
Automated Composition of Timed Services by
Planning as Model Checking

Daniel Stöhr, Sabine Glesner

Technische Universität Berlin, Chair Software Engineering for Embedded Systems,
daniel.stoehr@tu-berlin.de, sabine.glesner@tu-berlin.de,

www.pes.tu-berlin.de

Abstract. Techniques of automated service composition can shorten
development time by generating a concrete service composition out of a
set of abstract composition requirements. However, no existing fully auto-
mated approach is able to deal with timed services and timed composition
requirements. In this work, we propose an approach for the automated
composition of timed services, represented as timed i/o automata, by
adapting the AI planning method Planning as Model Checking. Thus,
the concept of automated service composition can be used in domains
with real-time requirements. As case study, we model a system where
medical devices need synchronization during surgery.

Keywords: automated service composition, timed services, real-time,
timed i/o automata, planning as model checking

1 Introduction

Designing controller programs coordinating distributed components in a safety-
and time-critical environment, e.g., for synchronizing medical devices, is a very
complex and time-consuming task. While keeping development time short, the
software engineers have to assure that the overall system fulfills functional
and safety-critical requirements. These opposites yield the need for automated
and scalable tools supporting the development process. In our domain, such
tools have to produce correct results and have to deal with nondeterminism
and time as part of the service behavior. Speaking in terms of Service-oriented
Architectures (SOAs), which are an uprising paradigm in those domains, the
problem of designing a controller corresponds to the problem of finding a suitable
orchestrator to compose a given set of services.

Therefore, we propose an approach for the automated composition of timed
services including real-time properties as composition requirements. As to the
authors’ knowledge, no existing fully automated approach for service composition
is able to deal with those requirements. To realize our approach, we describe the
behavior of the services as timed i/o automata [VL92] and the orchestrator as
an automaton handling the input and output actions of the original automata.
Thus, we adapt the AI planning method planning as model checking [GT00] to

realize the automated composition process, by bringing real-time into the existing
theory.

Moreover, as a part of future work, we want to implement a tool realizing
the resulting composition algorithms. Such a tool can be used to shorten the
development process for systems in our domain, because an initially correct
controller model is generated where a hand-made model had to be created before.
To discuss the requirements for our approach, we present a case study where
medical devices have to be synchronized during surgery.

The rest of this paper is structured as follows. In Section 2 we shortly outline
the concepts of automated service composition, timed i/o automata, and planning
as model checking. They form the basis for our approach. Afterwards, in Section 3
we present our case study, our proposed approach and what extensions to the
existing theory are required. In Section 4 we discuss related work. Finally, in
Section 5, we conclude this paper and give an outlook on future work.

2 Background

In this section we introduce works upon which our approach is based. In Sec-
tion 2.1, we shortly explain the concept of automated service composition and
the decision for the underlying theory of our approach. Afterwards, in Section 2.2,
we introduce timed i/o automata, used to formally represent the services to be
composed. Finally, in Section 2.3 we present planning as model checking, which
forms the basis for the composition process of our approach.

2.1 Automated Service Composition

In the context of our work, the term automated service composition denotes
the process of generating an orchestrator for a set of services out of a set of
composition requirements. An orchestrator is a central service within a service
composition that communicates with the other services and directs messages
between them in order to create the system behavior described through the
requirements.

In [BP10] an exhaustive overview is given on automated composition ap-
proaches for web services. They present 27 approaches realizing different forms
of automated service composition and compare them to each other with respect
to a certain set of properties. In the following we outline the properties, which
are relevant for our work.

Automation Describes the degree of automation, offered by an approach. We
need a high degree of automation. Besides of a formal description of the
composition requirements on a set of services, the user intervention shall be
reduced to a minimum.

Nondeterminism An action may produce different nondeterministic outcomes.
In our domain nondeterminism occures, e.g., as device alarms.

Scalability Our approach shall deal with large and complex sets of services.
Hence, we have to design our composition algorithms for high efficiency.

Correctness Compositions are guaranteed to be correct w.r.t. the compostion
requirements. Because our approach shall generate compositions for safety-
critical domains, we have to assure the correctness of resulting compositions.

Based on the above-mentioned survey, we compared these properties to the
different composition approaches. We decided that model checking based methods
of automated service composition are most suitable to form the basis of our
approach. These approaches are the only ones, fulfilling all these properties at
once. However, none of the presented approaches includes real-time composition
requirements.

2.2 Timed I/O Automata (TIOA)

To realize our approach, we need a suiting formalization to describe the behavior
of the orchestrator and of the services to be composed. For that, we chose the
theory of timed i/o automata (TIOA [VL92]). These are finite automata, whose
actions are divided into input and output actions, so that we can describe the
interface of our services. Moreover, we can express timed behavior over a set of
clocks. Therefore, guards exist for transitions, and invariants for states.

In our case study (the synchronization of medical devices), we can model
each device as a distinct automaton. Messages between connected devices are
represented as input- and output-actions. With guards and invariants, we can
express timed conditions on the interaction of our devices, e.g. when a device
has to react within a certain timeframe.

An example for the graphical represention of TIOA is given in Section 3.1
where we present our case study.

2.3 Planning as Model Checking

In the following, we outline the AI planning method planning as model checking
[GT00]. The underlying idea of this technique is to generate plans for a given
planning domain by determining whether formulas are true in a model.

The planning domain is described through a model similar to finite automata.
The planning problem is described in temporal logics, as a CTL formula, con-
taining desired final states and constraints on the paths allowed in the planning
domain. Solving the planning problem for a planning domain means finding paths
leading from the initial state to the final states. Here, the problem is solved by
lifting it to a model checking problem. The planning problem is expressed as a
corresponding kripke structure and the plan is generated by checking whether
suitable temporal logic formulas are true within it. For this purpose, an itera-
tive algorithm checks paths in the structure against corresponding parts of the
formulas.

The algorithm is based on Binary Decision Diagrams a data structure that can
represent kripke structures as graphs representing boolean formulas (a common
technique for solving model checking problems). The plan is iteratively built
up as a BDD by comparing it to other BDDs (representing the domain and

requirements) and by performing transformations on it. It has been implemented
within the Model Based Planner [MBP].

For our approach, we will translate the set of TIOA into a planning domain
by building up the crossproduct. Thus, we transform the problem of automated
composition into a planning problem.

3 Automated Service Composition with Real-Time
Requirements

In the first part of this section we present a case study, demonstrating how our
approach can be applied. In Section 3.2, we describe the workflow of our approach.
In Section 3.3 we outline problems we have to tackle when extending the existing
theory, by reffering to our case study.

3.1 Case Study

We have investigated the requirements for our approach by creating a TIOA
model of a use case where an x-ray device and an anesthesia machine ventilator
need synchronization during surgery. The use case is described in [AGWL09], a
work where the technical interoperability between medical devices is investigated.
In this scenario, an x-ray image of a patient’s chest had to be taken under general
anesthesia. When the x-ray is performed, it must be ensured that the patient’s
lungs are empty in order to receive a clear image. Therefore, parameters of the
anesthesia machine’s ventilator are accessed by the controller, to trigger the x-ray
exactly between two breaths. In Figure 1 we show a simplified version of the
system model we created.

X-Ray

Idle

take?
c1:=0

TakeXRay
c1<=2

c1>=2

Ventilator

Exsp
c3<=5 Insp

ExspPause
c3<=5

InspPause

next!
c3:=0

c3>=5
c3:=0 c3>=5

Controller

WaitNext

WaitPause
c2<=7

End

next?
c2:=0

take!
c2>=6

next

take

Fig. 1. synchronizing an x-ray and an anesthesia machine ventilator

The left automaton, X-Ray, describes the behavior of the x-ray device which,
if triggered, needs 2 time units for taking an image. In it’s initial state, Idle,
it awaits the reception of the input signal take. If the signal is triggered the
automaton changes to the state TakeXRay and resets the clock c1. The guard of
the transition back to Idle ensures that the x-ray stays in TakeXRay for at least
2 time units and the invariant ensures that the state is left after at most 2 time
units.

The right automaton describes the ventilator machine which controls the
breathing, i.e., the respiration cycle of the patient. In its’ initial state Exsp
the ventilator lets the patient breath out. The invariant and transition guard
ensure, that the exspiration phase lasts exactly 5 time units. When the state
ExspPause is activated, the respiration pauses for 5 time units. Afterwards, the
inspiration phase and pause take place, analoguous to the exspiration phase (here,
we ommited the time constraints since they are not relevant for our use case).
When Exsp is entered again, the signal next is emmited. That signal is the only
possibility for other devices to synchronize with the ventilator.

Before describing the controller, we outline its behavior via CTL formulas
(these will be the composition requirements for our approach). Firstly, we have
a functional property (1)AFTakeXRay which says that the x-ray has to be
performed somewhere during the controllers execution. Secondly, theres a safety
property (2)AGTakeXRay→ExspPause which describes that whenever the x-ray
is exposed the ventilator has to be in the exspiration pause mode.

Based on these requirements we can model the Controller. In its initial
state WaitNext the controller waits for the signal next stating that a new
respiration cycle begins. In WaitPause the controller is ready to trigger the x-ray
(requirement 1) and waits for the right point in time to do so (requirement 2). The
corresponding transition takes place after at least 6 time units. This is the point
where the ventilator has entered ExspPause for sure. The invariant ensures that
the exposure time of the x-ray does not overlap with the ventilator’s inspiration
phase.

3.2 The Approach

In this section we present our approach for realizing the automated composition
of timed services. Therefore, we adapt the AI Planning method planning as model
checking (Section 2.3). As language for our service models we have chosen TIOA
(Section 2.2). We realize our approach by bringing real-time into the theory
and by building a framework to make the theory compatible with Timed i/o
Automata (inspired by the work discussed in Section 4). The workflow of our
proposed approach is visualized in Figure 2.

Planning
as

Model Checking

Timed CTL
Formulas

Σ1

Σ𝑛

 .
 .
 . Σ||

Σ𝐶

 x

Fig. 2. Workflow of our approach for the automated composition of timed services

Initially, a set of TIOA Σ1, ..., Σn describes the communicational behavior
of our services, and a set of Timed CTL formulas [ACD93] describes functional
and real-time composition requirements. In a first step, the parallel product
Σ|| = Σ1|...|Σn is built. In the sense of planning as model checking, Σ|| leads to
the planning domain and the formulas to the planning problem. In our example
the crossproduct of the x-ray and ventilator automata are the planning domain
and the CTL formulas (1) and (2) are the planning problem.

Afterwards, the algorithms of planning as model checking are applied to solve
the planning problem by identifying all paths fulfilling our requirements. This
gives us the Control Automaton ΣC handling the inputs and outputs of the
original automata, so that the required overall behavior of the composition is
assured. By the means of service composition, ΣC is an orchestrator.

Since the existing theory and implementation of planning as model checking
can only deal with untimed domains and ’simple’ CTL formulas, we have to make
it capable of dealing with timed domains and Timed CTL formulas. We describe
the problems, we await for the extensions, in the next section.

3.3 Extending the Existing Theory
In this section we sketch the problems we have to tackle for extending the existing
planning theory, described in section 2.3. We identified three situations where
timed behavior has to be considered. In the following, we enlist these properties
and how they will affect the extensions.
Interaction of existing services Guards and Invariants can produce situa-

tions in which deadlocks may occur or where safety properties may be violated.
In our example that would happen in the controller state WaitPause if the
x-ray would be triggered too early or too late, so that condition (2) is violated.
In our hand-implemented controller we solved this through additional guards
and invariants.
To automate this step, the extended planning theory has to analyze the
behavior of the existing services for those situations. We can achieve this
by using an extended version of BDDs capable of representing timed au-
tomata (as used in the Rabbit Model Checker [Rab]). Here, several BDDs are
used to represent the functional and timed behavior of an automaton seper-
ately. Therefore, we need adapt the BDD based operations of the planning
algorithm.

Something has to happen in a specific moment This takes place, for in-
stance, if we want the x-ray to be triggered exactly 6 time units after next
has been received.
Here, we have to modify how the planning algorithms resolve single planning
goals because those now depend on time constraints. Moreover, we have to
find a way to express those requirements in Timed CTL.

Something has to happen iteratively within a specific interval This sit-
uation takes place, e.g., if we want an x-ray image to be taken every 100 time
units. Here, too, CTL is not sufficient to express those requirements. For this
situation we have to solve problems similiar to the point above.

In the first part of this section we have presented a case study showing
that time constraints occur, when medical devices have to be synchronized over
a central controller. Since automated service composition can accelerate the
development of those controllers and no composition approach is able to deal
with time, we have proposed an approach for the automated composition of timed
services. In the last part we outlined the problems we have to solve to realize our
approach.

4 Related Work

In this section, we present works related to our approach. Firstly, we describe
an already existing approach for automated service composition of web services
that uses planning as model checking for the composition process (but does not
include real-time requirements). Afterwards, we outline works bringing together
(automated) service composition and real-time.

In [PTB05] a framework is described that uses planning as model checking to
automatically generate a BPEL composition out of a given set of web services and
composition requirements. The way how the planning theory was utilized to solve
the composition problem served as an inspiration for our proposed approach. In
contrast to our work, this tool cannot handle composition requirements expressing
real-time properties of the services to be composed. However, real-time capabilites
are one of the main characteristics of our proposed approach. Furthermore, this
approach was designed for the domain of bussiness processes and does not apply
to our domain of controlling distributed devices in a safety-critical environment.

Most (if not all) works that try to bring together non-automated service
composition and real-time consider time as measurement for communication
latency between world-wide distributed services [MGY+10] or telephone servers
[LL07]. In these cases, time is a part of the Quality of Service and helps choosing
a proper service instance during the composition process. These works do not
solve our problem because we need time as a part of the service’s behavior itself.

As to the authors’ knowledge, [KDM+09] is the only work where an apporach
for automated service composition with real-time requirements is realized. In
contrast to our approach, this work offers a very low degree of automation,
because the overall workflow of a BPEL composition has to exist before time
requirements can be specified. Our approach, on the other hand, offers a very
high degree of automation by generating the orchestrator from scratch.

5 Conclusion & Future Work

In this work we have proposed an approach for the automated composition
of services with real-time capabilities. The domain for our approach is the
generation of controller programs coordinating distributed services in a safety-
critical environment out of a set of functional and safety-critical composition
requirements. We presented a case study, where medical devices have to be
synchronized, and have used timed i/o automata as a formal description of

the services’ communicational behavior. To realize the automated composition
process we currently adapt the AI planning method planning as model checking
and have outlined the extensions we will have to bring in to make it capable of
dealing with time.

In future work, we perform a larger case study than the one presented here,
where we model devices used during a specific diagnostic method (a PET/CT
scanner and an injection pump). We work on that case study in close cooperation
with the Charité Berlin.

By using our proposed approach, the development time for the above-men-
tioned controller programs can be shortened because certain development steps
can be performed automatically. Furthermore, the generated controller model is
correct with respect to the composition requirements due to the use of model
checking in the generation process. Thus, the iterative step of initially designing
and refining a controller model by hand can be skipped and development time
can be saved.

References
ACD93. Alur, R.; Courcoubetis, C.; Dill, D.: Model-Checking in Dense Real-time.

Information and Computation, vol.104, pp. 2-34, 1993.
AGWL09. Arney, D.; Goldman, J. M.; Whitehead, S. F.; Lee, I.: Synchronizing an

X-ray and Anesthesia Machine Ventilator: A Medical Device Interoperability
Case Study. International Conference on Biomedical Electronics and Devices, pp.
52-60, 2009.

BP10. Baryannis , G.; Plexousakis , D.: Automated Web Service Composition: State
of the Art and Research Challenges. Technical Report - Foundation for Research
& Technology - Hellas Institute of Computer Science, 2010.

GT00. Giunchiglia, F.; Traverso, P.: Planning as Model Checking. Recent Advances in
AI Planning, LNCS vol. 1809/2000, pp.1-20, Springer Berlin/Heidelberg, 2000.

KDM+09. Kallel, S.; Charfi, A.; Dinkelaker, T.; Mezini, M.; Jmaiel, M.: Specifying and
Monitoring Temporal Properties in Web Services Compositions. Seventh IEEE
European Conference on Web Services, pp.148-157, IEEE press, 2009.

LL07. Lin, L.; Lin, P.; Orchestration in Web Services and Real-Time Communications.
Communications Magazine vol.45, no.7, pp.44-50, IEEE press, 2007.

MBP. MBP: a Model Based Planner. http://mbp.fbk.eu/. Last visited: February 2012.
MGY+10. Moussa, H.; Gao, T.; Yen, I.; Bastani, F.; Jeng, J.: Toward effective service

composition for real-time SOA-based systems. Service Oriented Computing and
Applications Vol.4, pp.17-31, Springer London, 2010.

PTB05. Pistore , M.; Traverso , P.; Bertoli , P.: Automated Composition of Web
Services by Planning in Asynchronous Domains. Artificial Intelligence vol. 174,
pp.316-361, Elsevier Science Publishers, 2010.

Rab. Rabbit and Cottbus Timed Automata. http://www.sosy-lab.org/ dbeyer/Rabbit/.
Last visited: February 2012.

VL92. Vaandrager, F.; Lynch, N.: Action Transducers and Timed Automata. Proceed-
ings CONCUR’92, LNCS vol.630, pp.436-455. Springer-Verlag, 1992.

	Automated Composition of Timed Services by Planning as Model Checking

