
Towards Process Evaluation in Non-automated Process
Execution Environments?

Nico Herzberg, Matthias Kunze, Andreas Rogge-Solti

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Strasse 2-3, 14482 Potsdam, Germany

{nico.herzberg, matthias.kunze, andreas.rogge-solti}@hpi.uni-potsdam.de

Abstract. Process models gained more and more significance to carry out an
organization’s operations. Besides documentation purposes, organizations strive
to evaluate their executed processes in terms of performance and conformance.
However, this is far from trivial: As most processes are still carried out manually,
only few effects can be tracked and are typically not related to process instances.
In this paper, we propose an architecture that defines event monitoring points:
Elementary state transitions of a process instance that are bound to a configuration
to discover events from a process agnostic technical environment. We discuss
applications of this architecture, towards monitoring, performance measurement,
and execution conformance.

1 Introduction

Central to managing an organization in a process-oriented fashion are process models,
as they explicitly capture the operations carried out and are used, among others, for
documentation, certification, and enactment. There is a large body of work that ad-
dresses automatic orchestration of business processes through process-aware information
systems (PAIS), while the majority of processes are still carried out manually.

In the latter case, it is difficult to track the execution of a process for different
reasons: (a) Tasks cannot be tracked, if they have no observable side effect in IT systems,
e.g., examining a patient on a ward round, and thus would need to be recorded by
hand, which is time consuming and prone to errors. (b) In the absence of a PAIS, there
is no central system to collect information about process advancements and thus, (c)
valuable information about progress is contained in various systems, such as ERP or
CRM systems, but cannot easily be related to a process model. As a result, process
execution information is scattered among the IT landscape and only few events of a
process can be captured at all. Reconstruction of these events requires explicitly defined
methods to access systems, combine relevant information, and correlate it with a process
instance. Approaches towards monitoring, performance measurement, and conformance
verification assume the presence of a complete event log, which is not the case according
to the above discussion. Hence, they cannot be properly applied.

? This work is supported and funded by the German Federal Ministry of Education and Research
(01IS10039B)



In an ongoing research project, PIGE1—Process Intelligence in Health Care—we
encountered above obstacles in the University Hospital of Jena, where the performance
of clinical pathways, i.e., disease treatment processes, shall be measured and evaluated
against key performance indicators.

In this paper, we present a basic architecture that explicitly addresses these issues,
and propose a solution, where so-called event monitoring points are defined at particular
points of a process. An event monitoring point is bound to a certain state transition in the
process and contains information, how this event can be discovered in a heterogeneous
IT landscape. We further discuss, how this can be used to monitor process instances,
apply key performance indicators for performance measurement and examine running
processes for their conformance to given models.

2 Architecture

As our approach towards process evaluation is tightly coupled with process models and
state transitions, we first introduce these concepts and then illustrate how this manifests
in a system overview.

2.1 Fundamentals

Our definition of a process model subsumes a connected graph consisting of nodes N and
edges F. This covers commonly used process modeling languages, such as BPMN [8]
and EPC [4].

Definition 1 (Process Model). A process model is a tuple P = (N, F), where N is the
set of control flow nodes and F ⊆ N × N is the flow relation that captures ordering
constraints of the process execution.

Note, that other modeling notations, such as value chains, where N represents coarse
grained units of work and F represents the execution order of these work units is also
covered by this generic definition. In BPMN, N is partitioned into activities, gateways,
and events, whereas F represents sequence flow among these nodes, for an example refer
to Fig. 1. For each of these node types, we envision a state-based life cycle model, where
we reserve the flexibility, to assign a unique life cycle model to any node. Life cycles of
process nodes have been exhaustively discussed in literature [11,9]. Thus, we employ a
generic life cycle model.

Definition 2 (Life Cycle Model). A life cycle model L = (Σ, S ,T ) consists of an event
alphabet Σ, states S and state transitions T . L is the universe of life cycle models.

Let P = (N, F) be a process model. There exists a function lc : N → L that assigns
a life cycle model to every node n ∈ N of P.

State transitions are the most elementary facts that can be leveraged to monitor progress
during process enactment. The set of all state transitions of a process model is com-
prised by

⋃
n∈N
{(n, t)|t ∈ Tlc(n)}, each of which could be potentially captured. However, as

1 http://pige-projekt.de

http://pige-projekt.de


explained in Section 1, only a subset of those can or shall actually be monitored. We
refer to these state transitions of interest as event monitoring points.

Definition 3 (Event Class, Event Monitoring Point). C is a set of event classes indi-
cating the nature of an event. Let P = (N, F) be a process model. An event monitoring
point is a tuple M = (n, t, c), where n ∈ N is a node, t ∈ Tlc(n) is a state transition within
the life cycle of node n, and c ∈ C is the event class to be monitored.

Event monitoring points of a process model are selected state transitions, for which
information can be retrieved from the process environment and they can be bound to an
implementation. Event classes are used to specify the measurement an event monitoring
point shall provide, e.g., time, counters, or cost.

Definition 4 (Binding, Implementation). LetM be the set of defined event monitoring
points of a process model P. A binding is a function bind : M → I assigning an
implementation to an event monitoring point, where I is the universe of implementations,
i.e., rules and methods to capture an event in the process execution environment.

This definition allows to implement event monitoring points in several ways, e.g., as a
database query, as a service request, a calculation method, as a stream processing filter, or
reading a log entry. An important aspect of the binding is correlation, i.e., identification
of process instances and events that refer to this process instance. As we assume no
central process orchestration control, an implementation needs to account for correlation
by combining data retrieved from accessed systems.

2.2 System Overview

Our example illustrates a sample business process that describes the admission and
examination of a patient, who needs a liver transplant. If the patient is eligible for
transplantation, she is enlisted to a European-wide register, Eurotransplant.

Handle 
patient for 
admission

Examine 
patient and 
assess risk

Explain 
transplantation 
procedure to 

patient

List patient 
at Euro-

transplant

Release 
patient

Liver transplantation not possible

Process 
Model

Life Cycle 
Model

Event 
Monitoring 

Points

IT Systems

Binding

M1 M3M2

e b t e b t e b te b t e b tex ex

Fig. 1. Infrastructure: Example Process with life cycles 〈enable, begin, terminate〉 for
activities and 〈execute〉 for gateways, selected event monitoring points, and bindings to
process environment.



As explained in Section 1, we assume a process model that is the basis for process
execution, which takes place in a certain environment. Part of this environment are
IT systems that do not necessarily log events of process enactment, but capture the
effects of activities nonetheless. These data are produced as a side effect while using IT
systems to record information and are very valuable to describe the progress of a process
execution. In the example, the information about the patient admission is stored in a
hospital information system, the information about the confirmation of Eurotransplant
listing is stored in a spread sheet file, and the patient release information is stored in a
separate database.

Based on the available information, state-transitions of interest are chosen and
defined as event monitoring points with the corresponding event class. In the example in
Fig. 1, we keep matters simple and consider only event monitoring points of class time.
Nevertheless, it is possible to have more than one event monitoring point defined for a
certain state-transition, when it is necessary to monitor multiple event classes. In the
example, we identified three event monitoring points:

– M1 is the state-transition begin of activity Handle patient for admission
– M2 is the state transition terminate of activity List patient at Eurotransplant
– M3 is the state-transition terminate of activity Release patient

The other activities do not have observable side effects in IT systems, and hence cannot
be tracked.

Once the event monitoring points are defined, they can be bound to an implementa-
tion. In the example shown in Fig. 1 the implementation of

– M1 is the call of a web service provided by the hospital information system,
– M2 is the content of a certain cell in a spread sheet file, and
– M3 is an SQL query to retrieve data from a relational database.

In the given context, correlation of events to process instances is possible through a
unique treatment case id that is stored consistently across all IT systems and can be
matched to a patient.

This implementation will be used during the enactment of any instance of the
process to access the IT systems and discover the occurrence of events defined in event
monitoring points. Once events are extracted and correlated with process instances, they
can be used to visualize the data in a monitoring user interface or to set the stage for
measurements and KPIs. The causal dependencies between event monitoring points are
defined by the process model and the life cycle model of its nodes. This can be leveraged
for conformance checking and notification, if a deviation from the process model is
detected.

During runtime, the monitoring system based on the discussed architecture is query-
ing the process execution data, resp. event data, online from the IT systems. The method
of querying the data is encapsulated in the implementations that are bound to the event
monitoring points. There is no notification from the IT systems shown in Fig. 1. Thus,
the architecture is following a pull approach, not a push mechanism. Pulling is neces-
sary because in this real-world scenario the IT landscape is not enabled for pushing
messages/events most times to interested listeners. In addition the running systems
should not be extended by introducing a process monitoring system. Nevertheless, if
the IT landscape supports pushing events to the monitoring platform, that would be the



preferable way to reduce bandwidth usage in the network. This implementation detail is
not affected by the proposed architecture.

While the proposed architecture and its application are rather generic, we resorted to
a simple process consisting of activities and alternative (XOR) gateways, each having
brief life cycle models, in the example in Fig. 1. In practice, the architecture could be
easily extended to data objects, control and data flow relations, for instance, if a transition
from one activity to another would explicitly be manifested in a state change of a central
data artifact. Also, every single node could have its own unique life cycle model.

2.3 Case Study

In the hospital setting that we encounter in our research project PIGE, we face the issue
that the records about events during a treatment are distributed over several IT systems.
Depending on the available systems, some of the steps during treatment are logged in a
spread sheet file, some in a SAP Healthcare system and others in separate databases. The
University Hospital of Jena elicited detailed process models for the clinical pathways
of the liver transplant surgery and the colorectal carcinoma, along with milestones
that resemble event monitoring points. The goal of the project is to provide process
intelligence and enrich the process models with runtime information about the treatment
cases. Process intelligence is enabled by answering analytical questions such as:

– How long does it take from the initial contact with the patient until evaluation for
the liver transplant is finished?

– How many emergency patients were treated?
– Which treatment methods were applied?

First, we wanted to enable monitoring [5] of a process. One major application of
monitoring is the definition of target performance values, which are key performance
indicators (KPIs) if they are relevant for success, in the model. This allows the detection
of deviations from planned time and cost limits in a process. The monitoring system
can raise alerts and reminders to inform the responsible process owners and the process
participants about delays or exceeding costs. In addition, there is a huge gain of trans-
parency, as it becomes visible at which stage a current process instance is in a process
model. Note that, while process models can be quite detailed, in the given setting only
few event monitoring points can be defined. Thus, there exist unmonitored blank spots in
the process model, where KPIs cannot be attached to. Second, the prediction of time and
cost of an instance becomes much more accurate, when real-time execution information
of a process is available and bound to a model. It can be used for improving efficiency
by planning resources more accurately. Third, conformance checking helps to detect
deviations, e.g., missing necessary steps, or the absence of recording them in specified IT
systems. Reacting to deviations is very important, as reminders for drug administration
and other treatment steps are beneficial to increase quality of care.

In the PIGE research project, we want to assess existing process evaluation methods
and tailor them for this specific setting, where execution information for only few
activities in the process model is available.



3 Related Work

One problem that has to be addressed when different event sources for a process exist
is correlation of events to one process instance. Motahari-Nezhad et al. [7] provide
algorithms to determine correlation sets on different attributes of events for distributed
environments. They use methods of atomic, conjunctive, and disjunctive correlation
conditions and heuristics to find correlating groups. The aspects of correlation are also
relevant for this paper, while the focus is on how to map correlated information from
different sources to a process model in a flexible architecture.

Process mining [10] is a discipline that can be used on top of correlated information
merged in an event log to extract all kinds of process information, e.g., process models
generated from real-life event data, execution times and conformance checks to existing
models. The main difference to the architecture presented in this paper is that we utilize
a top-down approach of connecting (detailed) process models to process information,
while process mining is a bottom-up approach based on logs.

Closely related to process monitoring is the topic of process performance measure-
ment, or business process intelligence, that addresses “managing process execution
quality by providing several features, such as analysis, prediction, monitoring, control,
and optimization” [3]. There is a considerable body of work that addresses means to
capture and store process execution data and offer it for evaluation purposes [3,6,1]. Del-
Río-Ortega et al. [2] present a comprehensive ontology to define process performance
indicators that measure execution time, occurrence, and costs of processes. However,
the majority of such approaches rely on a complete log, i.e., a protocol of every state
transition of a process instance. In contrast, the architecture we presented lays the ground
work for these approaches in the absence of a complete log.

4 Discussion and Future Work

This paper shows a general and flexible architecture to monitoring and performance
evaluation for non-automated process execution environments. In practice, manually
executed processes are common, because automation is not always profitable or feasible
depending on the process and domain. However, some process information is often
available in IT systems and can be exploited for process monitoring. With the described
architecture it is possible to define event monitoring points in a process model and bind
them to respective implementations. During runtime, these implementations are used to
pull events from the IT systems updating the process model for monitoring purposes.

This setting raises additional questions for future work that includes dealing with
observed deviations from the modeled process, e.g., missing events, duplicate events, or
violation of ordering constraints imposed by the process model.

A complex model of many activities that only has few event monitoring points may
not be well suited to display the state of a process instance, as it lacks information for
most of the activities. A better representation would merge fragments of a process model,
based on the available monitoring data. The result would be an abstraction, where a node
represents a precisely measurable entity of work. On the other hand, it may be useful to
abstract the process into a very coarse grained representation, e.g., to communicate it to



external stakeholders, which in turn requires aggregating and adjusting event monitoring
points.

In a separate stream of work, we aim at implementation strategies for this approach.
Currently, the binding of an event monitoring point is laborious work on the edge between
business requirements, e.g., KPI definitions, and technical capabilities. Therefore, we
envision decoupling the work of process experts and implementers by means of a service-
based bindings. An additional layer decouples the IT systems from event monitoring
points and can provide a flexible event distribution model, e.g. publish-subscribe, or
caching. These services can be used by the by process modelers to configure event
monitoring points. An adequate language for event monitoring point configuration is
required to ease the currently laborious implementation process.

References

1. B. Azvine, Z. Cui, DD Nauck, and B. Majeed. Real time business intelligence for the adaptive
enterprise. In IEEE-CEC, 2006., pages 29–29. IEEE, 2006.

2. A. Del-Río-Ortega, M. Resinas, and A. Ruiz-Cortés. Defining process performance indicators:
an ontological approach. OTM 2010, pages 555–572, 2010.

3. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business process
intelligence. Computers in Industry, 53(3):321–343, April 2004.

4. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Prozessmodellierung auf der Grundlage
"ereignisgesteuerter Prozessketten (epk)". Veröffentlichungen des Instituts für Wirtschaftsin-
formatik, 89, 1992.

5. D.W. McCoy. Business activity monitoring: Calm before the storm. Gartner Research, ID:
LE-15-9727, 2002.

6. F. Melchert, R. Winter, M. Klesse, and N.C.Jr. Romano. Aligning process automation and
business intelligence to support corporate performance management. In AMCIS’2004, pages
4053–4063, New York, 2004. Association for Information Systems.

7. H.R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. Event correlation for
process discovery from web service interaction logs. VLDB Journal, 20(3):417–444, 2011.

8. OMG. Business Process Model and Notation (BPMN) 2.0 Specification, January 2011.
http://www.omg.org/spec/BPMN/2.0/PDF.

9. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow resource
patterns: Identification, representation and tool support. In Advanced Information Systems
Engineering, pages 216–232. Springer, 2005.

10. W.M.P. Van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer-Verlag New York Inc, 2011.

11. M. Weske. Business process management: concepts, languages, architectures. Springer-
Verlag New York Inc, 2007.

http://www.omg.org/spec/BPMN/2.0/PDF

	Towards process evaluation in non-automated process execution environments
	Nico Herzberg, Matthias Kunze, Andreas Rogge-Solti

