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Abstract. We consider the following question: given a continuous-time
non-deterministic (not necessarily time-invariant) dynamical system, is it
true that for each initial condition there exists a global-in-time trajectory.
We study this question for a large class of systems, namely the class of
complete non-deterministic Markovian systems. We show that for this
class of systems, the question can be answered using analysis of existence
of locally defined trajectories in a neighborhood of each time.
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1 Introduction

In this paper we consider the following question: given a continuous-time non-
deterministic (not necessarily time-invariant) dynamical system X, is it true
that for any time moment ¢ty and initial state x there exists a global-in-time
trajectory ¢ — s(t) such that s(tg) = xo.

Some related problems, e.g. global existence of solutions of initial value prob-
lems for various classes of differential equations [2, 3, 7] and inclusions [4-6], ex-
istence of non-Zeno global-in-time executions of hybrid automata [8-10] are well
known. However, they have mostly been studied in the context of determinis-
tic systems (differential equations with unique solutions, deterministic hybrid
automata, etc.). Differential inclusions [5] are in principle non-deterministic sys-
tems, but for them a more common question is whether any (instead of some)
solution for each initial condition exists into future [4, 6].

For deterministic systems the existence of a global trajectory for each initial
condition implies that each partial trajectory (e.g. defined on a proper open in-
terval of the real time scale) can be extended to a global trajectory. But this is
not necessary for non-deterministic systems. For example, for each initial condi-

dz

tion z(tg) = xo the differential inclusion %% € [0, 2] has both a globally defined
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constant trajectory z(t) = z¢ and a trajectory of the equation ‘é—f = 22 which
escapes to infinity in finite time. Thus it is not true that any (locally defined)
solution extends infinitely into future.

We will study our existence question for a large class of systems, namely the
class of complete non-deterministic Markovian systems. We will show that for
this class of systems, the question can be answered using analysis of existence
of locally defined trajectories in a neighborhood of each time.

Note that in this paper we use the term Markovian in the context of purely
non-deterministic (i.e. non-stochastic) systems. The formal definition will be
given below. Also note that many well-known classes of continuous-time systems
either belong to this class of can be represented by systems of this class. We will
give examples later in the paper.

2 Non-deterministic Complete Markovian Systems

The notions of a Markov process or system [12] are usually defined and studied in
the context of probability theory. However, they also make sense in a purely non-
deterministic setting, where no quantitative information is attached to events
(trajectories, transitions, etc.), i.e. each event is either possible or impossible.

General definitions of continuous-time Markovian systems of such kind have
appeared in the literature [1]. They give a large class of (not necessarily deter-
ministic) systems which can have both continuous and discontinuous (jump-like)
trajectories. Essentially, the notion of a non-deterministic Markovian system cap-
tures the idea that only the system’s current state (but not its past) determines
the set of its possible futures.

Below we define the notion of a non-deterministic (complete) Markovian
system in spirit of, but not exactly as in [1]. The main reasons for this are that
we would like to include non-time-invariant systems in the definition and focus
on partial trajectories, i.e. trajectories defined on a subset of the time scale.

We will use the following notation: N = {1,2,3,...}, Ngo = NU{0}, f: A— B
is a total function from A to B, f : A=B is a partial function from A to B,
flx is the restriction of a function f to a set X, 24 is the power set of a set A.
The notation f(z) | (f(z) 1) means that f(z) is defined (resp. undefined) on
the argument z, dom(f) = {z | f(z) |}. Also, =, V, A, =, < denote the logical
operations of negation, disjunction, conjunction, implication and equivalence
correspondingly. Let us denote:

— T = [0,400) is the (real) time scale. We assume that T is equipped with a
topology induced by the standard topology on R
— ¥ is the set of all connected subsets of T with cardinality greater than one.

For the purpose of this paper, we will use the following definition of a dy-
namical system on the time scale T'.

Definition 1. A dynamical system on T is as an abstract object M (a mathe-
matical model; in applications this may be an equation, inclusion, switched sys-
tem, etc.) together with the associated time scale T (this scale will be the same
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throughout the paper), the set of states Q, and the set of (partial) trajectories T'r.
A trajectory is a function s : A — Q, where A € T (note that trivial trajectories
defined on singleton or empty time sets are excluded). The set T'r satisfies the
property: if s: A— Q € Tr, B€ X, and B C A, then s|p € Tr. We will refer
to this property as 7Tr is closed under proper restrictions (CPR)”.

We will say that a trajectory s; € T'r is a subtrajectory of so € Tr (denoted
as s1 T sg), if s3 = s34 for some A € ¥. The trajectories s; and s are
incomparable, if s; is not a subtrajectory of so and vice versa.

According to the definition given above, for a time ty € T and g9 € @ there
may exist multiple incomparable trajectories s such that s(tg) = go (as well as
one or none). In this sense a dynamical system can be non-deterministic.

It is easy to see that (T'r,C) is a partially ordered set (poset).

Definition 2. A set T'r (which is CPR) is

— complete, if (T'r,C) is a chain-complete poset (every chain has a supremum,)
— Markovian, if s € Tr for each s1,s9 € Tr and t € T such that t =
sup dom(s1) = inf dom(sz), s1(t) 4, s2(t) |, and s1(t) = sa(t), where

) si(t), te€dom(A)
s(t) = {sz(t), t € dom(B)’

Note that because T'r is closed under restrictions to sets A € T, the supremum
of a chain ¢ in poset (T, C) exists iff s, € T'r, where s, : (J, .. dom(s) = Q is
defined as follows: s.(t) = s(t), if s € c and t € dom(s) (this definition is correct,
because c is a chain with respect to subtrajectory relation).

The notions of complete and Markovian sets of trajectories are illustrated in
Fig. 1 and 2.

a chain of partial trajectories

state

the limit is a partial trajectory

time

Fig. 1. Completeness property

The following proposition gives some examples of sets of trajectories.

Proposition 1. Let Q = R. Consider the following sets of trajectories:
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if one partial trajectory ends and another one begins in state q at time t
(both are defined at t), then their concatenation is a partial trajectory

state

time

Fig. 2. Markovian property

— Trqy is the set of all functions s: A — Q, A€ X.

— Treont 18 the set of all continuous functions s € Trqy (on their domains)

— Traipy is the set of all differentiable functions s € Trqy (on their domains)
— Tryng is the set of all bounded functions s € Trqy (on their domains).

Then the following holds:

(1) 0, Trau, Treont, Traigfs Tond, Traifs N Trong are CPR
(2) 0, Tray, Treont are complete and Markovian

(8) Traiss is complete, but is not Markovian

(4) Tryna is Markovian, but is not complete

(5) Trairs N Tryng is neither complete, nor Markovian.

Definition 3. A non-deterministic complete Markovian system (NCMS) is dy-
namical system is (M, T, Q,Tr) such that Tr is complete and Markovian.

The following propositions 2-4 give some examples of NCMS.

Proposition 2. Let Q = R? (d € N) and M be a differential equation % =
f(t,y), where f : R x R — R? is a given total function. Let Tr be the set of all
functions s : A — Q, A € T such that s is differentiable on A and satisfies M

on A. Then (M,T,Q,Tr) is a NCMS.

Proposition 3. Let M be a differential inclusion % = F(t,y), where F : R x

R? — 2R 45 ¢ given (total) function. This is not necessarily a NCMS, but it
dy _

can be converted to a NCMS as follows. Let M’ be the system { % * ,
y € F(t )

where = is a new variable. Let Q = R% x R? and Tr be the set of all s: A — Q,
A € T such that s is locally absolutely continuous on A and satisfies M’ almost
everywhere on A (w.r.t. Lebesque’s measure). Then (M, T,Q,Tr) is a NCMS.
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Proposition 4. Let QQ be a set equipped with discrete topology. Let r C Q X Q be
y(t+) = y(t), t ¢ No
(y(t)7y(t+)) er, te NO
an unknown function, y(t+) denotes the right limit at t. Let T'r be the set of all

piecewise-constant left-continuous functions s : A — Q (w.r.t. discrete topology
on Q) which satisfy M on A (see Fig. 8). Then (M,T,Q,Tr) is a NCMS.

a relation on Q. Let M be a system { , where y denotes

ql and g3 are related by r

state
q3 —t
1 1
1 1
q2 ' P
I |
al | —t A
1 1
1 1 :
t-1 t t+1 time

Fig. 3. A piecewise-constant left-continuous trajectory which models an execution of
a (discrete-time) transition system (Q,r).

Below we will describe a general complete Markovian set of trajectories (or
a system) in terms of certain local predicates.
Let us introduce the following terminology:

Definition 4. Let s1,85 : T5Q. Then s1 and Sa:

— coincide on a set A C T, if A C dom(s1) Ndom(sz) and s1(t) = sa(t) for
each t € A. We denote this as s1 =4 So.

— coincide in a left neighborhood of t € T, if t > 0 and there exists t' € [0,t),
such that s1 =@ 1) s2. We denote this as s1 = sa.

— coincide in a right neighborhood of t € T, if there exists t' > t, such that
81 =,y S2. We denote this as s1 =i s2.

Let @ be a set of states. Denote by ST(Q) the set of pairs (s,t) where
s:A— (Q for some A€ T and t € A.

Definition 5. A predicate p : ST(Q) — Bool (Bool = {true, false}) is called

— left-local, if p(s1,t) < p(sa2,t) whenever (s1,t),(s2,t) € ST(Q) and s1 =;_
S2, and moreover, p(s,t) whenever t is the least element of dom(s)

— right-local, if p(s1,t) < p(sa2,t) whenever (s1,t),(s2,t) € ST(Q), s1 =i+ Sa,
and moreover, p(s,t) whenever t is the greatest element of dom(s)
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— left-stable, if whenever t is not the least element of dom(s), p(s,t) implies
that there exists t' € [0,t) such that p(s,T) for all t’ € [t',t] N dom(s)

— right-stable, if whenever t is not the greatest element of dom(s), p(s,t) im-
plies that there exists t' >t such that p(s,T) for all T € [t,¢'] N dom(s).

The theorems given below show how left- and right-local predicates can be
used to specify /represent a complete Markovian set of trajectories (or system).

Theorem 1. Let | : ST(Q) — Bool be a left-local predicate and r : ST(Q) —
Bool be a right-local predicate. Then the set

Tr={s: A= Q|AcTA(Nte Al(s,t) Ar(s,t))}.
is CPR, complete, and Markovian.

Theorem 2. Let Tr be a CPR complete Markovian set of trajectories which take
values in the set of states Q. Then there exist unique predicates l,r : ST(Q) —
Bool such that 1 is left-local and left-sable, r is right-local and right-stable, and

Tr={s: A= Q|AcTAN cAl(st)Ar(s1))}

Let us consider an example which illustrates these theorems. Let @ = R and
Tr be the set of all functions s : A — @, A € T such that s is differentiable on
A and satisfies a differential equation % = f(t,y) on A, where f: R x RY — RY
is a given function. Then T'r is complete and Markovian by Proposition 2.

Let us show how T'r can be represented using left- and right-local predicates.

Let I,7 : ST(Q) — Bool be predicates such that

— (s, t) iff either t is the least element of dom(s), or O_s(t) = f(t, s(t)),
— r(s,t) iff either ¢ is the greatest element of dom(s), or d,s(t) = f(t, s(t)),

where 0_s(t) and 01 s(t) denote the left- and right- derivative of s at ¢ (the sym-
bol | indicates that the left hand side of the equality is defined). It is not difficult
to check that [ is left-local, r is right-local, and Tr = {s: A > Q| A € TA (Vt €
Al(s,t)Ar(s,t))}. In general case, [ and r are not necessarily (respectively) left-
and right-stable. But we can define another predicates ., r. on ST(Q) such that

— L. (s,t) iff either ¢ is the least element of dom(s), or there exists t' < ¢ such
that s is differentiable on (¢',t] and satisfies differential equation %’ = f(t,y)
on (t',t] (at the time ¢ the derivative is understood as left-derivative).

— 7.(s,t) if either ¢ is the greatest element of dom(s), or there exists t' > ¢
such that s is differentiable on [¢,t') and satisfies % = f(t,y) on [t,t').

Then it is not difficult to see that [, is left-local and left-stable, and r, is right-
local and right-stable, and Tr ={s: A - Q| A€ T A (Vt € Al(s,t) Ar(s,t))}.
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3 Existence of Global-in-Time Trajectories

Let us recall our original question about global-in-time trajectories and formulate
it for non-deterministic complete Markovian systems.

Let (M,T,Q,Tr) be a NCMS. Our question (let us denote it as QO) is
whether it is true that for each g € T, g € Q there exists a trajectory s : T — Q
(i.e. global-in-time) such that s(tp) = qo.

Note that we ask about existence of a trajectory defined in both time direc-
tions relative to tg. The case when we are interested in existence of a trajectory
defined in one direction (e.g s : [to, +00) — Q) is not considered in this paper,
but can be studied analogously.

Let us decompose QO into the following two questions:

Q1: Is it true that for each tg € T, qo € Q there exists a (partial) trajectory
s: A — @ such that ¢ is an interior point of A (relative to the topology on
T, e.g. 0 is considered an interior point of [0,1]) and s(to) = qo 7

Q2: Is it true that for each partial trajectory s : A — @ such that A is a
compact segment there exists a trajectory s’ : T'— @Q such that s = s'|4 ?

Proposition 5. The answer to the question QO is positive iff the answers to
Q1 and Q2 are positive.

The question Q1 is about existence of a local-in-time trajectories. We will not
study it in this paper and assume that it can be answered using domain-specific
methods. Our aim is to answer Q2 using only information about existence of
locally defined trajectories in the neighborhood of each time moment.

Let us introduce several definitions. Let X' = (M, T, Q,T'r) be a fixed NCMS.

Definition 6. — A right dead-end path (in X') is a trajectory s : A — Q such
that A has a form [a,b), where a,b € T. and there is no s’ : [a,b] - Q € Tr
such that s = §'|gom(s) (i-e. s cannot be extended to a trajectory on [a,b]).
The value b is called the end of this path.

— A left dead-end path (in X) is a trajectory s : A — @Q such that A has a
form (a,b], where a,b € T. and there is no s’ : [a,b] = Q € Tr such that
8 = 8'|dom(s)- The value a is called the end of this path.

— A dead-end path is either a right dead-end path, or a left dead-end path.

Let f : [0,400) — [0, +00) be a positive-definite (i.e. f(0) =0, f(z) > 0 when
z > 0), monotonously non-decreasing, and continuous function (e.g. f(z) = z).

Definition 7. — A right dead-end path s : [a,b) — Q is called f-Oy-escapable,
where Oy is a connected neighborhood of b, if there exists ¢ € (a,b) N O,
d e b+ f(b—c),+00), and a trajectory s’ : [c,d] N Oy — Q such that
s(c) = §'(c).

— A left dead-end path s : (a,b] — Q is called f-Op-escapable, where Oy is a
connected neighborhood of b, if there exists ¢ € (a,b) N Oy, d € [0, max{a —
f(c—a),0}], and a trajectory s’ : [d,c] N Oy, — Q such that s(c) = s'(c).

— A right- or left- dead-end path is called f-escapable, if it is f-T-escapable.
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This definition is illustrated in Fig. 4. Note that a suffix of a right dead-end path
s :[a,b) = Q (i.e. a restriction of the form s|[,/ ), where o’ € [a,b)) is a right
dead-end path. Analogously, a prefix of a left dead-end path s : (a,b] — Q (i.e.
a restriction of the form s|(4,/], where b’ € (a,b]) is a left dead-end path.

Let ¥ = (M,T,Q,Tr) be a NCMS. For each t € T let Oy C T be some
connected neighborhood of ¢ and D; be the set of all dead-end paths s (in X)
such that ¢ is the end of s and dom(s) C O.

Theorem 3. The following conditions are equivalent:

(1) for each partial trajectory s : A — Q such that A is a compact segment there
exists a trajectory s’ : T — Q such that s = s'| 4

(2) each dead-end path (in X) is f-escapable

(8) for eacht € T and s € Dy, s is f-Oy-escapable.

Note that this theorem holds for an arbitrary fixed f and arbitrary fixed choice
of neighborhoods Oy, t € T'.

This theorem gives an answer to the question Q2. The condition 3 of this
theorem shows in which sense Theorem 3 reduces the question of global-in-time
existence of trajectories to the analysis of local existence of trajectories in the
neighborhood of each time moment.

a (right) dead-end path (cannot be extended past b)

escape at time ¢ the length of an escape

should be at least b-c+f(b-c)

e ——
b-c| >=f(b-c)
1

a b

Fig. 4. An f-escapable right dead-end path.

4 Conclusion

We have studied the question of existence of global-in-time trajectories for each
initial condition of a (non-time-invariant) non-deterministic complete Markovian
system. We have shown that this question can be answered using analysis of
existence of locally defined trajectories in a neighborhood of each time. The
results can be useful for studying the problems of well-posedness and reachability
for continuous and discrete-continuous (hybrid) dynamical systems.
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