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Abstract. We consider the following question: given a continuous-time
non-deterministic (not necessarily time-invariant) dynamical system, is it
true that for each initial condition there exists a global-in-time trajectory.
We study this question for a large class of systems, namely the class of
complete non-deterministic Markovian systems. We show that for this
class of systems, the question can be answered using analysis of existence
of locally defined trajectories in a neighborhood of each time.
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1 Introduction

In this paper we consider the following question: given a continuous-time non-
deterministic (not necessarily time-invariant) dynamical system Σ, is it true
that for any time moment t0 and initial state x0 there exists a global-in-time
trajectory t 7→ s(t) such that s(t0) = x0.
Some related problems, e.g. global existence of solutions of initial value prob-

lems for various classes of differential equations [2, 3, 7] and inclusions [4–6], ex-
istence of non-Zeno global-in-time executions of hybrid automata [8–10] are well
known. However, they have mostly been studied in the context of determinis-
tic systems (differential equations with unique solutions, deterministic hybrid
automata, etc.). Differential inclusions [5] are in principle non-deterministic sys-
tems, but for them a more common question is whether any (instead of some)
solution for each initial condition exists into future [4, 6].
For deterministic systems the existence of a global trajectory for each initial

condition implies that each partial trajectory (e.g. defined on a proper open in-
terval of the real time scale) can be extended to a global trajectory. But this is
not necessary for non-deterministic systems. For example, for each initial condi-
tion x(t0) = x0 the differential inclusion

dx
dt
∈ [0, x2] has both a globally defined
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constant trajectory x(t) = x0 and a trajectory of the equation
dx
dt
= x2 which

escapes to infinity in finite time. Thus it is not true that any (locally defined)
solution extends infinitely into future.
We will study our existence question for a large class of systems, namely the

class of complete non-deterministic Markovian systems. We will show that for
this class of systems, the question can be answered using analysis of existence
of locally defined trajectories in a neighborhood of each time.
Note that in this paper we use the term Markovian in the context of purely

non-deterministic (i.e. non-stochastic) systems. The formal definition will be
given below. Also note that many well-known classes of continuous-time systems
either belong to this class of can be represented by systems of this class. We will
give examples later in the paper.

2 Non-deterministic Complete Markovian Systems

The notions of a Markov process or system [12] are usually defined and studied in
the context of probability theory. However, they also make sense in a purely non-
deterministic setting, where no quantitative information is attached to events
(trajectories, transitions, etc.), i.e. each event is either possible or impossible.
General definitions of continuous-time Markovian systems of such kind have

appeared in the literature [1]. They give a large class of (not necessarily deter-
ministic) systems which can have both continuous and discontinuous (jump-like)
trajectories. Essentially, the notion of a non-deterministic Markovian system cap-
tures the idea that only the system’s current state (but not its past) determines
the set of its possible futures.
Below we define the notion of a non-deterministic (complete) Markovian

system in spirit of, but not exactly as in [1]. The main reasons for this are that
we would like to include non-time-invariant systems in the definition and focus
on partial trajectories, i.e. trajectories defined on a subset of the time scale.
We will use the following notation: N = {1, 2, 3, ...}, N0 = N∪{0}, f : A→ B

is a total function from A to B, f : A→̃B is a partial function from A to B,
f |X is the restriction of a function f to a set X, 2A is the power set of a set A.
The notation f(x) ↓ (f(x) ↑) means that f(x) is defined (resp. undefined) on
the argument x, dom(f) = {x | f(x) ↓}. Also, ¬, ∨, ∧, ⇒, ⇔ denote the logical
operations of negation, disjunction, conjunction, implication and equivalence
correspondingly. Let us denote:

– T = [0,+∞) is the (real) time scale. We assume that T is equipped with a
topology induced by the standard topology on R

– T is the set of all connected subsets of T with cardinality greater than one.

For the purpose of this paper, we will use the following definition of a dy-
namical system on the time scale T .

Definition 1. A dynamical system on T is as an abstract object M (a mathe-
matical model; in applications this may be an equation, inclusion, switched sys-
tem, etc.) together with the associated time scale T (this scale will be the same
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throughout the paper), the set of states Q, and the set of (partial) trajectories Tr.
A trajectory is a function s : A→ Q, where A ∈ T (note that trivial trajectories
defined on singleton or empty time sets are excluded). The set Tr satisfies the
property: if s : A → Q ∈ Tr, B ∈ T, and B ⊆ A, then s|B ∈ Tr. We will refer
to this property as ”Tr is closed under proper restrictions (CPR)”.

We will say that a trajectory s1 ∈ Tr is a subtrajectory of s2 ∈ Tr (denoted
as s1 v s2), if s1 = s2|A for some A ∈ T. The trajectories s1 and s2 are
incomparable, if s1 is not a subtrajectory of s2 and vice versa.
According to the definition given above, for a time t0 ∈ T and q0 ∈ Q there

may exist multiple incomparable trajectories s such that s(t0) = q0 (as well as
one or none). In this sense a dynamical system can be non-deterministic.
It is easy to see that (Tr,v) is a partially ordered set (poset).

Definition 2. A set Tr (which is CPR) is

– complete, if (Tr,v) is a chain-complete poset (every chain has a supremum)
– Markovian, if s ∈ Tr for each s1, s2 ∈ Tr and t ∈ T such that t =
sup dom(s1) = inf dom(s2), s1(t) ↓, s2(t) ↓, and s1(t) = s2(t), where

s(t) =

{
s1(t), t ∈ dom(A)

s2(t), t ∈ dom(B)
.

Note that because Tr is closed under restrictions to sets A ∈ T, the supremum
of a chain c in poset (Tr,v) exists iff s∗ ∈ Tr, where s∗ :

⋃
s∈c dom(s) → Q is

defined as follows: s∗(t) = s(t), if s ∈ c and t ∈ dom(s) (this definition is correct,
because c is a chain with respect to subtrajectory relation).
The notions of complete and Markovian sets of trajectories are illustrated in

Fig. 1 and 2.

Fig. 1. Completeness property

The following proposition gives some examples of sets of trajectories.

Proposition 1. Let Q = R. Consider the following sets of trajectories:
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Fig. 2. Markovian property

– Trall is the set of all functions s : A→ Q, A ∈ T.
– Trcont is the set of all continuous functions s ∈ Trall (on their domains)
– Trdiff is the set of all differentiable functions s ∈ Trall (on their domains)
– Trbnd is the set of all bounded functions s ∈ Trall (on their domains).

Then the following holds:

(1) ∅, Trall, Trcont, Trdiff , Trbnd, Trdiff ∩ Trbnd are CPR
(2) ∅, Trall, Trcont are complete and Markovian
(3) Trdiff is complete, but is not Markovian
(4) Trbnd is Markovian, but is not complete
(5) Trdiff ∩ Trbnd is neither complete, nor Markovian.

Definition 3. A non-deterministic complete Markovian system (NCMS) is dy-
namical system is (M,T,Q, Tr) such that Tr is complete and Markovian.

The following propositions 2-4 give some examples of NCMS.

Proposition 2. Let Q = Rd (d ∈ N) and M be a differential equation dy
dt
=

f(t, y), where f : R×Rd → Rd is a given total function. Let Tr be the set of all
functions s : A → Q, A ∈ T such that s is differentiable on A and satisfies M
on A. Then (M,T,Q, Tr) is a NCMS.

Proposition 3. Let M be a differential inclusion dy
dt
= F (t, y), where F : R ×

Rd → 2R
d

is a given (total) function. This is not necessarily a NCMS, but it

can be converted to a NCMS as follows. Let M ′ be the system

{
dy
dt
= x

y ∈ F (t, x)
,

where x is a new variable. Let Q = Rd ×Rd and Tr be the set of all s : A→ Q,
A ∈ T such that s is locally absolutely continuous on A and satisfies M ′ almost
everywhere on A (w.r.t. Lebesgue’s measure). Then (M,T,Q, Tr) is a NCMS.
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Proposition 4. Let Q be a set equipped with discrete topology. Let r ⊆ Q×Q be

a relation on Q. LetM be a system

{
y(t+) = y(t), t /∈ N0
(y(t), y(t+)) ∈ r, t ∈ N0

, where y denotes

an unknown function, y(t+) denotes the right limit at t. Let Tr be the set of all
piecewise-constant left-continuous functions s : A → Q (w.r.t. discrete topology
on Q) which satisfy M on A (see Fig. 3). Then (M,T,Q, Tr) is a NCMS.

Fig. 3. A piecewise-constant left-continuous trajectory which models an execution of
a (discrete-time) transition system (Q, r).

Below we will describe a general complete Markovian set of trajectories (or
a system) in terms of certain local predicates.
Let us introduce the following terminology:

Definition 4. Let s1, s2 : T→̃Q. Then s1 and s2:

– coincide on a set A ⊆ T , if A ⊆ dom(s1) ∩ dom(s2) and s1(t) = s2(t) for
each t ∈ A. We denote this as s1

.
=A s2.

– coincide in a left neighborhood of t ∈ T , if t > 0 and there exists t′ ∈ [0, t),
such that s1

.
=(t′,t] s2. We denote this as s1

.
=t− s2.

– coincide in a right neighborhood of t ∈ T , if there exists t′ > t, such that
s1
.
=[t,t′) s2. We denote this as s1

.
=t+ s2.

Let Q be a set of states. Denote by ST (Q) the set of pairs (s, t) where
s : A→ Q for some A ∈ T and t ∈ A.

Definition 5. A predicate p : ST (Q)→ Bool (Bool = {true, false}) is called

– left-local, if p(s1, t) ⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q) and s1
.
=t−

s2, and moreover, p(s, t) whenever t is the least element of dom(s)
– right-local, if p(s1, t)⇔ p(s2, t) whenever (s1, t), (s2, t) ∈ ST (Q), s1

.
=t+ s2,

and moreover, p(s, t) whenever t is the greatest element of dom(s)
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– left-stable, if whenever t is not the least element of dom(s), p(s, t) implies
that there exists t′ ∈ [0, t) such that p(s, τ) for all t′ ∈ [t′, t] ∩ dom(s)

– right-stable, if whenever t is not the greatest element of dom(s), p(s, t) im-
plies that there exists t′ > t such that p(s, τ) for all τ ∈ [t, t′] ∩ dom(s).

The theorems given below show how left- and right-local predicates can be
used to specify/represent a complete Markovian set of trajectories (or system).

Theorem 1. Let l : ST (Q) → Bool be a left-local predicate and r : ST (Q) →
Bool be a right-local predicate. Then the set

Tr = {s : A→ Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

is CPR, complete, and Markovian.

Theorem 2. Let Tr be a CPR complete Markovian set of trajectories which take
values in the set of states Q. Then there exist unique predicates l, r : ST (Q) →
Bool such that l is left-local and left-sable, r is right-local and right-stable, and

Tr = {s : A→ Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.

Let us consider an example which illustrates these theorems. Let Q = Rd and
Tr be the set of all functions s : A → Q, A ∈ T such that s is differentiable on
A and satisfies a differential equation dy

dt
= f(t, y) on A, where f : R×Rd → Rd

is a given function. Then Tr is complete and Markovian by Proposition 2.

Let us show how Tr can be represented using left- and right-local predicates.
Let l, r : ST (Q)→ Bool be predicates such that

– l(s, t) iff either t is the least element of dom(s), or ∂−s(t) ↓= f(t, s(t)),
– r(s, t) iff either t is the greatest element of dom(s), or ∂+s(t) ↓= f(t, s(t)),

where ∂−s(t) and ∂+s(t) denote the left- and right- derivative of s at t (the sym-
bol ↓ indicates that the left hand side of the equality is defined). It is not difficult
to check that l is left-local, r is right-local, and Tr = {s : A→ Q |A ∈ T∧ (∀t ∈
A l(s, t)∧r(s, t))}. In general case, l and r are not necessarily (respectively) left-
and right-stable. But we can define another predicates l∗, r∗ on ST (Q) such that

– l∗(s, t) iff either t is the least element of dom(s), or there exists t
′ < t such

that s is differentiable on (t′, t] and satisfies differential equation dy
dt
= f(t, y)

on (t′, t] (at the time t the derivative is understood as left-derivative).

– r∗(s, t) iff either t is the greatest element of dom(s), or there exists t
′ > t

such that s is differentiable on [t, t′) and satisfies dy
dt
= f(t, y) on [t, t′).

Then it is not difficult to see that l∗ is left-local and left-stable, and r∗ is right-
local and right-stable, and Tr = {s : A→ Q |A ∈ T ∧ (∀t ∈ A l(s, t) ∧ r(s, t))}.
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3 Existence of Global-in-Time Trajectories

Let us recall our original question about global-in-time trajectories and formulate
it for non-deterministic complete Markovian systems.
Let (M,T,Q, Tr) be a NCMS. Our question (let us denote it as Q0) is

whether it is true that for each t0 ∈ T , q0 ∈ Q there exists a trajectory s : T → Q
(i.e. global-in-time) such that s(t0) = q0.
Note that we ask about existence of a trajectory defined in both time direc-

tions relative to t0. The case when we are interested in existence of a trajectory
defined in one direction (e.g s : [t0,+∞) → Q) is not considered in this paper,
but can be studied analogously.
Let us decompose Q0 into the following two questions:

Q1: Is it true that for each t0 ∈ T , q0 ∈ Q there exists a (partial) trajectory
s : A→ Q such that t0 is an interior point of A (relative to the topology on
T , e.g. 0 is considered an interior point of [0, 1]) and s(t0) = q0 ?

Q2: Is it true that for each partial trajectory s : A → Q such that A is a
compact segment there exists a trajectory s′ : T → Q such that s = s′|A ?

Proposition 5. The answer to the question Q0 is positive iff the answers to
Q1 and Q2 are positive.

The questionQ1 is about existence of a local-in-time trajectories. We will not
study it in this paper and assume that it can be answered using domain-specific
methods. Our aim is to answer Q2 using only information about existence of
locally defined trajectories in the neighborhood of each time moment.
Let us introduce several definitions. Let Σ = (M,T,Q, Tr) be a fixed NCMS.

Definition 6. – A right dead-end path (in Σ) is a trajectory s : A→ Q such
that A has a form [a, b), where a, b ∈ T . and there is no s′ : [a, b]→ Q ∈ Tr
such that s = s′|dom(s) (i.e. s cannot be extended to a trajectory on [a, b]).
The value b is called the end of this path.

– A left dead-end path (in Σ) is a trajectory s : A → Q such that A has a
form (a, b], where a, b ∈ T . and there is no s′ : [a, b] → Q ∈ Tr such that
s = s′|dom(s). The value a is called the end of this path.

– A dead-end path is either a right dead-end path, or a left dead-end path.

Let f : [0,+∞)→ [0,+∞) be a positive-definite (i.e. f(0) = 0, f(x) > 0 when
x > 0), monotonously non-decreasing, and continuous function (e.g. f(x) = x).

Definition 7. – A right dead-end path s : [a, b)→ Q is called f -Ob-escapable,
where Ob is a connected neighborhood of b, if there exists c ∈ (a, b) ∩ Ob,
d ∈ [b + f(b − c),+∞), and a trajectory s′ : [c, d] ∩ Ob → Q such that
s(c) = s′(c).

– A left dead-end path s : (a, b] → Q is called f -Ob-escapable, where Ob is a
connected neighborhood of b, if there exists c ∈ (a, b) ∩ Ob, d ∈ [0,max{a −
f(c− a), 0}], and a trajectory s′ : [d, c] ∩Ob → Q such that s(c) = s′(c).

– A right- or left- dead-end path is called f -escapable, if it is f -T -escapable.
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This definition is illustrated in Fig. 4. Note that a suffix of a right dead-end path
s : [a, b) → Q (i.e. a restriction of the form s|[a′,b), where a′ ∈ [a, b)) is a right
dead-end path. Analogously, a prefix of a left dead-end path s : (a, b] → Q (i.e.
a restriction of the form s|(a,b′], where b′ ∈ (a, b]) is a left dead-end path.
Let Σ = (M,T,Q, Tr) be a NCMS. For each t ∈ T let Ot ⊆ T be some

connected neighborhood of t and Dt be the set of all dead-end paths s (in Σ)
such that t is the end of s and dom(s) ⊆ Ot.

Theorem 3. The following conditions are equivalent:

(1) for each partial trajectory s : A→ Q such that A is a compact segment there
exists a trajectory s′ : T → Q such that s = s′|A

(2) each dead-end path (in Σ) is f -escapable
(3) for each t ∈ T and s ∈ Dt, s is f -Ot-escapable.

Note that this theorem holds for an arbitrary fixed f and arbitrary fixed choice
of neighborhoods Ot, t ∈ T .
This theorem gives an answer to the question Q2. The condition 3 of this

theorem shows in which sense Theorem 3 reduces the question of global-in-time
existence of trajectories to the analysis of local existence of trajectories in the
neighborhood of each time moment.

Fig. 4. An f -escapable right dead-end path.

4 Conclusion

We have studied the question of existence of global-in-time trajectories for each
initial condition of a (non-time-invariant) non-deterministic complete Markovian
system. We have shown that this question can be answered using analysis of
existence of locally defined trajectories in a neighborhood of each time. The
results can be useful for studying the problems of well-posedness and reachability
for continuous and discrete-continuous (hybrid) dynamical systems.
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