2.2 (b). Its location 

corresponds to the position of the pick,  

Once the collimator location is known and having the 

binary labeled image, objects and boundaries are 

localizable. We can separate the three parts of the 

image by assigning a label to every pixel as shown in 

the fig.4 
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Figure4. Final Segmentation, (a): original image+outlines, (b): labeled and 

colored regions 

 

 Axis and region of  interest localization 

 

At this level, our purpose is to locate the optimal 

position from which a region of interest will be 

extracted. To do this, we have to understand the 

breast structure and which area of the breast is more 

likely to be most interesting for our analysis.  
Breast structure : 

The breast is an organ composed mainly of fatty 

tissue which also has milk glands contained within it. 

A series of ducts connect the milk glands to the 

nipple [20]. 

The breast is rich in blood vessels and lymphatic 

channels. (fig.5)  

Breast cancer develops from breast tissue, almost 

from the internal lining of milk ducts or the lobule 

that supply the ducts with milk. 

 
Figure5. Breast structure (Figure adapted from [20] ) 

 

Ductal carcinomas is the appellation of cancers 

originating from ducts whereas lobular carcinomasis 

the appellation of those originating from lobules. 

 

Region of interest axis: 

Based on the breast structure, the region of interest 

extracted should be as close as possible to the nipple. 

In practice, we browse the image and, in the region 

labeled as the breast part (label (1) in fig.4-(b)), we 

select the furthest point that constitutes the nipple as 

shown in fig.5. 

Given its size, the ROI must fulfill conditions  

including the fact that it must not exceed the limits of 

the breast. That is why, for one patient, it is not 

always necessary to find that all the projections are 

exploitable (fig.7). 

 

 
Figure7. The ROI extracted from each of the nine projections (if allowed) of 

each patient 

 

b) A manual method: where the ROI is defined manually 

by the user. 

 

In this part, we will refer to the tomosynthesis reconstruction 

strategy defined in [7] based on the fact that tomosynthesis 

means, commonly, generating a set of slice images from the 

summation of a set of shifted projection images acquired at 

different orientations of the tube. 

Assuming that the x-ray tube and the detector each move in a 

linear path along the x-direction, the function for linear-

motion tomosynthesis may be derived by considering the 

imaging geometry depicted in fig.8. 

 

 
Figure8. Tomosynthesis reconstruction geometry 

 

The idea here is to manually choose and extract a ROI from 

the fifth projection (which is the projection of reference) 

among the nine others and automatically compute the 

coordinates of this extracted ROI in the other projections. In 

this figure, for the first projection image, the x-ray tube is at 

location x = x0 and the detector  is centred at location x = a0. 

The fulcrum plane about which the tube and detector move in 

synchrony is at height p. The x-ray tube is at height z = b0 

above the plane of the detector. 
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Let zr be the half height of the breast, Si(ai , 0 , bi): the x-ray 

tube source and R(xr , yr , zr) the reference point. 

Given these coordinates (x0, y0,z), our purpose is to find out 

T(xi, yi , z). 

In this geometry, it may be demonstrated that: 

If SR is a line through the points S and R, then: 

 

SR =  M(x, y, z); SM = SR           (2.3) 

 

According to (2.3): 

 

(x - ai) = (xr - ai)                                (2.4) 

(y - 0) = yr                                                                     (2.5) 

(z - bi) = (zr - bi)                                 (2.6) 

 

 T(xi, yi , z) = SR ᴖ z = 0 This leads to 

 =(bi) / (bi�zr)                                      (2.7) 

xi = (xr �ai)+ai                                                            (2.8) 

yi = yr                                                                                    (2.9) 

 

with ai and bi are the x-ray tube coordinates.  

Referring to the fig.8, the location of the x-ray tube may be 

shown to be: 

bi = cos(i) (b0 -  p) + p                              (2.10) 

 

Having  cos(i) = (bi – p) /  (b0 – p) 

and  ai = ( (b0  - p)2 - (bi  - p)2)                     (2.11) 

III. TESTS AND RESULTS 

Our tests aim at computing and comparing on each 
projection the four indices mentioned in the first part, which 
are: H01: on horizontal line; 

 H02: on vertical line; 

 H1: on horizontal projection; 

 H2: on vertical projection; 

Our tests treat NaN values as missing data, and ignore 
them. 

A. Tomosynthesis 

Tests are realized on ROI extracted according to the first 
algorithm presented in the last part of the paper, which is based 
on the automatic extraction. 

The parameter , one of the important parameters present in 
our tests, presents the subsampling factor; In fact, when 
discretizing each projection, there is an estimation bias. To 
compensate this bias, each projection is subsampled with a sub-

sampling factor of 2The bigger this parameter is, the smaller 
the biais is and the bigger the variance is.  

In the sequel, we expose results obtained from varying this 
parameter n twice. 

a) ROI size= 512,  = 3 

 H01, H02 equality test 

The global regularity is being mesured at first. For 

this, we use the ANOVA test so that to check the 

correlation between H01 and H02, and we fix a 

hypothesis test to the following: 

Assuming that N is the global number of projections, 

the linear model is of the form: 

H01,i = 1+i with i = 1,…, N 

H02,i = 2+i 

The null-hypothesis being tested is H0: 1= 2 

against the alternative one H1: 1 ≠ 2 

The estimates of the minimal Hurst index we 

obtained using line-based estimators on the extracted 

regions of interest are with an average of  ≈ 0.11 and 

a standard deviation of 0.12. 

In fig.9, it’s shown that the line-based estimates of 

the minimal Hurst in both directions are almost equal 

on each image and have equivalent empirical 

distributions. 

 
Figure9. H01 (a) and H02 (b) distributions; (c) and (d) 

are the respective histograms 

 

This observation is reinforced by the ANOVA test, 

illustrated in fig.10, in which the p-value is equal to 

0.5767. 

Assuming that the significant risk level is about 0.05, 

this value (p-value) suggests that data are not 

inconsistent (at this level of risk) with the  null 

hypothesis which is the means equality. Thereby, we 

conclude that: 

H01= H02= H0 ≈ 0.11 ± 0.12. 

 

 
Figure10. Anova Test 

 

 H1 equality test 

 

The second test measures the regularity in the 

horizontal direction. 

The estimate of the horizontal Hurst index we 

obtained using projection based estimator on the 

extracted regions of interest is with an average of 

H1 ≈ 0.15 and a standard deviation of  0.19.   

Let H j1,i be H1 estimated on the jth projection of the 

ith acquisition, j0 = 5 the projection reference and 
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 j 1,i = H j1,i - H j01,i 

 j 1,i = +i 

By perfoming the t-test on our data, we aim at 

demonstrating one of these assumptions: 

The null-hypothesis H0:  = 0 against the alternative 

one H1:  ≠ 0. 

Results are reported in tables 1, 2 and 3. 

TABLE1. H J1,I   MEANS,  = 3 

 

TABLE2.  J 1,I  MEANS,  = 3 

 

TABLE3. HI   T-TEST,  = 3 

 
 

Fig.11 shows that in almost all the projections, for 

each one, the estimate of the horizontal Hurst index 

is equal to the one of the reference projection. 

At the 5% significance level, the t-test indicates a 

failure to reject the null hypothesis, which means that 

there is an isotropy in H1. This result seems 

logical since we are dealing with the same angle in 

the horizontal axis. 

 

 
Figure11. H1 Equality test, (a), (b), (c), (d),(e),(f), (g), (h) 

represent the H1 estimate correlations between the reference 
projection and respectively the first, second, third, fourth, fifth, 

sixth, seventh and eighth one 

 H2 equality test 

We focus now at measuring the regularity in the 

vertical direction. The estimate of the vertical Hurst 

index we obtained using projection-based estimator 

on the extracted regions of interest is with an average 

of H2 ≈ 0.12 and a standard deviation of 0.18. 

As for the horizontal estimation, let H j2,i be H2 

estimated on the jth projection of the ith acquisition, 

j0 = 5 the projection reference and:  

 j 2,i = H j2,i - H j02,i 

 j 2,i = +i 

 

As we proceeded in the H1 test, we perform a t-test 

on our data under the null-hypothesis H0:  = 0 

against the alternative one H1:  ≠ 0. 

 

Results showed that, at the 5% significance level, the 

t-test indicates a failure to reject the null hypothesis. 

In other words, anisotropy, at the level of 5%, could 

not be detected. 

 

 H1, H2 equality test 

 

In this part, our interest is to measure the regularity 

by testing the difference between indices in the 

horizontal and vertical direction. 

For this, we apply a t-test on our data under the null-

hypothesis  

H0: j = 0 against the alternative one H1:  j ≠ 0. 

 with   j  is defined as follows: 

Let H j1,i and  H j2,i be respectively H1 and H2 

estimated on the jth projection of the ith acquisition, 



 j,i = H j1,i - H j2,i 

 ji =  j+ji 

Results indicate that, at the 5% significance level, the 

t-test failed to reject the null hypothesis and 

therefore, to detect anisotropy. 

These results could be explained by the choice of 

some of our parameters( for example). 

In fact, the smaller this parameter is, the more biased 

the estimator is. 

In what follows, the  parameter value is increased 

so that to decrease the biais. 

 

b) ROI size= 512, n= 4 

 

The same procedure is repeated to study the 

regularity, by increasing our sub sampling 

parameter . Results are described as follows: The 

estimates of the minimal Hurst index we obtained 

using line-based estimators on the extracted regions 

of interest are with an average of  ≈ 0. 25 and a 

standard deviation of 0.03. 

The estimate of the horizontal Hurst index obtained 

using projection-based estimator on the extracted 

regions of interest is with an average of H1 ≈ 0.39 

and a standard deviation of 0.16. 

When it comes to regularity in the vertical direction, 

the estimate of the vertical Hurst index obtained 
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using projection-based estimator on the extracted 

regions of interest is with an average of H2 ≈ 0.39 

and a standard deviation of 0.15. 

The difference between H1 and H0 as well as the 

difference between H2 and H0 casts doubt on 

isotropy. 

The same t-test previously performed is applied to 

our data with the new parameter and results  

showed  that, at the 5% significance level, there is an 

isotropy in H1. 

As previously mentioned, this result seems logical 

since we are dealing with the same angle in the 

horizontal axis. 

When it comes to the vertical direction, at the 5% 

significance level, anisotropy is detected on some 

projections according to table4. 

TABLE4. H2   T-TEST,  = 4 

 
 

B. Mammography 

 

In this section, our objective is to study the x-ray dose effect 

through the comparison between mammograms and 

tomosynthesis projection for each index (we will 

take the fifth projection as the reference one). 

Mammograms used in this test are those whose view is 

MedioLateral Oblique: MLO. 

In the sequel, tests will be performed as follows: for both 

mammograms and the fifth projection of each patient, the four 

indices will be computed, and then we will compare each 

index computed on the two types of image,  in other words, to 

compare H 01,i computed on both mammograms and the fifth 

projection, we use the following test:  

H0,5 1,i be H01 estimated on the 5th projection of the ith 

acquisition, and H0,M1,i be H0 1 estimated on the 

mammogram of the ith acquisition, and  

 0 1,i = H0,5 1,i  - H0,M1,i  

 0 1,i = +i 

 

By perfoming the t-test on our data, we aim at demonstrating 

one of these two assumptions:  

 

The null-hypothesis H0:  = 0 against the alternative one H1: 

 ≠ 0. 

Results cast doubt on the null-hypothesis and allow us to 

conclude that, at 5% significance level, there is no equality 

between the fifth projection and the mammogram on H 01,i on 

the on horizontal line. 

This result is illustrated in fig.12 where the x axis represents 

the estimates of H01 on the 5th projections and the y axis is the 

estimates of H01 on the mammograms. 

 
Figure12. H01 Equality test between the reference projection and 

mammography 

The same t-test procedure is repeated to test equality between 

the fifth projection and the mammogram on   H 01,i on the 

vertical line, on H1 on the on horizontal projection and on H2 

on the vertical projection. 

Having a p-value under the 5% significance level, all the 

obtained results reject the null - hypothesis of equality 

between mammograms and the reference projections 

(at this level) on all the indices. Fig.13 illustrates this 

inequality. 

 
Figure13. H1 Equality test between the reference projection and 

mammography 
 

According to these results a conclusion could be drawn which 

consists of the fact that the reduction of the x-ray dose has an 

effect on the estimation of the different indices of H. 

IV. DISCUSSION AND CONCLUSION 

In this paper , we present two algorithms for the extraction of 

region of interest. We also describe statistical tests on the ROI 

databases gathered to see whether the model of Fractional 

Brownian Field helps apprehend the anisotropy of the breast. 

We end up with the following results: 

When it comes to 3D images, tests done on tomosynthesis 

reveal that, at a significance level of 5%, and with a sub-

sampling factor  of 3, our estimator is more likely to be 

biased and therefore unable to detect anisotrpy. 

When we increase this subsampling factor to 4, we note that 

the estimator improves and therefore is able to detect 

anisotropy.  

When comparing indices computed on both mammograms and 

the reference tomosynthesis projection which differ on the 

amount of the x-ray the patient receives, we note that indices 

computed on mammograms are not equals to those computed 
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on thomosynthesis projections, this suggests that the reduction 

of xray dose has an effect on the estimation of H and therefore 

on the analysis of anisotropy. 
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