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1 Introduction 

Mathematical logic is widely used in formal program development, analysis, and 
verification. Still, some discrepancies can be admitted between traditional logic and 
problems to be solved. For example:  
 semantics of programs is presented by partial functions, whereas in traditional 

logic total functions and predicates are usually considered; 
 programming languages have a developed system of data types, whereas traditional 

logic prefers to operate with simple unstructured types (sorts); 
 semantic aspects of programs prevail over syntactical aspects, whereas in 

traditional logic we have the inverse situation. 
Discrepancies mentioned above complicate the usage of logic for program 

development and verification. In this paper we propose to take program models as an 
initial point and construct logics semantically based on such models.  

To realize this idea we should first construct adequate models of programs. To 
tackle this problem we use composition-nominative approach to program 
formalization [1], which aims to construct a hierarchy of program models of various 
abstraction levels and generality. The main principles of the approach are the 
following.  
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 Development principle (from abstract to concrete): program notions should be 
introduced as a process of their development that starts from abstract 
understanding capturing essential program properties and proceeds to more 
concrete considerations. 

 Principle of integrity of intensional and extensional aspects: program notions 
should be presented in the integrity of their intensional and extensional aspects. 
The intensional aspects in this integrity play a leading role. 

 Principle of priority of semantics over syntax: program semantic and syntactical 
aspects should be first studied separately, then in their integrity in which semantic 
aspects prevail over syntactical ones. 

 Compositionality principle: programs can be constructed from simpler programs 
(functions) with the help of special operations, called compositions, which form a 
kernel of program semantics structures. 

 Nominativity principle: nominative (naming) relations are basic ones in 
constructing data and programs. 
Here we have presented only principles relevant to the topic of the article; richer 

system of principles is developed in [2]. The above principles specify program models 
as composition-nominative systems (CNS) [1]. Such a system may be considered as a 
triple of simpler systems: composition, description, and denotation systems. A 
composition system defines semantic aspects of programs, a description system 
defines program descriptions (syntactical aspects), and a denotation system specifies 
meanings (referents) of descriptions. We consider semantics of programs as partial 
functions over class of data processed by programs; compositions are n-ary operations 
over functions. Thus, composition system can be specified as two algebras: data 
algebra and functional algebra. 

Functional algebra is the main semantic notion in program formalization. Terms of 
this algebra define syntax of programs (descriptive system), and ordinary procedure 
of term interpretation gives a denotation system. 

CNS can be used to construct formal models of various programming, 
specification, and database languages [1–4]. The program models presented by CNS 
are mathematically simple, but specify program semantics rather adequately; program 
models are highly parametric and can in a natural way represent programs of various 
abstraction levels; there is a possibility to introduce on a base of CNS the notion of 
special (abstract) computability and various axiomatic formalisms [5–7]. 

CNS are classified in accordance with levels of abstraction of their parameters: 
data, functions, and compositions. In this article levels of program models are induced 
by abstraction levels of data.  

Data are considered at three levels: abstract, Boolean, and nominative. At the 
abstract level data are treated as "black boxes", thus no information can be extracted. 
At the Boolean level to abstract data new data considered as "white boxes" are added. 
Usually, these are logical values T (true) and F (false) from the set Bool. At the 
nominative level data are considered as "grey boxes", constructed of "black" and 
"white boxes" with the help of naming relations. The last level is the most interesting 
for programming. Data of this level are called nominative data. The class of 
nominative data over a set of names V and class of basic values W can be defined 
inductively or as the least fixed point of the recursive definition 
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( , ) ( ( , ))mND V W W V ND V W   , where ( , )mV ND V W is the class of 

partial multi-valued (non-deterministic) functions.  
To present nominative data we use the form d = [vI ai | iI]. Nominative 

membership relation is denoted by . Thus, vi ai d means that the value of vi in d  
is defined and is equal to ai.  

The class ND(V,W) \ W is called the class of proper nominative data, or 

hierarchical nominative data; data from the class mV W  will be called flat 
nominative data. 

Concretizations of nominative data can represent various data structures, such as 
records, arrays, lists, relations, etc. [1, 4]. For example, a set {s1, s2, ..., sn} can be 
presented as nominative data [1s1, 1s2, ..., 1sn], where 1 is treated as a standard 
name. Thus, we can formulate the following data representation principle: program 
data can be presented as concretizations of nominative data. 

The levels of data abstraction formulated above may be treated as data 
intensionals. They respectively specify three levels of semantics-based program 
models: abstract, Boolean, nominative. The models of each level constitute 
extensionals of that level intensional. Program models of abstract level are very poor 
(actually, only sequencing compositions can be defined). Program models of Boolean 
level are richer and permit to define structured programming constructs (sequence, 
selection, and repetition). This level is still too abstract and does not explicitly specify 
data variables. At last, models of nominative level permit to formalise compositions 
of traditional programming. This level (its intensional) involves variables of different 
types. Consider, for example, a simple educational programming language WHILE 
[8], which is based on three main syntactical components: arithmetic expressions, 
Boolean expression, and statements. States of WHILE  programs are considered as 
partial functions from the set V of variables to the set Z of values and here are denoted 
by VZ(=V Z). Thus, semantics of these components is the following: arithmetic 
expressions specify functions of the type VZ Z (we call them partial quasiary 
functions), Boolean expressions define functions of the type VZ Bool (partial 
quasiary predicates), statements specify functions of the type VZ 

VZ (partial bi-
quasiary  functions). Note that in our terminology VZ is a class of single-valued flat 
nominative data.  

Example 1. Consider a Boolean expression x<y. Its semantics is formalized as a 
partial quasiary predicate less : 

VZBool. This predicate is undefined on flat 
nominative data [x5, u4] (we write less([x5, u4])), is defined on [x5, 
u4, y2] with value F (we write less([x5, u4, y2])= F). Note that if a value 
of less is defined on some data, then the predicate is defined with the same value on 
any extension of this data. Thus, less([x5, u4, y2, v4])=F, x, u, y, vV. This 
property is called equitonicity (a special case of monotonicity). A specific new 

composition is renomination 1

1

,...,
,...,

n

n

v v
x xR ,  

e.g. (R ,
,

x y
y v (less))([x5, u4, y2, v4]) = less([x2, u4, y4, v4]) = T.  

More elaborated programming languages work with hierarchical nominative data. 
In such languages composite names like x1.x2. … .xn are used to access data 
components. The details can be found in [2]. 
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Having described program models of various abstraction levels, we can now start 
developing semantics-based logics which correspond to such models. Such logics will 
be called composition-nominative logics (CNL). Analysis of constructed program 
models shows that the main semantic notion of mathematical logic – the notion of 
predicate – can be defined at the Boolean level. At this level predicates are considered 
as partial functions from a class of abstract data A (with abstract intensional) to Bool. 
In this case such compositions as disjunction , negation , etc, can be defined. These 
compositions are derived from Kleene’s strong connectives [9]. Thus, the main 
semantic objects are algebras of partial predicates of the type <ABool; , >.  The 
obtained logics may be called propositional logics of partial predicates. Such logics 
are rather abstract, therefore their further development is required at the nominative 
level. As was mentioned earlier, at this level we have two sublevels determined 
respectively by flat and hierarchical nominative data.   

Three kinds of logics can be constructed from program models at the flat 
nominative data level: 
 logics, which use only partial quasiary  predicates (pure predicate logic); 
 logics, which use additionally partial quasiary  functions (predicate-function 

logics); 
 logics, which use also bi-quasiary  functions (program logics). 

The first type of logics will generalize classical pure predicate logics, the second 
type – classical predicate logic (with functions and equality), and the third type can 
present various logics, which use program constructs. 

Here we give a short characteristic only to composition-nominative pure predicate 
logics; predicate-function logics are described in [3]; as to composition-nominative 
program logics some initial variants are presented in [3, 7].  

From semantic point of view the main distinction of CNL from classical first-order 
logics is usage of partial quasiary predicates instead of total n-are predicates; this 
leads to algebras of quasiary predicates with compositions as operations. From 
syntactical point of view formulas of CNL are simply terms of algebras of quasiary 
predicates.  

The main compositions that can be additionally specified at the nominative level 

are renomination 1

1

,...,
,...,

n

n

v v
x xR  (denoted also R v

x ) and quantification x. These 

compositions use subject names as parameters. CNL of renominative level are based 

on algebras of the type <VABool; , , R v
x >, CNL of quantifier level – 

<VABool; , , R v
x , x>. Properties of these algebras determine calculi for 

corresponding logics.      
Note, that renomination (primarily in syntactical aspects) is widely used in classical 

logic, lambda-calculus, and specification languages like Z-notation [10], B [11], TLA 
[12], etc.  Here we will give explicit semantic definition of this operation (cf. with [13]).  

To preserve properties of classical first-order logic we should restrict the class 
VABool of quasiary predicates. Namely, we introduce a class of equitone predicates 
and its different variations such as maxitotal equitone, local-equitone, equicompatible, 
and local-equicompatible classes [3]. Logics based on equitone and maxitotal 
equitone predicates are the “closest” generalization of classical first-order logic that 
preserve its main properties. These logics are called neoclassical logics [3].     
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The current article continues investigations of pure predicate logics over 
hierarchical nominative data initiated in [14]. Here we prove soundness (correctness) 
and completeness of the constructed logics. The distinctive feature of such logics is 
the usage of composite names of the form x1.x2. … .xn as parameters of renomination 
and quantification compositions.  

The article is structured as follows: the first section is introduction, in the second 
section operations over hierarchical data are introduced and their properties are 
studied, the third section is devoted to compositions over predicates. In the fourth 
section semantic models and corresponding languages of logics are described, and the 
fifth section is devoted to definition of sequent calculi for some of the described 
logics. 

Notions not defined here we interpret in sense of [3].  

2 Hierarchical Nominative Data 

Class of hierarchical nominative data ND(V,  A) over classes of basic names V and 
basic values A  is defined inductively:  
1) ND0(V, A) = A – nominative data of rank 0; 

2) NDk+1(V, A) = ( ( , ))n
kA V ND V A  – nominative data of rank less or equal to 

k+1. 

Then ND(V, A) =
0
( ( , ))n

k
k

V ND V A


 . 

Here  ( , )n
kV ND V A  is the set of all finite single-valued mappings from V to 

NDk(V, A). Note, that we restrict nominative data to be single-valued mappings. This 
guaranties unambiguity of naming for data components. An empty nominative data 
has rank 0.  

The set of hierarchical nominative data is defined as follows: 
HD(V, A) = ND(V, A) \ A. 

The value of name u in data d is equal to d(u), but we also write u:d in style of 
denaming operation. For a composite name u = y1.y2. … .yn notation u:d means 
yn:(…(y2:(y1:d))…). We drop a component xu:, if u: is undefined.  

Hierarchical data can be represented also as oriented trees with edges labeled by 
basic names and leafs labeled by basic values.  

Any hierarchical data d can be represented as a flat nominative data with 
composite names – elements of the set V+. These composite names are non-empty 
words in the alphabet V formed by concatenation “.” of basic names along the path 
from the root to leafs in the tree representing d.   

Example 2. Let [x  [ y 1, z 2], y  [ x 3, y  [ x 0, y 0, z 1]], z 2, 
u  [ x [ x 0, u 1], z 3]]  be hierarchical data. Its flat representation is  

[x.y 1, x.z 2, y.x 3, y.y.x 0, y.y.y 0, y.y.z 1, z 2, u.x.x 0, u.x.u 1,  
u.z 3]. 

Such representations are called flat normal forms (FNF) of hierarchical data. Due 
to the unambiguity of naming all (composite) names of FNF must be different; 
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moreover, they should be incomparable. Now it is possible to write [x.y  , 
x.u,…] in place of [x  [y  , u,…]].  

Let us formulate some definitions and properties of hierarchical data used in 
further proofs. From now on, names are considered as composite names from V+ 
unless explicitly stated that they belong to V.  

A prefix of a word uV+ is any word x such that u = x.y for some yV*. If u    x, 
we call x a strict prefix. We write x  u (x  u), if x is a prefix (strict prefix) of u. 
Words x and u are comparable (xu), if x  u or u  x; otherwise they are 
incomparable (x  u). Sets of names X and Y are incomparable (X  Y), if x  y for all 
xX and yY.   

We call a composite name as a full name of d, if it coincides with some path from a 
root in the tree determined by d. If this path reaches a leaf, then the name is called 
terminal. We define the set of full names by fn(d) = {u | u:d}; the set of terminal 
names by tn(d) = {u | u:dA}.  

Hierarchical data d1 and d2 are disjoint, if x  y for any xtn(d1) and ytn(d2). The 
union of disjoint data we denote by “+”.   

Parametric operation of deletion of data components, the names of which are 
comparable with given names x1,..., хn, is defined via FNF as follows:  

1,...,|| ( )
nx x d = [ ua d | u is terminal and x1  u,..., хn  u].  

For basic data aA, 
1,...,|| ( )

nx x a is undefined.  

In the sequel instead of 
1,...,|| ( )

nx x d  we write 
1,...,||

nx xd  .  

Example 3. Let d be a hierarchical data from example 2. Then: 
d ||–х, u = [y.x 3, y.y.x 0, y.y.y 0, y.y.z 1, z 2]; 
d ||–х.z, y.y, z.y, u.x,u = [x.y 1, y.x 3, u.x.x 0, u.z 3]. 

When using the symbol “+” we drop brackets “[” and “]”, e.g. instead of  
d ||–u + [uu:d ||–v] we write d ||–u + uu:d ||–v . 

Proposition 1.  
1) 

1, , ,...,||
nz u x xd  

1, ,...,||
nz x xd  , if z    u; 

2) d = d ||– x + x x:d, if  xV ;   
3) (d ||–х)||–х.y = (d ||–х.y)||–х = d ||–х ; 

4) (d1 + d2)||–u = d1||–u + d2||–u ; 
 

5) d ||–u.v = d ||–u + u u:d ||–v ; 
6) d  d ||–u + u u:d. 

For a composite u the property d = d ||–u + u u:d may fail. 
Example 4. Let d = [ u 0, z.x 0, z.y 1]. Then d ||–u.v = [ z.x 0, z.y 1], and   
d ||–u.v + u.vu.v:d = d ||–u.v  d, because u:d is a basic value and u.v:d is undefined.  
Proposition 2.  Let  u  {х1,..., хn},  then  

1 1, ,..., ,...,|| ( || ) ||
n nu x x u x xd d   .  

In particular, if  z    u,  then d  ||–u,  z  =  (d  ||–u)||–z  =  (d  ||–z)||–u . 
In the general case we have that 

1 1 1 1,..., , ,..., ,..., ,...,|| ( || ) ||
m n m nu u x x u u x xd d    if  

{u1,..., um}  {х1,..., хn}. 
Proposition 3. 1) 

1,...,: ( || )
nz zx d x h h   ;  in particular, : ( )x x h h ; 

2) 
1,...,: ( || ) :

nz zx d x d  , if  x  {z1,..., zn};  

3) 
1, ,...,: ( || )

nx z zx d   . 
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Using the propositions 1–3, it is possible to represent d
1,...,||

nx x , where 

x1,..., xnV+, with an expression in some standard form, which uses only operations of 
deletion

1,...,||
mv v  with simple names v1,..., vmV, union +, naming y1.y2. … .yk and 

denaming u1:u2:... ul: (here y1,..., yk, u1,..., ulV). Details are omitted here.  
Example 5. d ||–z.x, z.y, u.x.y = d ||–z, u + zz:d ||–x, y + uu:d ||–x + u.xx:u:d ||–y .  

Operation of renomination 1

1

,...,
,...,

n

n

v v
x xr : HD(V, A)  HD(V, A)  we define as follows: 

1
11

,...,
,..., 1 1,..., ( ) || : ... :n

nn

v v
v v n nx xr d d v x d v x d     . 

Here all names v1,..., vn should be pairwise incomparable. We see that the result of 
renomination can be presented uniquely in the standard form.  

Example 6. . , . , . .
. , . , . ( )v x v y u x y

u y y x v xr d  d ||–v, u + vv:d ||–x, y + uu:d ||–x +  

+ u.xx:u:d ||–y + v.xy:u:d + v.yx:y:d + u.x.yx:v:d.  

Note, that renomination is monotone: if d    h, then  1 1

1 1

,..., ,...,
,..., ,...,( ) ( )n n

n n

v v v v
x x x xr d r h . 

To present convolution of renominations we use the standard form.  

Example 7.  .
.( ( )) ( || . : )z u v z

u x u u vr r d r d u v x d    

( || : || . : )z
u u vr d u u d u v x d     

,|| . : : || . :u z vd u v x d z u d z v x d      . 

Thus, situation for hierarchical data is more difficult than for flat data for which 
convolution of renominations can be presented as one new renomination [3]. 

Example 8. . . , 
.  , .( ( ))x v u v z

z y x x yr r d   

.
. .( || : || . : : : )x v

z y u z vr d u u d u v x d z y x d         

.:::.

||::::.||:|| ,.

dxyyvx

dxxdxyzdxvuduud vvxzu



    

3 Compositions of Predicates over Hierarchical Data 

From semantic point of view the notion of predicate is one of the basic concepts of 
logic.  

By a predicate P on D we understand a single-valued partial function of the type 
D  Bool. The truth and falsity domains of P are respectively 
T(P) = {dD | P(d) = T} and F(P) = {dD | P(d) = F}. A predicate P is 
irrefutable, or partially true, if F(P) =  .  

Compositions determine universal methods of predicate construction; they form 
the kernel of logic of corresponding type.  

At the propositional level data are treated as abstract, therefore predicates are 
interpreted as functions from A to Bool, where A is an abstract class. Basic 
propositional compositions are disjunction  and negation  ( P, QA Bool, d 
 A ):  
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,  if ( )   or  ( ) ,
( )( ) ,  if ( )  and ( ) ,

undefined in other cases. 

T P d T Q d T
P Q d F P d F Q d F

     


,   if ( ) ,
( )( ) ,  if ( ) ,

undefined, if ( ) . 

T P d F
P d F P d Т

P d

   
  

At the nominative level data are constructed from a set of subject names and a class 
of subject values. In this work logics of partial predicates over hierarchical 
nominative data at renominative and quantifier level are investigated. 

A function of the form Р : HD(V, A)  Bool is called a hierary predicate on 
HD(V, A). We denote the class of hierary predicates on HD(V, A) by PrHV_А.  

The name xV is strictly unessential for a hierary predicate P on HD(V,  A), if for 
arbitrary d, HD(V, A) we have P(d ||–x + x) = P(d ||–х). The notion of unessential 
name is an analogue of fresh name in classical and nominal logics [15]. 

A predicate P : HD(V, A) Bool is called equitone, if for arbitrary d, d'HD(V, A) 
conditions d  d' and P(d)  imply P(d') = P(d).  

At the renominative level to propositional compositions we add renomination  

composition 1

1

,...,
,...,

n

n

v v
x xR  defined by the formula  

1 1
11 1

,..., ,...,
,..., 1 1,..., ,...,( )( ) ( ( )) ( || : ... : )n n

nn n

v v v v
v v n nx x x xR Q d Q r d Q d v x d v x d      . 

Using vector notation, we can formulate the following properties of renomination:  

R) ( ) ( ) ( )v v v
x x xR P Q R P R Q   ; R) ( ) ( )v v

x xR P R P   .   

The properties of R, R&, R can be written down analogously.  

RR) ( ( )( ) ( ( ( )))v u u v
x y y xR R P d P r r d  for each dHD(V, A). 

RSN) ,
, ( ) ( )y v v

xz xR P R P , if уV is strictly unessential for Р.  

RT) ,
, ( ) ( )z v v

z x xR P R P  under condition zV.   

In the case of equitone predicates for composite names we have: 

RTE) ,
, ( ) ( )u v v

u x xR P R P , where  is weak equality.  

At the quantifier level basic compositions are  , , v
xR , x.  

Contrary to traditional case quantified names can be composite; quantification is 
possible both over all hierarchical or only over basic data. In this work we consider 
quantification over hierarchical data. Composition of existential quantification is 
defined in the following way:   

,   if there exists  ( , ) :   ( || ) ,
( ) ,    if  ( || )   for all  ( , ),    

undefined in all other cases. 

x

x

T ND V A P d x T
xP d F P d x F ND V A





         



   

Composition of universal quantification is defined by formula хР=хР. 
Theorem 1. The class of equitone predicates over hierarchical data is closed under 

compositions , , v
xR , x, х. 

Main properties of compositions x and x are the following. 
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1. If x and y are incomparable then xуР = ухР and xуР = ухР. 
2. Absorption of external quantifier by internal with the same name: 

xхР = хР;  xхР = хР;   xхР = хР;  xхР = хР.  
3. Absorption of external quantifier by internal with more general name: 

x.ухР = хР;  x.ухР = хР;  x.ухР = хР;  x.ухР = хР.  
At the same time xх.уР, xх.уР, хР, х.уР are all different;  

xх.уР, xх.уР, хР, х.уР are all different. 
4. Absorption of the quantified name by more general upper name of renomination:  

, ,
, ,. ( ) ( ),x u x u

z v z vx y R P R P   if . { , , }.x y z u v  

5. Absorption of the upper name of renomination by more general quantifier:  
,
, ( ) ( ),y u u

vz vR xP R xP    if x is a prefix of names from y  and { }.x u   

At the same time . ( ) ( . )x x
z zx y R P R x yP    and . . . .. ( ) ( );x x

x y v x y vx y R P R P    

. . . .
. .( ) ( ( )),  ( ) ( ),  ( ) ( ).x y x y x y x y z z

u u u u x u x uR xP x R P R xP R P x R P R xP          

6. ( ) ( ),u u
v vz R P R zP    if  { , }.z u v   

Properties 4–6 can be rephrased for universal quantification.  
Let us note that some properties valid in classical logic fail for the class of equitone 

predicates over hierarchical data. 
Example 9. Let predicate х be defined by the following formula:   

,   if  ( ) ,
( ) ,    if  ( ) ,    

undefined in all other cases. 
x

T d x A
d F d x A

   


 

It is clear that х is equitone. By definitions of compositions x and хР we have 
that x.v х(d) = x.v х(d) = F  for each dHD(V, A) such that xad, where aA.  
At the same time х(d) = T for such d. So, (х x.v х)(d)  = F.  

4  Semantic Models and Languages of Logics over Hierarchical 
Data 

Semantic models of composition-nominative logics over hierarchical nominative data 
(CNLH) are predicate algebras with class PrHV_А of hierary predicates as carriers and 
class C of compositions as operations of algebras. The class C is determined by a 

level intensional; for a quantifier level C consists of compositions , ,  ,v
xR and x; 

for renominative level these are , , and  v
xR . Thus, algebras of the form AHD(V, 

A) = <PrHV_А; , ,  ,v
xR  x > are semantic base of constructed logics.  With a fixed 

sets V and C such algebras are determined by the set A.  
Alphabet of a language of quantifier level includes symbols of basic compositions, 

a set Ps of predicate symbols, and a set of basic subject names (variables) V.  
The set Fr of formulas for a quantifier level is defined inductively: 
1) every predicate symbol from  Ps  is an (atomic) formula;  
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2) if  and  are formulas, then   and  are formulas; 

3) if  is a formula, then v
xR   is a formula; 

4) if  is a formula, then x is a formula. 
For CNLH of renominative level we drop item 4 in this definition. 
Let nm() be the set of all names, which appear in the symbols of renomination 

and quantification in . 
To distinguish symbols of compositions from their interpretations we use for the 

latter bold font (only in the following definitions). Let  I : Ps  PrHV_А be a total 
single-valued interpretation mapping, then a pair (AHD(V, A), I) is called a model of  
CNLH language. To simplify notation we will denote models as (A, I) Interpretation 
J : FrPrHV_А we define as follows:  

1) J(р) = I(p) for each рPs;  
2) J() = J()J(), J() = (J()); 

3) J ( )v
xR   = R v

x (J());  

4) J(x) = x(J()). 
For renominative level we drop item 4. 
Predicate J(), which is the value of a formula  interpreted on A = (A, I), we 

denote by A. A formula  is partially true on A = (A, I) (denoted by A |= ), if A is 
partially true (irrefutable) predicate.  is everywhere (partially) true, or irrefutable 
(denoted by  |= ), if  is partially true on every model of a language.  

A formula  is a logical consequence of a formula  ( |= ), if formula  is 
irrefutable.  is a weak logical consequence of  ( ||= ), if for each A = (A, I) the 
condition A |=  implies A |= .  

Formulas  and  are logically equivalent (  ), if  |=  and  |= . Formulas 
 and  are logically strictly equivalent ( TF ), if T(A) = T(A) and 
F(A) = F(A) for each AS A. The relation of logical consequence can be extended to 
arbitrary sets ,   Fr.  is a logical consequence of  in the model A ( A|= ) if for 
all dHD(V, A) the condition A(d) = T for all  implies that it is impossible that 
A(d) = F for all .  is a logical consequence of  ( |= ), if  А|=  for all 
model A = (А, I). Relation |= is reflective but not transitive.  

For CNLH the following statements hold. 

Theorem 2 (semantic equivalence). Suppose that ' is obtained from  by 
substitution of some occurrences of 1,..., n with 1,..., n respectively. If 1  1, 
... , n  n, then   '.  

Theorem 3 (semantic equivalence, strong form). Suppose that ' is obtained from 
 by substitution of some occurrences of 1,..., n with 1,..., n respectively. If 
1 TF 1 ,..., n TF n, then  TF '.  

Theorem 4 (substitution of equivalents). Suppose that   . Then ,  |=   
,  |=   and   |= ,    |= , . 

A name xV is strictly unessential for  (xsun()), if x is strictly unessential for 
a predicate A  for every A = (A, I). 

Proposition 4. Let уsun(). Then  x TF
x
yyR  . 
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For each рPs the set of strictly unessential subject names is fixed by a total 
function  : Ps2V. For CNLH we postulate infinity of the set VT = ( )

p Ps

p


  of 

totally strictly unessential names. 
The following properties of formulas are representations of corresponding 

semantic properties of predicate algebras.  

RsN) ,
, ( )y v

z xR  TF ( )v
xR  , if ysun(). 

RT) ,
, ( )z v

z xR  TF ( )v
xR  , if zV; in particular, ( )z

zR  TF .  

R) ( )v
xR  TF ( ) ( )v v

x xR R   . 

R) ( )v
xR  TF ( )v

xR  .  

Generalizing R and R, we get RR and RR. 

RR) (... ( )...)u w
x zR R  TF (... ( )...) (... ( )...)u w u w

x z x zR R R R   . 

RR) ( (... ( )...))u v w
x y zR R R  TF ( (... ( )...))u v w

x y zR R R  . 

Similarly, we can write down the properties R&, R, R, RR&, RR, RR. 

RR_C) ( ( )( ) ( ( ( )))v u u v
x y A A y xR R d r r d    for each A = (A, I), dHD(V,  A).  

ANQ) ,
,. ( )x u

z vx y R  TF
,
, ( )x u

z vR   and ,
,. ( )x u

z vx y R  TF
,
, ( ),x u

z vR   if . { , , }.x y z u v   

ANR) ,
, ( )y u

z vR x  TF ( )u
vR x  and ,

, ( )y u
z vR x  TF ( ),u

vR x    if x is a prefix of 

all names in y  and { }.x u   

R) ( )v
xR y  TF ( )u

vy R  , if { , }.y u v   

R) ( )v
xR y  TF ( ( ))v y

x zzR R   if zVT and znm(R v
x (y)). 

Similarly, we can formulate R and R. Properties R, R, R, R can be 
generalized to RR, RR, RR, RR; R and R to RR and RR.  

For equitone predicates RT can be changed to RTE: 

RTE) ,
, ( )u v

u xR   ( )v
xR  ;  in particular ( )u

uR   .   

For logics of equitone predicates we introduce the notion of primitive formula. A 

formula ( (... ( )...))u v w
x y zR R R p is primitive, if pPs and in renominations identical pairs 

of names are removed.  

With every primitive ( (... ( )...))u v w
x y zR R R p  we connect an expression of the form 

р(), where  represents a convolution of renominations ( (... ( )...))u v w
x y zr r r   given in 

the standard form, VPs is a special symbol, which denotes arbitrary data. To take 
into account strictly unessential subject names, we delete all components that have 
z(р) as a prefix. An expression р() is called a renominant of the above primitive 
formula. The set of longest incomparable names occurred in a renominant is called its 
naming scheme.  

Example 10. To construct the renominant of a primitive formula . ( ( ))u v z
x uR R q  we 

specify corresponding standard form of renomination convolution (see Example 7) 
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obtaining renominant q( ,|| . : : || . :u z vd u v x d z u d z v x d      ). Its naming 

scheme is {u.v, x, z.v}.  
Now we point out basic properties of quantification compositions for CNLH.  
Q1. xy TF yx and xy TF yx, if x and у are incomparable. 
Q2. x TF x and x TF x.  
Q3. x TF xx, x TF xx; x TF xx, x TF xx.  
Q4. x TF x.уx, x TF x.уx; x TF x.уx, x TF x.уx.  
Q5. xx TF x() and x&x TF x(&). 
Q6. x(&)|= x&x and xx|= x(). 
Q7. yx |= xy; and not always xy|= yx. 
Q8.  ||= x and  ||= x. 
Q9. |= x (x) and |= x (x); |= x (x) and |= x (x).  
Properties Q2, Q3, Q5–Q9 are analogous to the corresponding properties of logics 

of quasiary predicates. 
At the propositional level the properties of |= for sets of formulas are identical to 

corresponding properties of logic of quasiary predicates [3].  
Now we formulate basic properties of renomination compositions.  

RTE|–) 
,
, ( ),u v

u xR   А|=    ( ),v
xR   А|= . 

RTE–|)  А|= , ,
, ( )u v

u xR     А|= , ( )v
xR  .  

RsN|–) 
,
, ( ),y v

z xR   А|=   ( ),v
xR   А|= , where уV is strictly unessential for . 

RsN–|)  А|= , ,
, ( )y v

z xR     А|= , ( )v
xR  , where уV is strictly unessential for 

. 

RR|–) (... ( )...),u w
x zR R   А|=   (... ( )...) (... ( )...),u w u w

x z x zR R R R    А|= .  

RR–|) , (... ( )...)u w
x zR R  А|=     , (... ( )...) (... ( )...)u w u w

x z x zR R R R   А|= .  

RR|–) ( (... ( )...)),u v w
x y zR R R   А|=    ( (... ( )...)),u v w

x y zR R R   А|= .  

RR–|) , ( (... ( )...))u v w
x y zR R R  А|=     , ( (... ( )...))u v w

x y zR R R  А|= .  

Properties RR|– , RR–| , RR&|– , RR&–|  are analogous. 

R|–) ( ),v
xR y   А|=    ( ),v

xyR   А|=   if { , }.y u v   

R–|)  А|= , ( )v
xR y      А|= , ( )v

xyR   if { , }.y u v   

R|–) ( ),v
xR y   А|=    ( ( )),v y

x zzR R   А|= .  

R–|)  А|= , ( )v
xR y      А|= , ( ( ))v y

x zzR R  .  

For R|– and R–| z is totally strictly unessential and znm(R v
x (y)). 

Properties R|– , R–| , R|– , R–|  are analogous. Properties of type R, R, 
R, R can be generalized to properties of type RR, RR, RR, RR.  
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5 The Sequent Calculus of Logics of Predicates over Hierarchical 
Data 

For logics of equitone hierary predicates we will build a calculus of sequent type. We 
will consider here only logics of renominative level. Sequents are interpreted as sets 
of labeled formulas marked by one of two symbols  – |– or –|. Such sequents  are also 
denoted by        |––|, where all formulas of  are labeled by the symbol |– , of  – by the 
symbol –| .  

Sequent  is closed, if there exists  such that |– and –|  or if there exist 
primitive  and  with identical renominants such that |– and –|. Consequently, if  
|––| is closed then   |=  .  

Derivation in the sequent calculus has the form of tree, the vertices of which are 
sequents. Such trees [3] are called sequent trees. A sequent tree is closed, if every its 
leaf is a closed sequent. A sequent  is derivable, if there is a closed sequent tree with 
root . Sequent calculus is constructed in such a way that sequent |––|  has a derivation 
if and only if   |=  . 

Semantic properties of relation |= have their syntactic analogues – sequent forms 
(rules). For renominative logics of equitone hierary predicates these forms are the 
following. 

| | |

|

,         ,  

,  

A B

A B
 



 

 
 

|  |

|

,  

,  

A

A






 
 

|–RTE |

,
| ,

( ),

( ),

v
x

u v
u x

R A

R A








  

|–RR 

|

|

(... ( )...) (... ( )...),

(... ( )...)),

u w u w
x z x z

u w
x z

R R A R R B

R R A B





 

 
 

| | |

|

,  ,  

,  

A B

A B
 





 
 

|  |

|

,  

,  

A

A






 
 

–|RTE |

,
| ,

( ),

( ),

v
x

u v
u x

R A

R A








 

–|RR 

|

|

(... ( )...) (... ( )...),

(... ( )...),

u w u w
x z x z

u w
x z

R R A R R B

R R A B





 

 
  

|–RR |

|

(... ( )...),

(... ( )...),

u w
x z

u w
x z

R R A

R R A





 

 
  –|RR |

|

(... ( )...),

(... ( )...),

u w
x z

u w
x z

R R A

R R A





 

 
 

Sequent calculus with basic sequent forms shown above we will call RID-calculus. 
For RID-calculus theorems of soundness and completeness hold. 

Theorem 5 (soundness). Let sequent |––|  be derivable. Then    |=  .  
The proof can be conducted by induction over shape of a sequent tree for |––|.   

For proving completeness we will use Hintikka's method of model sets. The set Н 
of labeled formulas with W =  nm(Н) is a model set, if: 

HC) For every non-primitive formula  it is impossible that |–H and  –|H.  
HCR) For primitive formulas  and  with identical renominants it is impossible  

that |– , –|H and it is impossible that |–, –|H.  
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H) If |–H, then |–H or |–H; if –|H, then –|H and –|H.  
H) If |–H, then –|H; if –|H, then |–H.  

HRT) If |–
,
, ( )u v

u xR  H, then |– ( )v
xR  H; if –|

,
, ( )u v

u xR  H, then –| ( )v
xR  H.  

HR) If |– (... ( )...)u w
x zR R  H, then |– (... ( )...) (... ( )...)u w u w

x z x zR R R R   H; 

if –| (... ( )...)u w
x zR R  H, then 

  –| (... ( )...) (... ( )...)u w u w
x z x zR R R R   H.  

HR) If |– (... ( )...)u w
x zR R  H, then |– (... ( )...)u w

x zR R  H; 

if –| (... ( )...)u w
x zR R  H, then –| (... ( )...)u w

x zR R  H. 

Procedure of construction of a tree for  is split into stages. Every application of 
sequent form is performed only for the finite set of accessible formulas. At the 
beginning of every stage we perform the step of access: to the list of accessible 
formulas one formula from each of lists of |–-formulas and –|-formulas is added. We 
start the construction with a pair of first formulas from the lists.  

Suppose that k stages of procedure have already been performed. On the stage k+1 
we check whether all terminal nodes are closed. If yes, the procedure is completed 
positively, and we have got a closed sequent tree. If no, for every unclosed leaf  we 
undertake a next step of access, whereupon we finish building of finite subtree with a 
vertex  as follows. 

We activate all accessible non-primitive formula . Then to every active formula 
we apply the proper sequent form. We remove all repetitions of formulas in a sequent.  

During the construction of sequent tree the following cases are possible:  
1. Procedure is completed positively; we have the finite closed tree.  
2. Procedure is completed negatively, or is not completed; we have a finite 

or infinite unclosed tree. Such tree has at least one path all vertices of which are 
unclosed sequents. Such path  is unclosed. Every formula of  will be in  and 
will become accessible.  

Theorem 6. Let  be an unclosed path in sequent tree. Then there exists AS 
A = (A, I) and HD(V,  A):  |–Н  A() = T  and  –|Н   A() = F. 

The set Н of labeled formulas of sequents of the path  is a model set.  
Let W be a combination of naming schemes of the set of renominants of primitive 

formulas of sequents of the path . Such W includes longest incomparable names, 
which are involved in renominations of formulas of sequents of the path .  

We duplicate elements of W obtaining A = {u | uW}; then put  = [uu | uW]. 

We specify the values of basic predicates on  and on data of the form (... ( )...)u w
x zr r   

in the following way:  
 if |–рН, then set рA() = T; if –|рН, then set рA() = F; 

 if |– (... ( )...)u w
x zR R p Н, then set ( (... ( )...))u w

A x zp r r  = T; 

 if –| ( (... ( )...)u v w
x y zR R R p Н, then set ( (... ( )...))u w

A x zp r r  = F. 

In all other cases for dHD(V, A) the value of рA(d) can be set arbitrarily, taking into 
account equitonicity and strict inessentiality of names. 

Theorem holds for atomic and primitive formulas due to above definitions of basic 
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predicates. Then the proof is carried out by induction over the complexity of a 
formula in accordance with construction of a model set.  

Theorem 7 (completeness). Let    |=  . Then a sequent  |––|  is derivable.  
Suppose contrary:    |=    and a sequent |––| is not derivable. Then sequent tree  

for  = |––| is not closed. Consequently, in  there is unclosed path . The set H of 
all labeled formulas of sequents of this path is a model set. According to the 
theorem 5 there exists AS А = (А, І) and HD(V,  A) such that |–H  A()= T 
and –|H  A()= F. Due to   H we have |–  А() = T and –|  
А() = F. But it contradicts   |=  .  

6 Conclusions  

In the paper new logics oriented on hierarchical data are developed. Algebras of 
partial predicates over such data with special compositions as operations form a 
semantic base for constructed logics. These logics may also be treated as 
generalization of classical logic. First of all, this generalization concerns types of 
predicates: while classical logic is semantically based on total n-ary predicates, we 
have constructed logics based on partial quasiary and hierary predicates, defined on 
special types of hierarchical nominative data. Importance of such data is explained by 
their representational power, which permits to model data structures of specification 
and programming languages. Characteristic feature of such languages is usage of 
composite names to access data components. The constructed logics also use 
composite names. Semantic properties of such logics have been studied; 
corresponding sequent calculi have been defined, their soundness and completeness 
have been proved for logics of renominative level. Authors plan to present more 
developed logics at hierarchical nominative level in forthcoming papers.  
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