
HarmonICS - a Tool for Composing Medical Services ?

Dariusz Doliwa1, Wojciech Horzelski1, Mariusz Jarocki1, Artur Niewiadomski2,
Wojciech Penczek2,3, Agata Półrola1, and Jarosław Skaruz2

1 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
{doliwa,horzel,jarocki,polrola}@math.uni.lodz.pl

2 Siedlce University of Natural Sciences and Humanities, ICS,
3-go Maja 54, 08-110 Siedlce, Poland

{artur,jskaruz}@ii.uph.edu.pl
3 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland

penczek@ipipan.waw.pl

Abstract. The paper presents the tool HarmonICS designed for automated com-
position of medical services and implementing our approach to description and
composition of web services. HarmonICS enables arranging sequences of services
to satisfy a user’s request specified by a query. The query language is rich enough
to express requirements on the timing and the ordering of services used.

1 Introduction and Related Work

We present a new tool for automated composition of web services (WS) related to the
medical domain. The tool implements our original approach [7] to WS composition,
based on introducing a uniform semantic description of services, an object model for
the problem, and applying a multi-phase composition supported by model checking
methods. The planning process aims at satisfying a user’s goal, specified in a declar-
ative language, which enables not only to express features of the objects, but also re-
quirements on the timing and ordering of services occurring in the plan.

The WS composition problem is a very important subject of research for which
many various solutions exist. The simplest ones are based on explicit state space search
algorithms [16], while more advanced ones employ a graph-based planning [5], logic
programming [14], an AI planning [13, 11], model checking methods [10, 12], and ge-
netic algorithms [3]. Vitvar et al. [17] proposed a solution based on WSMO/WSML
[15] formalisms. While the fundamental ideas of their concepts seem similar to ours, it
is important to mention that our approach is simpler and thus much easier to implement.

Our considerations follow that of Ambroszkiewicz [1], which provides a specifi-
cation of an automatic composition system based on a multi-phase composition and
uniform semantic descriptions of services. However, several extensions like enriched
descriptions of services or a hierarchic organisation of services and objects they operate
on, have been additionally designed. Doing all that, we keep the semantic base as sim-
ple as possible, which aims at enabling a translation of the WS composition problem to
a problem solvable by means of eficient methods and tools from other domains.

? Partly supported by National Science Centre under the grant No. 2011/01/B/ST6/01477.



The first “general” implementation of our approach (system PlanICS) was described
by Doliwa et al. [8]. The tool HarmonICS to be presented here is, on one hand, an exten-
sion of PlanICS due to incorporating new theoretical solutions, while on the other hand
it is its specialization to a particular domain. In addition to the SAT-based planning
method inherited from PlanICS, HarmonICS offers also a new specialized SMT-based so-
lution. The SMT-based concrete planner has been developed in response to insufficient
performance of the previous solution in some particular cases. The bottleneck was a
translation of TADDPA1 to SAT in the presence of a large number of conditions im-
posed on the variables, especially these "expensive" ones, e.g., using modulo operator.

In addition to introducing the SMT-based planner, our contribution consists in de-
veloping several extensions of the underlying formalisms, which are discussed in the
next section together with the theoretical background of our approach. The rest of the
paper is organizes as follows. Sec. 3 introduces the main features of our solution, and
gives an overview of the system implementation. Finally, a summary and a comparison
between HarmonICS and PlanICS are provided in Sec. 4.

2 Theory behind HarmonICS

Our approach to automated composition of WSs is based on introducing a unified se-
mantics for functionalities offered by services. A service is understood as a function
which transforms a set of data into another set of data. The sets of data, i.e., inputs
and outputs of services, are described in terms taken from a “dictionary” of types, in-
troduced by an appropriate ontology. Each ontology follows the standard object model
with classes, objects as their instantiations, and attributes as their components. More
precisely, both the services and the items they operate on are organised into a multiple
inheritance hierarchy of types, the top of which is composed of the following classes:
Thing of no attributes and its descendants: Object, Service, and Trace.

Below we explain the meaning of the branches rooted at the three descendant classes
of Thing mentioned above. An example fragment of the ontology tree is presented in
Fig. 1, where the solid arrows stand for the inheritance relation. We embed our expla-
nation in the context of medical services considered in the paper. Therefore, we use the
names from Fig. 1 as examples, but, in fact, all the nodes below Object, Service, and
Trace are domain-dependent, and even for a “fixed” domain they can vary depending
on the modelling assumed.

The branch of classes rooted at Object introduces “types of beings”, Patient, Di-
agnosis, Therapy, that are necessary to specify what the services operate on, together
with the “features” of these beings expressed by their attributes. For example the class
Patient has the attributes First_name, Last_name, Address, Date_of_Birth, Diagnosis
etc. having a clear intuitive meaning.

The branch of classes rooted at Service introduces types of services - Visit, Treat-
ment, Registration. The attributes of the class Service, inherited by all its descendants,
are as follows : in, out, inout, preCondition, and postCondition. The first three of them
are aimed at listing objects (classified by names and types, similarly to subprogam pa-
rameters) which, respectively, are required to execute the service (in), are produced by

1 Timed Automata with Discrete Data and Parametric Assignments



Fig. 1. A fragment of the ontology used by HarmonICS

the service (out), and are taken as an input and returned modified (inout). The aim of
preCondition and postCondition is to specify respectively the conditions which should
be satisfied by the “input” objects to have the service started and the conditions the “out-
put” object satisfy after the service has been executed. For example we can express that
the services of the type Visit modify an instance of Patient by placing p:Patient in the
inout list, and require a visit to result in a diagnosis by placing isSet(p.Diagnosis) in the
postCondition. The values of the attributes common for all the services of a given type
are specified in a special instance of the corresponding class, called an abstract service.
The concrete services of a given type (instances of the class representing this type) can
introduce their own extensions to the attributes above. For example, the concrete service
GeriatricianSmith of type GeriatricianVisit can require his patients to be older than 85
by extending the common preCondition by p.Date_of_Birth < "1927-12-31"). A more
detailed description of the above elements of ontologies can be found in [7].

A new concept introduced to HarmonICS is shown as the third branch (from the left)
of the inheritance tree in Fig. 1, i.e., the class Trace and its descendants. The instances
of the above classes, called Traces, are “virtual products” (not corresponding to real-
world beings). The out list of each service contains exactly one element corresponding
to a trace, e.g. t:Trace. The main motivation behind Traces is a need for dealing with
imperative queries, when the user precisely points out to the types of services to be exe-
cuted, just like in most of the considered medical scenarios. Moreover, Traces enable to
associate the services types (and also their concrete instances) with attributes like price,
duration, location or quality, without affecting the existing structure of the language.

The attributes of the class Trace are the following: level, block, serviceType, and
serviceName. The first two of them aim at storing an information about a position
of the service in the scenario generated, while the next two are used to identify the
service executed. For example, if the service GeriatricianSmith is the first of the sce-
nario, then the attributes of the trace t produced by this service are t.level=0, t.block=0,
t.serviceType="GeriatricianVisit", and t.ServiceName="GeriatricianSmith".

Traces enable to express certain requirements on sequences of services, both on
the level of service descriptions and while specifying users goals. For example, Sur-
geonVisit can require seeing a general practicioner earlier by including x:Trace in its in
and x.ServiceType="GPVisit" in its preCondition. The descendants of Trace can intro-



duce additional information. For example, a class TimedTrace with the attributes start
and stop brings in time of the service execution. PriceTrace with the attribute price
provides information about the service price, while LocationTrace with the attribute
location introduces the information about the place where the service operates.

The user specifies its goal in the form of a user query, which defines what he “pos-
seses” (the initial world) and what he “wants to posses” (the effect world), together
with these of their features that are of his interest, using names of the classes from
the branch rooted at Object and names of their attributes to this aim. For example,
the user John Gold can specify that possessing “nothing”, he wants to possess the ob-
ject p:Patient with p.First_name="John" and p.Last_name="Gold", which means that
he wants to become a patient. The goals can be also specified in terms of traces (i.e.,
names of the classes from the branch rooted at Trace). This enables to express that the
user wants the scenario generated to contain a service ofcertain type (e.g., by specifying
that the effect world should contain t1:Trace such that t1.ServiceType="SurgeonVisit")
or a service of a concrete provider (e.g., by extending the above requirement by adding
t1.ServiceName="SurgeonSmith"). Traces enable also to require a given ordering of ser-
vices in a plan (by the use of the level attributes), or a given ordering of groups of servces
(by the use of the attribute block) - for example, one can require the effect world to con-
tain t1,t2:Trace such that t1.ServiceType="GPVisit", t2.ServiceType="SurgeonVisit" and
t2.level<t1.level, i.e., to see a GP after seeing a surgeon. Using other types of traces en-
ables to influence the cost of services proposed, their time, location etc.

Our project follows the idea of separating two phases of the planning process. The
first phase of searching for a sequence of services whose execution satisfies the user’s
goal is called the abstract planning. It involves searching for sequences of types of ser-
vices, which can transform the set of objects of the initial world into the set of objects
of the effect world. The user’s query is redefined to discard all the expressions involving
concrete values of the attributes. For example, p.Last_name="Gold" is replaced by the
requirement that the corresponding attribute is assigned a value - isSet(p.Last_name).
The abstract planning process is based on the bounded backward search algorithm,
which starts from the final world and matches abstract services (special instances of
service classes described before), which are capable to produce a desired set of objects
(with the appropriate attributes set), building this way a graph whose nodes are sets
of objects, and the edges are labelled with service types. This “preliminary” phase en-
ables to limit the number of concrete (real-world) services considered while creating
the final scenario as only these of appropriate types will be taken into account. Obvi-
ously, in the case of queries involving traces the role of the abstract planning phase is
limited. The user can specify fragments of the abstract plan “by hand”, using the appro-
priate attributes of traces. The next phase of the planning process, called the concrete
planning, aims at finding a sequence of instances of service types (concrete services)
corresponding to an abstract plan obtained from the previous phase. Contrary to the ab-
stract planning, this phase takes into account all the requirements specified in the query,
i.e., also these involving concrete values of attributes. The planning process exploits an
SMT-based model checking procedure, which is discussed in the next section.



3 Main Features and Implementation of HarmonICS

HarmonICS is a scheduling system that has been implemented for the Rehabilitation
and Cosmetology Centre (CRiK) in Poland. The centre offers various types of medical
services for its direct clients as well as for other medical facilities. The definitions of
needs and possibilities of satisfying them are specified by a relatively complicated se-
mantics. Additionally, availability of certain resources in many cases can be determined
only dynamically, by querying external independent data sources. Before implement-
ing HarmonICS, due to the lack of IT solutions, the querying process was performed
in an “unformalised” way, i.e., by phone or by e-mails. The knowledge obtained this
way could not be processed automatically. The most important conclusions from the
analysis of the functioning of CRiK, and from the users’ expectations are as follows:

– The main goal of the system is to make the scheduling of treatments easier and
more convenient, and also to automate some internal procedures,

– The most common case is to schedule a series of treatments w.r.t. patient prefer-
ences and resources restrictions,

– The single steps of the whole process can be realized by various service providers
cooperating with CRiK,

– Some aspects of the abstract and concrete planning processes should be signifi-
cantly adapted to meet the specific CRiK requirements.

The implementation of HarmonICS, presented in the next part of this section, was de-
signed to satisfy the above requirements.

The overall view of the HarmonICS components is presented in Fig. 2. The ontology
designed for CRiK was discussed in Sec. 2. The main software components of the sys-
tem are as follows: the Repository, the Graphical User Interface (GUI), and the Planner.
The aim of the Repository is to store information about the available services and their
types (according to the ontology). Currently, it is implemented on the top of jUDDI -
a popular UDDI implementation. GUI is a GWT web application that enables the user

Fig. 2. The HarmonICS overview



Fig. 3. On the left: the query editor, on the right: a fragment of a concrete plan

interaction with the system components. The Planner is a set of tools (represented by
rectangles in the figure) for processing user queries (Query parser), creating plans (Ab-
stract and Concrete planners), and interacting with the repository and with the web
services (Querying and Execution modules). The rectangles with the right-bottom cor-
ner wrapped depicted in the figure correspond to the internal system objects. They are
labels of the solid arrows which stand for a flow of objects. The dashed lines represent
making use of some resource by a software component.

Let us now follow an example scenario, while giving more details concerning the
implementation of individual components. First, using the Query editor (see Fig. 2 and
Fig. 3), the user introduces a request, e.g., I want to take a partial massage, once a week,
for 10 weeks, and then a series of 5 diadynamics, every 2 days. The user drags arbitrary
services from the ontology tree at the right hand side and drops them to blocks of a plan
at the left. The blocks are intended to enforce the order of an execution of the services.
Each block of services is scheduled for execution when all of the services from the pre-
vious block have been completed. Putting some services in the same block means that
they can be executed in an arbitrary order. Each of the services choosen can be parame-
terized by assigning a set of constraints, e.g., repeat conditions or specific requirements
on the service date, time or location. The user should also specify an acceptable timing
interval, providing the earliest start date and the latest end date of the whole sequence
of services. The editor enables to hide the query language from the user offering a
friendly and intuitive interface instead. The query of a formal syntax is produced in
an automated way. For example, considering time interval from January, the 1st to the
end of March of the current year, the formal query is as follows: FROM null WHERE
null TO repeat(t0:TreatmentTrace, 10, every 1 weeks), repeat(t1:TreatmentTrace, 5, ev-
ery 2 days) WHERE _globalStart=“2012-01-01 00:00” and _globalStop=“2012-03-31
23:59” and t0.serviceType = “PartialMassage” and t0.block = 0 and t1.serviceType =
“Diadynamics” and t1.block = 1. As it is easy to see, the requirements on the service
types and their ordering are expressed in terms of traces.

It should be mentioned also that the repeat statement is one of the novelties (com-
paring with [7, 8]) introduced to respond to the specificity of the domain, where the
common case is to repeat some kind of treatment a number of times. Optionally, the
repeat period can be given, just like in the example above. This construct makes editing
of the query easier, as the user does not need to choose a service several times if he
wants to repeat it. The user query is then processed by the Query parser, transformed to



the internal representation, and made available to the Abstract planner and the Concrete
planner (see Fig. 2).

The Abstract planner uses the knowledge from the OWL ontology and the query
(rebuilt by discarding the concrete values as described before) for generating abstract
plans, which are visualized and presented as sequences of service types. The user is
asked to choose one of them to be concretized. Due to the fact that specificity of the
area implies the queries to have a more imperative nature than in a typical case (the
users typically enumerate directly the services they want to use) the role of the abstract
planning is not so fundamental. However, using the knowledge from the ontology can
introduce to the plan services not required directly by the user. In our example, the
abstract planner returns the sequence of service types: Registration, 10 occurences of
PartialMassage, and 5 occurences of Diadynamics. The Registration service, although
not required directly by the user, is necessary in the plan as it “produces” a Patient,
required by all the treatment services but not existing in the initial world.

Next, basing on the abstract plan and the user query, the Repo & WS querying mod-
ule (RQM for short) examines the repository for the registered web services realising
the types of services from the abstract plan. In our example the repository will be asked:
“Give addresses of all the services of the type PartialMassage, and of the type Diady-
namics”. After getting an answer the RQM queries for offers the web services obtained
(where by an offer we mean a service’s declaration to execute under certain conditions).
In our example the services will be asked: “Give the dates and time, between 2012-01-
01 00:00 and 2012-03-31 23:59, when the treatment procedure can be performed” (the
query contains no other constraints than these on the time period to be considered).

The next step is to run the Concrete planner. Its input are as follows: the (original)
query, the abstract plan choosen to be concretised, and the offers collected for this plan
(a single offer corresponds to a possible realisation of a single step of the plan, i.e.,
executing one service of a given type). It is possible to run this planning using one of
the two methods. The first one, inherited from PlanICS [8], is based on a satisfiability
checking (SAT). The new one is realized by a translation to an instance of the SMT
[2] problem. An SMT-solver checks satisfiability of the formula which is the conjunc-
tion of the disjunctions representing particular offers, and an expression encoding the
conditions specified in the query (e.g., repeat period constraints) and resulting from the
abstract plan (e.g., the order of services). If this SMT instance is satisfiable, then a se-
quence of concrete services, whose execution satisfies the user’s goal is decoded from
the valuation returned by the solver. Going into more details, the attributes of the objects
and the traces are encoded as SMT variables, and their values are mapped into natural
numbers. For example, date-time values from our query are encoded as follows: the be-
ginning of the considered period of time, the _globalStart value, is mapped to 0. All the
date-time values are then related to the _globalStart value, according to a certain time
scale. Currently the time scale is 5 minutes, which means that the value 10 represents
the point in time 50 minutes after _globalStart. The SMT instance is encoded (using
our original library) in SMT-LIB2 [4] format, which enables to use any compatibile
SMT-solver. In the current version we make use of the Z3 [6] solver.

In the case of typical queries, involving from a few to several dozens of services,
and from several hundreds to about 20000 offers, the total time of computations can



Offers Time [s] Mem [MB] Offers Time [s] Mem [MB]
plain interval plain interval plain interval plain interval

5866 3.06 4.67 115.07 117.19 8281 2.38 5.18 90.13 91.31
10848 9.17 11.08 323.39 324.59 12697 5.09 8.92 187.42 188.48
13241 15.27 17.92 475.80 477.68 16561 8.33 19.60 289.37 291.95
17721 27.41 33.44 834.35 835.54 21253 12.54 19.21 448.32 449.90

Table 1. Time and memory consumption of the concrete planner. On the left - the plan of depth
16 for the scenario: registration, 10 massages, and then 5 diadynamics, on the right - the plan of
depth 24 for the scenario: registration and 23 bioptrons. The columns headed interval contain the
results with additional constraints on the repeat frequency.

vary from a few seconds to about 30 seconds. The concrete planning phase seems to be
the most time- and memory-consuming element. Table 1 displays some statistics of our
SMT-based solution. The columns headed interval of the left table contain the results
for the query being the working example of this section.

The concrete plan computed is visualized (see Fig. 3) and presented to the user. If
the user accepts it, the Execution module invokes the services. Again, the specificity
of the domain makes things simpler: an execution of a service consists in scheduling
an appointment only, so no execution engine is necessary. Obviously, always something
unexpected can happen. At the moment we follow the simple transactional policy: when
any step of the plan could not be successfully executed, we cancel all of the already
scheduled appointments, and the user can repeat either the WS querying and concrete
planning phases, or the whole planning procedure.

4 Final Remarks

HarmonICS is a specialized implementation of the concept which can be applied to var-
ious domains, enabling to build an integration system for distributed services of a com-
mon characteristic (e.g., transport, accomodation, reservation in time). More generally,
a similar system can be implemented in every domain in which we have to plan an
access to some resources with an independent management and optimize the plan by
customized quality measures.

Comparing HarmonICS to its ancestor PlanICS [8], we can point out to an easier and
more natural handling of relations between services thanks to the concept of Traces. An-
other advantage appears in translating semantics from different IOPR [9] services on-
tology - it is simpler and more natural. On the other hand, a modular architecture of the
system allows to take advantage of a new and more efficient planning solution based on
SMT-solvers. The efficiency follows not only from applying the SMT-based technique,
but also from the extended role of the querying module - the concrete planner deals now
only with these of the parameters whose exact values cannot be determined by query-
ing concrete services. Moreover, the planning mechanism related to the time have been
improved. A further contribution of HarmonICS is in an extended language of queries,
enabling to express more requirements ocurring is practice. Its new elements are not
only these which follow directly from introducing traces (like specifying requirements
on ordering of services or their groups, or time or price of particular services), but also
expressions enabling to require repetitions of services (the repeat statement) and sum-
mary constraints on the whole plan (e.g., _globalStart, _globalStop).



References

1. S. Ambroszkiewicz. EnTish: An Approach to Service Description and Composition. ISBN
83-910948-7-1, ICS PAS, Ordona 21, 01-237 Warsaw, 2003.

2. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software using
SMT solvers instead of SAT solvers. Int. Journal on Software Tools for Technology Transfer,
11(1):69–83, 2009.

3. S. Bahadori, S. Kafi, K. Zamani far, and M. R. Khayyambashi. Optimal web service com-
position using hybrid GA-Tabu search. Journal of Theoretical and Applied Information
Technology, 9(1):10–15, 2005.

4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In Proc. of the
8th International Workshop on SMT, 2010.

5. A. Blum and M. L. Furst. Fast planning through planning graph analysis. Journal of Artificial
Intelligence, 90(1-2):281–300, 1997.

6. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS’08, volume
4963 of LNCS, pages 337–340. Springer-Verlag, 2008.

7. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, and
M. Szreter. Web services composition - from ontology to plan by query. Control & Cy-
bernetics, 40(2):315–336, 2011.

8. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola, M. Szreter,
and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundamenta Informaticae,
112(1):47–71, 2011.

9. A. Gómez-Pérez and J. Euzenat (Eds.). The semantic web: Research and applications. In
Proc. of the 2nd European Semantic Web Conference, volume 3532 of LNCS. Springer, 2005.

10. S. Hoelldobler and H. P. Stoerr. Solving the entailment problem in the fluent calculus using
binary decision diagrams. In Proc. of the Workshop on Model Theoretic Approaches to
Planning at AIPS2000, pages 18–25, 2000.

11. J. Hoffmann, I. Weber, J. Scicluna, T. Kaczmarek, and A. Ankolekar. Combining scalability
and expressivity in the automatic composition of semantic web services. In Proc. of the 8th
Int. Conf. on Web Engineering (ICWE’08), pages 98–107. IEEE Computer Society, 2008.

12. H. Kautz and B. Selman. Blackbox: A new approach to the application of theorem proving to
problem solving. In Working notes of the Workshop on Planning as Combinatorial Search,
held in conjunction with AIPS-98, 1998.

13. M. Klusch, A. Gerber, and M. Schmidt. Semantic web service composition planning with
OWLS-XPlan. In Proc. of the 1st Int. AAAI Fall Symposium on Agents and the Semantic
Web, pages 55–62. AAAI Press, 2005.

14. S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for web service composition. In
Proc. of the 11st Int. World Wide Web Conference (WWW’02), 2002.

15. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, and D. Fensel.
WWW: WSMO, WSML, and WSMX in a nutshell. In Proc. of the 1st Asian Semantic Web
Conference (ASWC’06), volume 4185 of LNCS, pages 516–522. Springer-Verlag, 2006.

16. M. Sheshagiri, M. desJardins, and T. A. Finin. A planner for composing service described
in DAML-S. In Proc. of Workshop on Planning for Web Services, Int. Conf. on Automated
Planning and Scheduling, pages 28–35, 2003.

17. T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba, M. Zaremba, M. Moran, E. Cimpian,
T. Haselwanter, and D. Fensel. Semantically-enabled service oriented architecture : con-
cepts, technology and application. Service Oriented Computing and Applications, 1:129–
154, 2007.


