
Inverting Subsumption for Constructive Reasoning

Simona Colucci, Francesco M. Donini

DISUCOM, Università della Tuscia, Viterbo, Italy

Abstract. We present a Logic Programming prototype implementation, working
as proof-of-concept for a unified strategy proposed in our past research to solve
several non-standard reasoning problems in Description Logics (DLs), denoted
by Constructive Reasoning. In order to prove both the problem-independence
and the logic-independence of the adopted approach, the prototype is focused
on the solution of three different problems — namely Least Common Subsumer,
Concept Abduction and Concept Difference — and two different, though simple
and endowed with structural subsumption, DLs, i.e., EL and ALN . Accordingly
to the implemented strategy, problems are formalized as conjunction of both sub-
sumption and non-subsumption statements, causing the whole prototype to rely
on a Prolog program solving subsumption. The program is built around a pred-
icate, which on the one hand checks for the existence of subsumption relations
between ground elements, providing boolean answers, and on the other hand, if
inverted, exploits Prolog built-in unification to enumerate variable values making
subsumption true between concept terms containing concept variables.

1 Introduction

The power of knowledge lays in its ability to enhance the production of unknown infor-
mation, through management strategies whose significance increases with the level of
novelty introduced by provided results.

In past knowledge management literature, in fact, interest has been given to the
proposal of special purpose inferences allowing for exploiting as much as possible the
informative content achieved through knowledge representation effort. To this aim, sev-
eral non-standard reasoning services have been proposed and continue to be investigated
to cope with different representation or inference needs. The most relevant services we
may cite are explanation [16], interpolation [18], concept abduction [12], concept con-
traction [11], concept unification [5], concept difference [19], concept similarity [8],
concept rewriting [3], least common subsumer [7], most specific concept [1], knowl-
edge base completion [6], forgetting or uniform interpolation [14].

We notice that the crucial role of non-standard reasoning in the process of capturing
unexpected sources of information has been stressed also in research fields apparently
far from knowledge representation [15].

Moreover, recent Description Logics (DLs) literature has shown interest for easily
tractable, even though not very expressive, sub-languages, like EL [17, 4, 13].

In our past research [10] we proposed an integrated approach and solving strategy
for dealing with several different non-standard inferences. The framework, presented
as independent of the DL adopted for knowledge representation, takes a constructive

reasoning perspective on problem solving: most inferences are in the form “Find one
or more concept(s) C such that {sentence involving C }“ and the proposed framework
aims at building such C.

In order to show the feasibility of such an integrated constructive reasoning ap-
proach, we here present a prototype implementation in Logic Programming solving
Least Common Subsumer, Concept Difference and Concept Abduction in the simple
DLs EL, ALN , both endowed with structural subsumption algorithms.

Though still inefficient at this stage, the prototype works as proof-of-concept for
the integrated solution framework. It exploits the property of our approach according to
which most non-standard reasoning problems may be formalized as conjunction of both
subsumption and non-subsumption statements and therefore relies on a Prolog program
solving subsumption, built around a main predicate called either subs el or subs aln,
depending on the adopted DL. In particular, we show how to invert the subs predicate
(either subs el or subs aln), so that not only it can check subsumption between ground
elements (providing boolean answers), but it can also exploit Prolog built-in unification
to enumerate variable values making subsumption true between concept terms contain-
ing concept variables. The approach takes a generate-and-test strategy.

In the next section, we shortly recall how to formalize the three problems in the
integrated framework. Then,we describe the architecture of the prototype implementing
the solving strategy in Section 3, before delving into details of subsumption program,
on which the whole prototype relies, in Section 4. We show how to query the presented
prototype in Section 5, and, finally, close the paper with discussions and future work.

2 Background Framework

The approach presented in our past research [10] models each of the problems at hand
as Optimal Solution Problem, whose definition exploits specific second order formulas,
written as conjunction of concept subsumptions and non-subsumptions, in the following
form:

Γ = (C1 v D1) ∧ · · · ∧ (C` v D`) ∧ (C`+1 6v D`+1) ∧ · · · ∧ (Cm 6v Dm) (1)

In Formula (1), C1, . . . , Cm,D1, . . . , Dm ∈ DL denote concept terms containing
concept variables X0, X1, . . . , Xn. We say that Γ is satisfiable in DL iff there exists
a substitution σ = X0− > E0, ...Xn− > En such that σ(Γ) is true (i.e., , each sub-
sumption and non-subsumption statement in (1) is true). If Γ is satisfiable in DL then
E is called a solution for Γ and the set of solutions for Γ is defined as:

SOL(Γ) = {E = 〈E0, . . . , En〉 | E is a solution for Γ}

Definition 1 (OSP). An Optimal Solution Problem (OSP) P is a pair 〈Γ,≺〉, where
Γ is a formula of the form (1) and ≺ is a preorder over SOL(Γ). A solution to P is a
concept tuple E such that both E ∈ SOL(Γ) and there is no E ′ ∈ SOL(Γ) with E ′ ≺ E .

2.1 Non-standard Services in DLs as OSPs

In the following, we recall how to model the three investigated problems as OSP. Aim-
ing at a fixpoint computation for solving each of the problems below, a greatest element
(i.e., a least preferred one) w.r.t.≺ is provided, which could be used to start the iteration
of an inflationary operator.

Least Common Subsumer

Definition 2. [9] Let C1 and C2 be two concepts. The Least Common Subsumer (LCS)
of C1, C2 is the least element w.r.t. v of the set of concepts which are Common Sub-
sumers of C1, C2 and is unique up to equivalence.

Common subsumers of C1, C2 satisfy the formula of the form (1):

ΓLCS = (C1 v X) ∧ (C2 v X)

Then, the LCS problem can be expressed by the OSP LCS = 〈ΓLCS ,@〉. We note that
> is always a solution of ΓLCS which is a greatest element w.r.t. @.

Concept Difference Following the algebraic approaches adopted in classical informa-
tion retrieval, Concept Difference [19] was introduced as a way to measure concept
similarity.

Definition 3. [19] Let C and D be two concepts such that C v D. The Concept Dif-
ference C −D is defined by maxv{B ∈ DL such that D uB ≡ C}.

We can define the following formula of the form (1):

ΓDIFF = (C v (D uX)) ∧ ((D uX) v C)

Such a definition causes Concept Difference to be modeled as the OSP DIFF =
〈ΓDIFF ,A〉. We recall that, is spite of its name, a Concept Difference problem may
have several solutions [19]. Note that a greatest solution for ΓDIFF w.r.t. A is C itself.

Concept Abduction Concept Abduction is a straight adaptation of Propositional Ab-
duction.

Definition 4. [12] Let C, D, be two concepts in DL, both C and D satisfiable. A
Concept Abduction Problem (CAP) is finding a conceptH ∈ DL such thatCuH 6v ⊥,
and C uH v D.

Every solution H of a CAP satisfies the formula

ΓABD = (C uX 6v ⊥) ∧ (C uX v D)

The preference relation for evaluating solutions is subsumption-maximality, since less
specific solutions should be preferred because they hypothesize the least. According to
the proposed framework, we can model Subsumption-maximal Concept Abduction as
ABD = 〈ΓABD,A〉. Note that a greatest—i.e., most specific—solution of ABD w.r.t.
A is D, if C uD is a satisfiable concept (if it is not, then ABD has no solution at all
[12, Prop.1]).

2.2 Optimality by Fixpoint

Optimal solutions w.r.t. a preorder might be reached by iterating an inflationary op-
erator. We now specialize the definition of inflationary operators and fixpoints to our
setting.

Definition 5 (Inflationary operators and fixpoints). Given an OSP P = 〈Γ,≺〉, we
say that the operator bP : SOL(Γ) → SOL(Γ) (for better) is inflationary if for every
E ∈ SOL(Γ), it holds that bP(E) ≺ E if E is not a least element of ≺, bP(E) = E
otherwise. In the latter case, we say that E is a fixpoint of bP.

Intuitively, bP(E) is a solution better than E w.r.t.≺, if such a solution exists, otherwise
a fixpoint has been reached, and such a fixpoint is a solution to P. Being bP inflationary,
a fixpoint is always reached—possibly in an infinite number of steps—by the following
induction: starting from a solution E , let

E0 = E
Ei+1 = bP(Ei) for i = 0, 1, 2, . . .

Then, there exists a limit ordinal λ such that Eλ is a fixpoint of bP. For each of the pre-
vious non-standard reasoning services, we highlighted a greatest solution E ∈ SOL(Γ)
which this iteration can start from. Obviously, when ≺ is well-founded (in particular,
when SOL(Γ) is finite) the fixpoint is reached in a finite number of steps, but the
general conditions for well-foundedness of ≺ are not known, and out of the scope of
this paper. However, also when after n iterations En is not a fixpoint, one can stop and
consider En as an approximation of an optimal solution, since Ei+1 ≺ Ei for every
i = 0, . . . , n. In this sense, our method can be used as an anytime approximation.

Note also that the Tarski-Knaster results about uniqueness of the least fixpoint for
a monotone operator are not applicable in this setting, first of all, because bP is not
monotone, and secondly because there can be more than one minimal fixpoint: in fact,
it is known that forALN , both Concept Difference and Concept Abduction admit more
than one solution.

We stress the fact that we are not proving here that every instance of Formula (1)
can be solved by this method. For instance, deciding whether a formula of the form (1)
is satisfiable is an open problem for ALN , to the best of our knowledge. In this paper
we address particular cases of (1), corresponding to known non-standard inferences, for
which a solution is always known to exist.

It is interesting to observe that such particular cases are similar to matching prob-
lems [2], in that variables appear only on one side of each subsumption and non-
subsumption statement.

3 Prototype Architecture

In the following, we present a prototype Logic Programming system implementing the
above mentioned approach to non-standard inference [10]. The system has been devel-
oped exploiting the integrated environment provided by SWI-Prolog1 (Multi-threaded,
32 bits, Version 5.6.64) and follows the modular architecture depicted in Figure 1.

1 http://www.swi-prolog.org/

Fig. 1. Prototype Architecture

The system design has been focused on proving main distinguishing features of
our approach: the generality and the independence of the adopted DL (within a given
subset) of non-standard inferences solving strategy. In particular, the prototype here
presented is devoted to the solution of three different reasoning services, namely Least
Common Subsumer, Concept Difference and Concept Abduction, in EL and ALN .2

Coherently with the strategy introduced so far, the prototype searches for solutions
for the system of the OSP modeling the non-standard inference need at hand. It is easy to
notice that, therefore, the whole approach relies on the logic rules formalizing structural
subsumption, which is at the basis of each formula to be solved.

The crucial role of subsumption affects the system architecture in Figure 1, whose
main components are described below:

– Subs is the central component, which implements a recursive algorithm solving
subsumption between concept descriptions; such a module is designed to provide
one interface for each DL adopted to model the problem: the current prototype
allows for solving subsumption in EL and ALN .

– Problems is the component implementing OSP solving algorithms: the current pro-
totype allows for solving Least Common Subsumer (lcs), Concept Difference (diff)
and Concept Abduction (abd), but Problems may be extended to include further
services. It is noteworthy how, depending on the DL adopted to model the problem,
a different subsumption interface, either subs EL or subs ALN, is invoked.

– Support Modules includes clauses supporting the performance of subsumption
and inferences included in Problems, but related to sorts of information process-
ing outside the core solving algorithms, such as ALN concept normalization in
Concept Centered Normal Form and special purpose lists manipulation.

2 See http://dl.dropbox.com/u/28260263/DL2012exe.rar for an executable version of the proto-
type.

4 Inverting Subsumption

In order to show the prototype implementing the solving strategy detailed so far, we
refer to Least Common Subsumer computation, solved by the Prolog code fragment in
the following, excerpted from Problems module.

1 :-use_module(’subs_el’).
2 :-use_module(’subs_aln’).
3 :-use_module(’support_modules’).
4 :-use_module(’normalization’).

5 problem(lcs,C,D,Result,DL):- lcs(C,D,Result,DL).
6 problem(abd,C,D,Result,DL):- abd(C,D,Result,DL).
7 problem(diff,C,D,Result,DL):- diff(C,D,Result,DL).

8 lcs(C1, C2, LN, DL) :-
9 manage_concept(C1, C1N, DL),
10 manage_concept(C2, C2N, DL),
11 find_lcs(C1N, C2N, [top], L, DL),
12 normalization_top(L, LN).

13 find_lcs(C1, C2, L1, L3, DL) :-
14 decorate(L1, L2),
15 better_lcs(C1, C2, L1,L2, DL), !,
16 find_lcs(C1, C2, L2, L3, DL).
17 find_lcs(C1, C2, L1, L1, _).

18 decorate(C,C0):- list(C,CL),select(some(R,D),CL,Rest),
19 decorate(D,DL),append(Rest,[some(R, DL)], C0).
20 decorate(C,C0):- list(C,CL), append(CL,[X0],C0).

21 better_lcs(C1, C2, L1, L2, el):-
22 subs_el(C1, L2),
23 subs_el(C2, L2),
24 not(subs_el(L1, L2)).

25 better_lcs(C1, C2, L1, L2, aln):-
26 computeMaxAtLeast(C1,Max3),
27 computeMaxAtLeast(C2,Max4),
28 MaxL is max(Max3,Max4),
29 computeMaxAtMost(C1,Max1),
30 computeMaxAtMost(C2,Max2),
31 MaxM is max(Max1,Max2),
32 subs_aln(C1, L2, MaxL, MaxM),
33 subs_aln(C2, L2, MaxL, MaxM),
34 not(subs_aln(L1, L2, MaxL, MaxM)).

We shortly recall that the shared strategy we proposed relies on the solution of an
Optimal Solution Problem in which we search for solutions which are optimal w.r.t. a
given preorder, by incrementally trying to find solutions which are better than the one
at hand, till a best one is reached.

In order to compute the Least Common Subsumer LN of two concepts, C1 and C2

in a DL (see line 8), we need to incrementally construct a concept which subsumes
both C1 and C2, and is optimal w.r.t. subsumption minimality (in fact, LN must be the
most specific common subsumer of C1 and C2). To this aim, we start considering the
trivial, subsumption maximal, solution, L1 = > (line 11) and recursively try to find
(lines 13–16) better common subsumers L2 (line 15), by solving the system reported
hereafter: {C1 v L2;C2 v L2;L1 6v L2} (lines 22–24 or 32–34, depending on the
adopted DL). When no common subsumer Ln such that Ln−1 6v Ln exists, Ln−1 is
returned as best (Least) Common Subsumer (line 17).

The incremental construction of candidate better common subsumers L2 exploits
a predicate, namely decorate, which makes the common subsumer at hand L1 more
specific by appending fresh variables to it at every nesting level(lines 18–20). We no-
tice that, even though different clauses are needed to check if L2 is better than L1 in
EL (lines 21–24) and ALN (lines 25–34), such a distinction is only due to efficiency
reasons: subs aln needs two parameters more than subs el and the adoption of a logic-
independent unique better lcs would force subs el to work less efficiently with such two
parameters, even though instantiated to anonymous variables. By the way, the reader can
notice that the solving strategy underlying better is shared by both characterizations.

We observe also that all predicates invoked but not listed in the previously reported
excerpt belong to one of the imported modules. In particular, subs el and sub aln mod-
ules provide the related logic-dependent subsumption programs, listed in Section 4.1.
The other imported modules, i.e., support modules and normalization, include clauses
crucial for the problem solution, but outside the core solving algorithms.

Among the others, we underline the role of the logic-dependent predicate man-
age concept (see lines 9–10), which manipulates input concepts to make them ready
for subsumption in the adopted DL: in the case of EL, simple list manipulation oper-
ations are performed, while in the case of ALN , such a predicate starts the process
of normalization of input concepts: concepts are reduced in CCNF and both possible
clashes and inherent subsumption relationships between number restrictions are identi-
fied.

4.1 Subsumption

Both in EL and in ALN , the subsumption algorithm takes as input concept descrip-
tions written as conjunctions, formalized as Prolog lists. We recall that in ALN such
Prolog lists result from a pre-processing step of problem inputs: before checking for
subsumption, concepts are manipulated to identify and manage possible clashes, num-
ber restrictions relationships and reduction in CCNF.

Given two concept descriptions C1 and C2 in a DL DL, in order to prove whether
C2 subsumes C1 (formally C1 v C2), the algorithm recursively searches, for each
member of the list related to C2, at least one subsumed member in the list represent-

ing C1. In other words, the whole subsumption check mechanism reverts to a one-one
comparison between list members (or, more appropriately, conjuncts).

With ground lists, the proposed subsumption predicate just returns boolean answers
showing check results. Nevertheless, we notice that conjuncts in input concept descrip-
tions may also include concept variables: when lists are not ground, subsumption is
inverted to exhibit possible variables substitutions making subsumption between list
members true. The mechanism exploits Prolog built-in unification.

As hinted before, the overall mechanism solving subsumption is shared by both
implementations and is built on one-to-one comparison of list members, either ground
or variables.

Clauses comparing single list members exploit syntactical features of the DL at
hand to either check subsumption between ground elements or unify variables to values
making subsumption true. In the following, the Prolog code for such clauses in both
implementations is provided.

Subsumption in EL

1 subsoneone(A, A, BL, BLF):-
2 literal(A),
3 not(member(A, BL)),
4 append([A], BL, BLF).
5 subsoneone(some(R,C1), some(R, C2N), BL, BLF):-
6 subs_el(C1, C2),
7 normalization_top(C2, C2N),
8 not(subs_el(BL,some(R,C2N))),
9 append([some(R,C2N)],BL,BLF) .
10 subsoneone(Any, top, [], [top]).

11 subsoneoneground(A, A):- literal(A).
12 subsoneoneground(some(R,C1), some(R, C2)):-
13 subs_el(C1, C2).
14 subsoneoneground(_, top).

Subsumption in ALN

1 subsoneone(bottom, _ , _, _).
2 subsoneone(_, top, _, _).
3 subsoneone(A, A, _, _):- literal(A).
4 subsoneone(atleast(N,R), atleast(M, R), _, _):-
5 integer(N),
6 integer(M),
7 >=(N, M).
8 subsoneone(atleast(N,R), atleast(M, R),_, _):-
9 var(M),
10 geqpositive(N,M).
11 subsoneone(atleast(N,R), atleast(M, R), MaxL, _):-

12 var(N),
13 integer(M),
14 integer(MaxL),
15 leqBounded(M,N,MaxL).
16 subsoneone(atmost(N,R), atmost(M, R),_, _):-
17 integer(N),
18 integer(M),
19 !,
20 =<(N,M).
21 subsoneone(atmost(N,R), atmost(M, R),_, MaxM):-
22 var(M),
23 integer(MaxM),
24 leqBounded(N, M, MaxM).
25 subsoneone(atmost(N,R), atmost(M, R),_, _):-
26 var(N),
27 geqpositive(M,N).
28 subsoneone(_, all(R, top), MaxL, MaxM):-
29 nonvar(R).
30 subsoneone(all(R,C1), all(R, C2), MaxL, MaxM):-
31 subsoneone(C1, C2, MaxL, MaxM).
32 subsoneone(atmost(0, R), all(R, C), _, _).

5 Querying the Prototype

In order to show our prototype working mode, we refer to the examples in the following,
related to the three computational problems and the two DLs investigated in the paper:

1. L = LCS(C1, C2), DL = EL
C1 = ∃R.(A uB) u ∃R.(C uD);
C2 = ∃R.(A u C) u ∃R.(B uD)

2. L = LCS(C1, C2), DL = ALN
C1 = (> 3G) u (6 7S) u ∀R.(6 2M);
C2 = (> 4G) u (6 3S) u ∀R.U

3. L = DIFF (C1, C2), DL = EL
C1 = A uB u ∃R.(C uD u ∃S.(H u J));
C2 = A uB u ∃R.(∃S.H)

4. L = DIFF (C1, C2), DL = ALN
C1 = A u ∀R.(B u (6 4S)) u (6 0T);
C2 = A u ∀R.(6 4S) u ∀T .(D u ∀U .E u (> 2V))

5. L = ABD(C1, C2), DL = EL
C1 = ∃R.(∃S.H);
C2 = A uB u ∃R.(C uD u ∃S.(H u J))

6. L = ABD(C1, C2), DL = ALN
C1 = (> 2R) u ∀R.¬A uB,uC;
C2 = B u (> 3R)

Table 1 shows the Prolog formalization and the results for the queries corresponding to
the problems above. We note that, when problems admit multiple solutions — as it is in

Table 1. Prolog Queries

Query Formalization Result

1 problem(lcs, [some(r,[a,b]), some(r,[c,d])],
[some(r,[a,c]), some(r,[b,d])], L, el)

L = [some(r,[a]), some(r,[b]),
some(r,[c]), some(r,[d])]

2
problem(lcs, [atleast(3,g), atmost(7,s),
all(r,atmost(2,m))], [atleast(4,g), atmost(3,s),
all(r,u)], L, aln)

L = [atleast(3, g), atmost(7, s)]

3 problem(diff, [a,b, some(r, [c,d, some(s,[h,j])])],
[a,b, some(r,[some(s, [h])])], L, el)

L = [some(r, [c, d, some(s, [h,
j])])]

4
problem(diff, [a, all(r, [b, atmost(4, s)]), atmost(0,
t)],[a, all(r, atmost(4, s)), all(t, [d,all(u, e),
atleast(2,v)])], L , aln)

L = [atmost(0, t), all(r, b)]

5 problem(abd, [some(r,[some(s, [h])])], [a,b, some(r,
[c,d, some(s,[h,j])])], L, el)

L = [a,b, some(r, [c, d, some(s,
[h, j])])]

6 problem(abd, [atleast(2,r),all(r,neg(a)), b, c],[b,
atleast(3, r)],L , aln)

L = [atleast(3, r)]

Concept Abduction and Concept Difference—the system stops searching for solutions
when the first one is retrieved. As pointed out since the introduction, our prototype is
still inefficient at this stage: all results in Table 1 need a few seconds to be returned, and
Query 4, which is the most complex one, asks for about 10 seconds.3

6 Discussion and Future Work

Motivated by the need to unify as much as possible the process of solving non-standard
reasoning problems, we proposed a general framework dealing with several inferences
according to a logic-independent strategy, to be further specialized to cope with the DL
adopted to model the problem at hand.

The paper presents a modular Logic Programming prototype system demonstrating
the feasibility of the proposed strategy for Least Common Subsumer, Concept Differ-
ence and Concept Abduction computation in EL and ALN .

The extension of the approach to different DL sublanguages, and the implementa-
tion, for each investigated DL, of further non-standard reasoning services in the proto-
type is part of our future work, together with the improvement of system efficiency.

Of course, the approach presented in this paper has some theoretical limitations.
Namely, the use of structural subsumption limits this approach to DLs for which struc-
tural subsumption is complete. For more expressive DLs, the fixpoint mechanism could

3 Using an Intel(R) Core(TM) i5 CPU 2.40 GHz with 4.00 GB RAM.

still be exploited, but using some higher-order tableaux methods that are still to be de-
fined and whose correctness and termination should be proved.

References

1. Baader, F.: Least common subsumers and most specific concepts in a description logic with
existential restrictions and terminological cycles. In: Proc. of IJCAI 2003. pp. 319–324
(2003)

2. Baader, F., Küsters, R., Borgida, A., McGuinness, D.L.: Matching in description logics. J. of
Log. and Comp. 9(3), 411–447 (1999)

3. Baader, F., Küsters, R., Molitor, R.: Rewriting concepts using terminologies. In: Proc. of
KR 2000. pp. 297–308 (2000)

4. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods in Com-
puter Science 6(3) (2010)

5. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of Symbolic
Computation 31, 277–305 (2001)

6. Baader, F., Sertkaya, B.: Usability issues in description logic knowledge base completion.
In: ICFCA-2009. pp. 1–21 (2009)

7. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer w.r.t. a back-
ground terminology. J. of Appl. Log. 5(3), 392–420 (2007)

8. Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description logics. In:
Proc. of DL 2005 (2005)

9. Cohen, W., Borgida, A., Hirsh, H.: Computing least common subsumers in description log-
ics. In: Rosenbloom, P., Szolovits, P. (eds.) Proc. of AAAI’92. pp. 754–761. AAAI Press,
Menlo Park, California (1992)

10. Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: A unified framework for
non-standard reasoning services in description logics. In: Proc. of ECAI 2010. pp. 479–484.
Lisbon, Portugal, August 16-20 (2010)

11. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-monotonic reason-
ing: A description logic approach. J. of Artificial Intell. Res. 29, 269–307 (2007)

12. Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M.: Abductive matchmaking using
description logics. In: Proc. of IJCAI 2003. pp. 337–342 (2003)

13. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontologies. In:
International Semantic Web Conference (1). pp. 305–320 (2011)

14. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in
large-scale description logic terminologies. In: Proc. of IJCAI 2009. pp. 830–
835. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2009),
http://dl.acm.org/citation.cfm?id=1661445.1661577

15. Lecue, F., Kotoulas, S., Aonghusa, P.M.: Capturing the pulse of cities: A robust stream
data reasoning approach. Position paper, IBM Research, Smarter Cities Technology Centre,
Dublin, Ireland (2011), wiki.planet-data.eu

16. McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. In: Proc. of
IJCAI’95. pp. 816–821 (1995)

17. Nikitina, N.: Uniform interpolation in general EL terminologies. Techreport, Institut AIFB,
KIT, Karlsruhe (Mai 2011)

18. Schlobach, S.: Explaining subsumption by optimal interpolation. In: Proc. of JELIA’2004.
pp. 413–425 (2004)

19. Teege, G.: Making the difference: A subtraction operation for description logics. In: Proc. of
KR’94. pp. 540–550 (1994)

