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Abstract. A service is controllable, if there exists a service with which
it can interact properly. We sketch an approach to decide controllability
for a certain class of services. Controllability is decided by synthesizing
a service that controls the given service. For a class of services which
abstracts from data, the synthesis problem is already solved. In this
paper, we present an approach for a class of services that deals with data
explicitly.

1 Introduction

A service is designed with the goal that it can interact with another service. A
service may interact properly with one service but not interact properly with an
other service. For example, two services may end up blocking each other, making
any further interaction impossible. The possibility of the occurrence of an error
depends on both interacting services and in general can not be attributed to one
service alone. However, at the time of design of a service, the other services the
service will be interacting with typically are not known in advance. Nevertheless,
we can check a fundamental property called controllability [7] when considering
one service in isolation. A service is called controllable, if there is a least one
other service it can interact with properly. Controllability can be decided by
synthesizing a service that interacts with the given service properly.

The synthesis problem is solved for the finite automaton based service model
used in [3,7]. This service model abstracts from data, i. e. messages are not
distinguished by their content. For a more realistic model which takes data into
account, the synthesis problem is still open. The goal of our work is to solve the
synthesis problem for a service model that includes data.

In Sect. 2, we introduce the concept of a partner of a service. Section 3
presents an approach to synthesize a partner for a High-Level Petri net based
service model. Section 4 concludes our work.

2 Partners

We represent a service by an open net [3] (Fig. 1). An open net is a Petri net with
distinguished interface places that represent channels for asynchronous message
exchange. We use High-Level Petri nets [2] so that data can be represented by
coloured tokens.
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Fig. 1: Some open nets

The following example illustrates the interaction of a medic with a medical
supply center from which the medic orders medical equipment. Both the medic
and the supply center are services represented by the open nets in Fig. 1a and
Fig. 1b. The composition (medic⊕supply center) of the open nets medic and supply
center is the Petri net we obtain by fusing the interface places o and d. The medic
orders medical equipment by firing the transition order. Thereby the token • is
removed from place start. The variable e is assigned the equipment the medic
orders, e. g., a syringe. Therefore, a token with value syringe is produced on place
wait. The term pn(e) evaluates to the product number of the syringe. A token
with that value is produced on the output place o. This corresponds to sending a
message to supply center.

The medic waits for an incoming delivery on place d. supply center receives
the order message from o by firing receive order and n is assigned the product
number of syringe. The transition deliver equipment takes the product number
from place order and produces the equipment corresponding to that number (in
this case syringe) on interface place d. Since the tokens on wait and d are equal,
the guard e = e′ of transition use equipment is fulfilled. Therefore use equipment
can fire and (medic⊕supply center) reaches its final marking, i. e. the marking in
which both places final and final’ are marked with the token •.

Two open nets N1 and N2 are called partners, if from each reachable marking
of N1⊕N2 a final marking of N1⊕N2 is reachable. The medic and supply center are
partners. The medic and supply center 2 are not partners: When deliver equipment
fires, any arbitrary equipment may be assigned to e which in general does not
correspond to the product number assigned to n. Therefore, there is a marking
reachable in (medic⊕supply center) with a token with value syringe on wait and
a token with another value (e. g. stethoscope) on d. This marking is a deadlock,
because e = e′ is not satisfied and use equipment can not fire. On acyclic open
nets, the reachability of a final marking is equivalent to deadlock freedom.



An open net N1 is called controllable, if it has a least one partner. medic is
controllable. In this example, we assumed that function pn has an inverse pn−1.
However, if we replace pn by a function pn′ which is not bijective, medic becomes
uncontrollable. In that case, a supply center can not infer the equipment the
medic is waiting for from the product number. Therefore, it is not possible to
guarantee that e = e′ is always satisfied and the final marking will be reached.

In the next section, we sketch an approach to synthesize a partner for a
specific class of open nets.

3 Partner Synthesis

In this section, we sketch a partner synthesis algorithm for a given open net
N . We consider a class of Petri nets where the domain of the variables and the
colours of the tokens is infinitely large. The guards are denoted in a subset of
first order logic that contains boolean algebra and quantifiers. For computational
reasons, we assume that this subset is decidable (like e. g. Presbuger arithmetic
[5]). We also assume that N is acyclic and the number of tokens on each place
is at most one. Therefore, the length of each path in the state space of N is
bounded by some number k.

Due to infinitely many colours, the state space of N is infinitely large. There-
fore the synthesis algorithm for finite state services given in [7] can not be applied
to our service model. Nevertheless, conceptually, our synthesis algorithm follows
a similar approach. Therefore, we briefly outline the approach used for finite
state services: First, an over-approximation of the partner of N that will be
synthesized, i. e., a service that is guaranteed to contain a partner as a sub-
graph, is generated. Then certain states are removed from the over-approximation
iteratively. The iteration is repeated as long as the composition of the given
service and the over-approximation contains a deadlock. Eventually, two cases
may occur: 1. The composition is deadlock-free. Then the remaining sub-graph
of the over-approximation is a partner. 2. Every state has been removed. Then
N is not controllable.

Now we give an overview of our synthesis algorithm. The details will be
explained later by example. First, we construct an over-approximation S0 of the
partners of N . S0 is a prefix of depth k of an infinite tree-like open net U we call
universal environment. Then we iteratively add guards to S0. Adding a guard
corresponds to removing states from the over-approximation in the finite case.
The iteration is repeated until no deadlock is reachable in the composition of N
and S0. Each time a guard is added, some of the deadlocks of the composition
become unreachable. Each iteration step may also introduce new deadlocks which
will then be eliminated in the next iteration step. If (and only if) N is controllable,
the composition will eventually be deadlock free and the modified S0 is a partner.

Now we show the derivation of a partner of medic from Fig. 1a. We assume
that the colours of medic are integers and pn is the bijective function with
pn(x) = x + 1. Therefore, medic can be expressed with Presburger arithmetic.
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Fig. 2: Universal environment and its prefix. Interface places o and d are depicted
multiple times to improve readability.

Fig. 2a shows the universal environment of medic. U is an infinite open net
that has the inverse interface of N . U has a regular tree-like structure and can
send and receive any (possibly infinite) sequence of messages. Therefore, U is
an over-approximation of every partner of N . U stores every message sent or
received from N . Each of the variables x0, x1, . . . corresponds to the value of a
message. These variables will be used in the guards which we will add later on.
Since U is infinitely large, it is not suited for computational methods. Due to the
acyclicity of N , the number of messages N can send and receive is bounded by a
number k. Therefore, the prefix of U of depth k is still an over-approximation of
the partners of N .

In the example, k is 2. In this particular case, we can even remove the branches
of U which send or receive two messages on the same interface place without
destroying the over-approximation property. This is possible because medic sends
or receives at most one message on each interface place. Thus, we get the prefix
S0 of U in Fig. 2b.

Now we iteratively derive a guard for each transition of S0. The transitions
are processed in bottom-up order. Thereby, we obtain a sequence S0, S1, S2, . . .
of open nets with successively smaller reachability graphs.

Intuitively, a guard forbids a transition s of S0 to fire in a certain firing mode
if there is the possibility to reach a deadlock after s has fired in that mode. That
way, deadlocks are successively removed from the composition.

Since a transition has infinitely many firing modes, we need a syntactical
representation of all firing modes that may not lead to a deadlock. We derive the
guard predicate that is assigned to each transition using a technique outlined in
[6]. The technique is based on the symbolic reachability graph (SRG) of a High-
Level Petri net. The symbolic reachability graph is a compact representation of
the reachability graph that allows to represent a possibly infinite set of markings
by a symbolic marking. Fig. 3 shows the SRG of the composition medic⊕ S0. In
a symbolic marking M , every value is represented by a term. Attached to M is a



M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

M8 = [start.•, q3.v1, d.v1]

s2〈x0 = v1〉

M5 = [wait.v0, q3.v1, o.pn(v0), d.v1]

s2〈x0 = v1〉
order〈e = v0〉

M6 = [wait.v0, q4.(v1, pn(v0)), d.v1]

s3〈x0 = v1, x1 = pn(v0)〉

M7 = [final.•, q4.(v1, pn(v0)), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

Fig. 3: Symbolic reachability graph of medic⊕ S0

condition COND(M) which restricts the set of valid assignments to the variables
that occur in M . A marking m is reachable if and only if there is a symbolic
marking M that evaluates to m for an assignment that satisfies COND(M).
Technically, during the construction of the SRG, COND(M) is formed by the
conjunction of the effects of every guard on a path to M . Each edge of the SRG
is inscribed by a transition t and a symbolic firing mode. A symbolic firing mode
of t assigns a term to each variable of t.

In our example, the integer that is chosen non-deterministically by order for
e is represented by the variable v0 in marking M1. Analogously, the integer sent
by s1 on d is represented by v1. The effect of the guard e = e′ of use equipment
is represented by the condition v0 = v1 of the markings M4 and M7. Every other
symbolic marking has the condition true.

The method we use to derive the guard of a transition s of S0 is inspired
by Dijkstra’s predicate transformer semantics [1]. The guard predicate can be
regarded as the weakest pre-condition so that after firing of the transition s a
specific post-condition holds. Here, the post-condition describes the assignments
for which no subsequent symbolic marking evaluates to a deadlock. For each
symbolic marking M we define a predicate DF(M) that describes for which
assignments of the variables v0, v1, . . . of the SRG M does not evaluate to a
deadlock. DF(M) is formed by the disjunction of the conditions of the successors
of M . The SRG and the DF predicates are recalculated in each iteration step.
We denote the iteration step by a subscript.

M4 and M7 are final markings. Therefore, DF0(M4) ≡ DF0(M7) ≡ true.
Since M3 has a successor marking only for those assignments of v0 and v1 with
v0 = v1, we get DF0(M3) ≡ v0 = v1. Analogously, DF0(M6) ≡ v0 = v1. For
every other symbolic marking M we get DF0(M) ≡ true.

From every predicate DF(M), we derive a predicate DF ′(M) which expresses
the condition that M does not evaluate to a deadlock in terms of the variables
used by the transition s of S0 that precedes M in the SRG (s is unique because S0
is a tree). By assigning DF(M) as a guard to s, every evaluation of M which is a
deadlock becomes unreachable. The relationship between the variables x0, x1, . . .



of S0 and the variables v0, v1, . . . of the SRG is established by the the symbolic
firing mode of s.

In the example, M3 is reachable via exactly one path of the SRG. The last
transition of S0 on this path is s1 with the symbolic firing mode 〈x0 = pn(v0), x1 =
v1〉. As stated above, DF0(M3) ≡ v0 = v1. With x0 = pn(v0), x1 = v1 and the
assumption that pn is injective follows that v0 = v1 is equivalent to pn−1(x0) = x1.
Formally, we express this transformation by universal quantification of v0, v1:

DF ′0(M3) ≡ ∀v0, v1 : x0 = pn(v0) ∧ x1 = v1 =⇒ v0 = v1

≡ x1 = pn−1(x0)

In words: DF ′0(M3) describes all assignments of x0, x1 for which the post-condition
v0 = v1 is guaranteed to hold after the firing of s1 in mode 〈x0 = pn(v0), x1 = v1〉,
regardless of which integers might have been non-deterministically chosen for
v0, v1.

The general form of a DF ′ predicate (for the special case that there is only
one path in the SRG to M) is

∀v0, . . . , vj : COND(M) ∧ x0 = T0 ∧ . . . xn = Tn =⇒ DF(M)

where 〈x0 = T0, . . . , xn = Tn〉 is the symbolic firing mode of the last transition s
of S0 on the path to M .

For M4, we obtain DF ′(M4) ≡ true. We add the conjunction DF ′(M3) ∧
DF ′(M4) as a guard to the transition s1 that precedes both M3 and M4 in the
SRG. After adding this guard x1 = pn−1(x0) to s1, every deadlock in which q2
is marked becomes unreachable.

We repeat this procedure for s3. M6 is reachable via two paths of the SRG
(which differ only insignificantly). The last transition of S0 on both paths is s3
with firing mode 〈x0 = v1, x1 = pn(v0)〉. Analogously, we get

DF ′0(M6) ≡ ∀v0, v1 : x0 = v1 ∧ x1 = pn(v0) =⇒ v0 = v1

≡ x1 = pn(x0)

In a more general case, we may get a different predicate for each path on which
a marking M is reachable. Then DF ′(M) is the conjunction of these predicates.
With DF ′0(M7) ≡ true we get the conjunction DF ′0(M6) ∧ DF ′0(M7) ≡ x1 =
pn(x0). After assigning x1 = pn(x0) to s3 as a guard, no deadlock is reachable in
which q4 is marked.

Let S1 be the open net derived from S0 by adding the two guards to s1 and
s3. These guards introduce new deadlocks in which q2 and q4 are not marked, e. g.
[wait.0, q3.3, o.1, d.3] is a deadlock in medic⊕S1 but not a deadlock of medic⊕S0.
These new deadlocks will become unreachable in the next iteration step. In the
SRG of medic ⊕ S1 (Fig. 4), M3 has the condition v0 = v1 and M6 has the
condition pn(v0) = pn(v1) due to the guards that were added. Therefore we
obtain the predicates

DF ′1(M2) ≡ ∀v0 : x0 = pn(v0) =⇒ ∃v1 : v0 = v1 ≡ true
DF ′1(M5) ≡ ∀v0, v1 : x0 = v1 =⇒ pn(v0) = pn(v1) ≡ false



M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1, v1 = v0]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

M8 = [start.•, q3.v1, d.v1]

s2〈x0 = v1〉

M5 = [wait.v0, q3.v1, o.pn(v0), d.v1]

s2〈x0 = v1〉
order〈e = v0〉

M6 = [wait.v0, q4.(v1, pn(v0)), d.v1, pn(v0) = pn(v1)]

s3〈x0 = v1, x1 = pn(v0)〉

M7 = [final.•, q4.(v1, pn(v0)), v0 = v1 ∧ pn(v0) = pn(v1)]

use eq.〈e = v0, e
′ = v1〉

Fig. 4: Symbolic reachability graph of medic⊕ S1.

Variable v1 is existentially quantified, because v1 is not yet defined in M2 but
will be created and chosen appropriately by s1 in the step from M2 to M3. Please
note that existential quantifiers may only appear as a part of a DF ′ predicate.
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M0 = [start.•, q0.•]

M1 = [wait.v0, q0.•, o.pn(v0)]

order〈e = v0〉

M2 = [wait.v0, q1.pn(v0)]

s0〈x0 = pn(v0)〉

M3 = [wait.v0, q2.(pn(v0), v1), d.v1, v1 = v0]

s1〈x0 = pn(v0), x1 = v1〉

M4 = [final.•, q2.(pn(v0), v1), v0 = v1]

use eq.〈e = v0, e
′ = v1〉

(b) SRG of medic ⊕ S2

Fig. 5: Last iteration step of the partner synthesis

Eventually, by assigning the predicate DF ′1(M2) ≡ true to s0 and DF ′1(M5) ≡
false to s2, we obtain the open net S2 shown in Fig. 5a. By repeating our
calculation on the SRG of medic ⊕ S2 (Fig.5b), we obtain DF2(M0) ≡ true.
This indicates that no reachable marking in which q0 is marked is a deadlock.
Therefore, every deadlock has been eliminated from medic⊕S2 and S2 is a partner
of medic by definition. Please note that S2 is very similar to N2 from Fig. 1b.
In general, the last open net Si of the sequence is a partner of N iff for every
symbolic marking M in which the root place q0 is marked the predicate DF i(M)
is fulfilled for every assignment that fulfils CONDi(M).



4 Conclusion

We sketched an algorithm to synthesize a partner of a service represented by a
High-Level Petri net. Currently, our approach is limited to acyclic services. We
show a systematic approach to derive the relations between the values of incoming
and outgoing messages that a service has to adhere to in order to be a partner
of the given service. Since relations are denoted in first-order logic which is
undecidable in the general case, we rely on an oracle to decide controllability. For
a decidable theory like presburger arithmetic [5], controllability can be effectively
computed. The technical details of the approach are not yet fully worked out.

Lohmann et al. [4] sketch a different approach to synthesize a partner for
a High-Level Petri net based service. They use a symbolic representation for
markings similar to ours. Their work focuses on the construction of the structure
of the partner and only briefly discusses the derivation of the predicates. They
give an ad-hoc explanation of the construction of the predicates for a particular
example but do not describe a general derivation method. In particular, values
that are non-deterministically chosen by the service are not treated.

In contrast to their approach, our approach does not consider structural
aspects of the partner synthesis at all. All information concerning the behaviour
of the partner is encoded by the guards. The structure of the partner is cho-
sen in a generic way. However, our approach can handle values that are non-
deterministically chosen by the service.

In our future work we aim at extending our approach to cyclic services. In this
scenario it may be advantageous to chose a specific structure for the synthesized
partner. E. g. case distinctions for specific values should result in a distinct node
for each case. With a structure reflecting the behaviour of the service, it will be
easier to identify isomorphic branches of the structure and nodes that can be
combined without changing the behaviour. In order to ensure termination of the
synthesis algorithm in the cyclic case, it is necessary to guarantee that there will
be only finitely many nodes after the nodes have been combined.
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