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Abstract Choreographies present how parties collaborate to achieve an agreed
business objective. When companies are bought, their processes have to be in-
sourced. Thereby, their part in a choreography has to be merged with the part of
their acquiring business partner. Merging patterns may be applied to merge reoc-
curring activity combinations, such as send/receive. It has to be proven that each
merge patterns keeps the relations of the original activities of the choreography.
As a first step, we show by an example how the relations between activities may be
expressed using the Allen calculus. We show for merging a synchronous message
exchange, which relations have to be considered for validating an implementation
of that merge.

1 Introduction

In today’s business scenarios enterprises often have to collaborate to achieve an agreed
business objective. This is especially true if sophisticated goods such as planes, cars,
engines, etc. have to be developed. The steps that have to be performed by each company
are usually defined by the respective business process model or orchestrations. To reach
the overall business objective, the collaboration behavior between these different process
models can be modeled by a choreography that describes the interaction behavior be-
tween the activities of the involved processes usually in form of message exchanges [13].
Choreographies may be modeled using interaction models or interconnection models [3].
In the following, we focus on interconnection models, where the publicly observable
behavior of each participant in a choreography is modeled as process and where the
communication activities are wired together.

As in-sourcing or back-sourcing becomes more and more common nowadays, the
process models of the outsourced partner have to be reintegrated into the choreography.
To accomplish that we introduced an approach to consolidate (merge) process models that
are part of a choreography [16]: Pairs of sending and receiving activities are transformed
to value-assignment activities. In ongoing work, we extend the approach to use merge
patterns describing merges of structures such as while loops or a one-to-many send.
Thereby, we want to show that the patterns keep the control flow dependencies between
the activities. In other words, the control-flow dependencies between the activities in the
merged choreography have to be the same as the dependencies between the activities
in the original choreography. We plan to show that by using the Allen Calculus that is
also referred to as interval algebra [1]. This paper presents a first informal mapping of a



subset of BPEL’s constructs to the Allen calculus. For one merge pattern, the properties
to be considered are described.

Consequently, the reminder of this paper is structured as follows: Section 2 provides
a brief overview about the choreography notation BPEL4Chor and the Allen calculus.
Section 3 provides an overview on the merge approach and a rendering of the choreogra-
phy using the Allen calculus. Section 4 presents the properties to be kept when applying
the merge pattern for asynchronous communication. After discussing related work in
Sect. 5, Sect. 6 concludes the work and provides an outlook.

2 Preliminaries

The consolidation approach that is described here is designed for BPEL process mod-
els [12] that are part of a BPEL4Chor [4] choreography as BPEL is still the de-facto
standard for describing and enacting processes. Even if BPEL is not formalized, we
use the understanding of one of its inventors to capture the relations between activities
formally. If we use a formal meta model, the mapping of BPEL to a meta model still is
subjective.

BPEL offers the invoke activity to send messages. In its synchronous form, it
also waits until a reply message is received. In the asynchronous form, it solely sends a
message. Messages may be received by receive activities. A reply to a synchronous call
is realized by a reply activity. The terms “synchronous” and “asynchronous” do not state
anything about the underlying messaging transport used. For instance, if Java Messaging
Service [15] is used, the transport is always asynchronous even if the operation invoked
at the partner is a request/response operation.

To model a choreography BPEL4Chor provides message links to interconnect the
activities of the involved process models. For asynchronous invoke/receive commu-
nication between two processes BPEL4Chor requires that one message link has to be
modeled between the two activities. In a synchronous communication scenario two mes-
sage links have to be modeled, one from invoke to receive activity and another one
from the reply to the invoke activity. BPEL offers a rich set of control-flow constructs.
It offers block-structured constructs (such as while for while loops) and graph-based
constructs (such as flow with links to model acyclic graphs) [6]. We use the graph-based
part using a flow activity. We assume that BPEL’s dead path elimination is activated
and the default join condition is used. This causes an activity to be executed if at least
one of its incoming links is “not dead”.

In this paper we present the idea to use the Allen’s interval algebra to verify the
correctness of a merge pattern. Currently, there is no merge pattern for BPEL’s scopes and
loops. Therefore, we omit loops, event handling, fault handling, termination handling,
and compensation handling in this paper.

To verify merge patterns, the control flow relations between the activities of the
BPEL4Chor choreography are captured using Allen’s interval algebra [1]. This algebra
defines 13 distinct basic relations that can be defined between two intervals a and b that
are depicted in Fig. 1. Using these basic relations, more complex relations between two
intervals can be defined, e. g., the relation a{<,d}b denotes that A exists either before or
during B. The composition operation R′⊗R′′ of two intervals R′ and R′′ is provided to



calculate the transitive relations between the intervals a and c, where aR′b and bR′′c. To
derive the composition of two relations, their basic relations are pairwise composed, i. e.,
R′⊗R′′ = {r′⊗ r′′|r′ ∈ R′,r′′ ∈ R′′}. The result of a composition of the basic relations is
defined by the composition table that is provided by Allen [1]. For the intervals a{<}b
and b{<}c the composition operation is R′⊗R′′ =<, i. e., a before c.

A before B: A<B
B f A B A

A meets B: AmB
B b A A iB

A overlaps B: AoB
B l d b A A iB

A starts B: AsB
B d b A A iB

A finishes B:AfB
A fi i h d b B AfiB

A during B: AdB
B i AdiB

A equals B:AeB
B after A: B>A B met‐by A: AmiB B overlapped‐by A: AoiB B started‐by A: AsiB A finished‐by B:AfiB B contains AdiB
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Figure 1. Allen’s Interval Relations

In the approach described in this work we use the Allen calculus to determine
the relations between activities instead of intervals. The advantage of using the Allen
calculus is that it is a full algebra providing a set of operations for determining transitive
relationships between activities. The graph-based part of BPEL defines predecessor
and successor relationships. The block-structure of BPEL defines relations between
composite activities (e. g., while) and their children. Allen’s calculus is capable to
capture both the graph-based and the block-structured part of BPEL. The during relation
can for instance be used if we want to model the relation between a BPEL loop or a BPEL
scope and its child activities. Using an equivalence notion of the linear time/branching
time spectrum [5] is no option. It is not possible to express a during relationship as the
notions treat state machines only. There are no nested states in state machines.

3 Choreography-based Process Consolidation

The approach of choreography-based process consolidation was introduced in [16].
Figure 2 presents an example choreography to illustrate the description using the Allen
calculus. Process A sends a message to process B or process C. Process B synchronously
calls a process D. A result message is sent from process B or process C to process
A. The choreography has been merged into a single business process: All pairs of
communication activities have been merged.

Message links in the choreography imply control flow relations between the in-
volved processes. For instance, message link m1 implies that activities C1 and C2 are
always performed after A1 was executed. The consolidation approach replaces these
implicit relations by an explicit control flow. Different interaction scenarios between the
collaborating processes define different control flow relations between their activities.
For instance, an asynchronous send/receive has different implications on the control
flow relations between the activities of the involved processes than a synchronous send.
Hence, different merge operations have to be applied. To goal is to merge process models
into a single process model in a way that the explicit and implicit control flow relations
specified by the choreography are kept. Consequently, the relations that exist between
all activity pairs of the choreography have to be same in the new process model. Table 1
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Figure 2. Example Choreography

depicts the pairwise relationships between the activities of the example choreography.
The send and receive activities are omitted in the table as they are removed during the
consolidation.

A1 A2 A3 B1 C1 C2 D1
A1 /0 < < < < < <
A2 > /0 < R R R R
A3 > > /0 > > > >
B1 > R < /0 R R <
C1 > R < R /0 < R
C2 > R < R > /0 R
D1 > R < > R R /0

Legend:

– Rows list the left part of relation relation
– Columns list the right part each relation
– <: set consisting of the single relation “before”
– >: set consisting of the single relation “after”
– /0: no relation
– R: all relations hold

Table 1. Relations between activities in the example choreography

The actual merge operation consists of several steps that are described informally in
following. To simplify the description, we describe the merge of all participant behavior
descriptions of a choreography into a single orchestration.

First, a new process model is created with a flow activity as top level element. All
participant behavior descriptions of the choreography are copied into this flow activity
to reflect the parallel execution of the orchestrations that exist in the choreography. Then,
on each single interaction between two or more participant behavior descriptions a merge
pattern is applied to replace the message links by control flow links. The type of pattern
that is applied depends on the interaction type.

To validate the merge patterns, it has to be shown that the relation set R of the new
orchestration models equals the relation set RC of the original choreography: All atomic
activities contained in the new orchestration and the original choreography have the



same relations. That means, the relations of all activities not removed or inserted remain
the same.

4 Properties of Synchronous Communication

In the following section, we treat the properties a merge pattern for merging synchronous
communication has to keep. In the context of BPEL, synchronous communication
denotes that the activity sending the request also receives the response message. The
synchronous communication pattern is implemented in BPEL4Chor by a synchronous
invoke activity that is related to a receive activity via a message link m. The receive
is directly or indirectly followed by a single logical reply activity that is also connected
to the invoke via a message link m′. “Single logical reply activity” describes that
there may be multiple reply activities belonging to the receive activity, but that
there may only be one of them executed after the invoke has been executed. In this
paper, we assume that there is exactly one reply activity given for a receive activity.
Furthermore, we assume that there is exactly one invoke activity for the receive

activity. BPEL4Chor allows multiple invoke activities for one receive as long as the
invoke activities are mutually exclusive.

An example of a synchronous interaction is given in Fig. 2 where SendB1 is con-
nected to ReceiveD via m3 and ReplyD is connected to SendB1 via m4. One important
characteristic of synchronous communication is that the sender blocks until it receives
the response. Technically spoken, this means that the invoke does not complete until it
receives a message from the reply. This behavior has implications on the control flow
relations between the activities that are depicted in Table 2.

For the proof, we require that there are no consecutive interactions between two
partners. If there are, we regard that part of the process as a sequence of the first
interaction, followed by an empty at each partner, followed by the second interaction.
An empty activity does nothing. In short, this rewrite is necessary as we regard the direct
predecessors of the communication activities and want to assume that they can happen
in any order.

•s s• •rc rc•rp rc•rp •rp rp•
•s /0 < R < < < <
s• > /0 > > R > R
•rc R < /0 < < < <

rc•rp > < > /0 R < <
rc•rp > R > R /0 R R
•rp > < > > R /0 <
rp• > R > > R > /0

Legend:

– •a – the set of all directly pre-
ceding activities of a

– a• – the set of all directly suc-
ceeding activities of a

– s – the invoke activity
– rc – the receive activity
– rp – the reply activity
– rc•rp – all direct successors of

rc being on a path to rp.
– rc•rp – all direct successors of

rc not being on a path to rp.

Table 2. Relations in a synchronous scenario



No statement about the relations between the direct predecessor and successor
activities of s and rp can be made if just the direct predecessors and successors of s,rc,
or rp are considered. However, it is clear that dependencies must exist between •s and
•rc, because they are transitively connected via prior control links or message links. The
predecessor and successor relation within one participant behavior description (e. g.,
rc•rp {<}s•) are trivial as they are only defined by the control links.

Concerning the relations of the successor activities of rc two kinds of successor
activities have to be distinguished, namely rc•rp and rc•rp. The successor activity rc•rp is
no direct or indirect predecessor of rp. Hence, it has no explicit relation to the successor
of the send activity, i. e., rc•rp {R}s•. For the successor activity rc•rp that resides on the
path to the reply activity rp exists a direct relation rc•rp {<}s•. This relation is implicitly
defined by the message link. As s• can be only performed after s completed and s can
only complete after it got a response from rp which in turn is not completed before rc•rp.
For instance, in the scenario presented in Fig. 2 D1 has to be performed before SendB2
and after SendB1. This is only the case if we make the assumption that the reply activity
rp completes immediately after it sent the response to the send activity s, thus rp{<}s.
In an asynchronous communication, however, the relation rc•rp {R}s• would exist. This
is because of the operational semantics of BPEL: s sends a message to rc and completes
even if rc or •rc are not activated yet.

Concerning the reply activity rp, we make the assumption that it completes imme-
diately after it sent the response to the send activity s, thus rp{<}s.

Merged Fragment ABFragment BFragment A

•send

send

•receive

receive
m

•send •receive

synch

send• receive•rp

•reply

receive•

•reply

receive•rp receive•rp
and andMerge

reply

reply• send• reply•

synch'… …

Figure 3. Merge of Synchronous Interactions

Fig. 3 depicts the merge of two process fragments that are communicating syn-
chronously. The new orchestration at the right side of Fig. 3 keeps all control flow
relations of the choreography that are sketched in Table 2. The sending activity s and the
receiving activity rc are combined to a synchronization activity synch. This synchroniza-



tion activity is used to assign the values that were transported by the message m in the
choreography. Likewise, synch′ is inserted to assign the values that were transported in
the message m′ from the reply activity rp to s.

5 Related Work

In contrast to techniques that merge processes that are semantically equivalent we aim
to merge collaborating processes. An approach for process merging is the work by
Mendling and Simon [11] where semantically equivalent events and functions of Event
Driven Process Chains [14] are merged. An approach to merge processes that origin
from the same process using change logs is described by Küster [7].

Instead of directly generating a BPEL orchestration out of a BPEL4Chor choreogra-
phy, an intermediate format may be used. There is currently no approach keeping the
structure of the generated orchestration close to the structure of the original choreography.
For instance, Lohmann and Kleine [9] do not generate BPEL scopes out of Petri nets,
even if the formal model of Lohmann [8] generates a Petri net representation of BPEL
scopes.

An overview of existing BPEL formalizations and verification approaches is provided
by Breugel [2]. There is no verification approach using Allen’s calculus. Lohmann et
al. [10] showed how BPEL4Chor can be verified using a Petri Net representation. It is not
yet shown how that mapping may be used to show equivalence between a choreography
and the merged orchestration. In our work, we want to keep the ordering of the internal
activities, which is more than behavioral equivalence.

Weidlich et al. [17] use behavioral profiles to capture the relations between activities
in process models for compliance checking. In contrast to our approach the work does not
consider the relations between activities in choreographies. Moreover, only predecessor
and successor relations can be captured there. Hence, it is not possible to capture the
relations between parent and child activities (block-structure) which can be accomplished
with the Allen calculus.

6 Conclusion and Outlook

This paper presented how relations between activities may be expressed using Allen’s
calculus. The derivation from choreographies and orchestration has been outlined by
using an example. We used the relations to show that a merge of a choreography model
into an orchestration model does not change the relations of the non-merged activities.

The capturing of interval relations has been done manually. This procedure will be
kept when verifying other merge patterns. This especially includes merging BPEL’s
scope and loop activities. To verify such patterns, we surely will have to use the during
relation of Allen’s calculus. In our future work we will investigate if we need all relations
of Allen’s calculus or if the subset consisting of before, after, and during is sufficient.
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