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Abstract. The present work is devoted to the study of deadlock prob-
lem in Place/Transition (P/T) nets, particularly to the exploration of
how a deadlocks’ presence can be revealed solely on the basis of the
P/T net N0 in question and a structure, here termed as the fsa of the

type Mw, that represents the reachability set <(N0) of N0. The structure
can be obtained from N0 following the original algorithm for solving the
reachability problem RP for Petri Nets in general case by the author.
It turns out, that the structure of Mw bears some important properties
with respect to the deadlock analysis.
Deadlock analysis is an important part of system verification, so the
results achieved can be of some value to that. It is demonstrated that
results presented are quite significant, and cover some gap in both, theory
and practice of the deadlock analysis of state-based systems, particularly
those whose specification can be expressed via Petri Nets.
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1 Introduction

In the development of (state-based) system, the design of a system in ques-
tion, is the core of the process. The latter is actually a realization of the what
requirement specification is about. There are two intrinsic activities of any de-
velopment:validation and verification. The validation is the process of assurance
that the design will produce the right system (according to requirements), while
the verification assures that the design is carried on properly (according to a
particular design principle)[21]. Verifying the system designed on the presence
(absence) of deadlock situations (deadlock analysis-DA) might be a part of ver-
ification process. In the paper we pay attention to the deadlock analysis.



The approach to deadlock analysis applied in the paper is based on the reach-
ability analysis [6] made on the representation (model) of the system designed
in Petri Nets [8]. In [6] an original method (algorithm) to analyze and solve the
reachability problem (RP) for Petri Nets in general case was introduced. The
method is based on the structure, we have called it the finite state automa-
ton of the type Mw, that is created by the algoritm, and the analysis of the
structure based on results of automata theory and the convex analysis of the
state space represented by Mw. Some authors in the field of Petri Nets used to
use for representing state space of reachable states of Petri nets the structure
termed as coverability graph. The two notions coincide to some extent, but differ
in significant number of cases.
The approach is founded on the information that was neglected and suppressed
by the RP algorithm while creating Mw, and thus hidden in it. The modification
of Mw construction, that is introduced in this paper, discloses the information
previously hidden to serve the purpose mentioned.
The paper consists of four parts. In the first part basic notions and results con-
cerned Petri Nets, reachability and deadlock analysis are given. The second part
deals with the algebraic properties of Mw. It turns out that Mw is finite state
automaton, with some interpretations of its states via k -dimensional nonega-
tive integer ω vectors. Each such ω vector represents a state subspace of PN
in question, and can be thought of as a poset. That view on ω states allows
us to establish relation among deadlocks and minimal or least elements of such
the posets. In the third part we deal with the issue of disclosing the informa-
tion previously hidden, and define more precisely the new notion and denotation
of ωcoordinates. The fourth part consists of an application of the theory of
ωcoordinates developed. The application is made to two PNs, which was in-
troduced by T.Murata [1] as manifestation of the fact, that using coverability
graphs as the representation of state space of PN is weak and insufficient for
disclosing deadlocks in PN. The same conclusion was jumped to in [2].

2 Some basic preliminaries to DA

In the paper we denote by IN the set of natural numbers {0, 1, 2, . . .}, by Z the set
of all integers, Zk (INk ) the set of k-dimensional (nonnegative)integer vectors.
A notion of (k-dimensional) vector addition system (VAS) Wk is a couple

Wk = (q0,W )
where q0 ∈ INk is the initial state of Wk, W is a finite set of (k- dimensional
integer) vectors. We call a reachable state vector of Wk each q ∈ INk such that

1. q = q0 + wi1 + . . .+ win for some integer n ≥ 0, wij ∈W, j = 1, . . . , n
and

2. for ∀j(1 ≤ j < n) : qj = q0 + wi1 + . . .+ wij ∈ INk

Here by + we mean the operation of vector addition. We call the set of all such
vectors the reachability set of VAS Wk, and denote it as R(Wk). Given any VAS
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Wk = (q0,W ) then or any q ∈ INk a problem whether q ∈ R(Wk) is called the
reachability problem of VAS (with respect to q). We will occasionally use the
abbreviation RP (q,Wk) for it.

With any VAS Wk = (q0,W ) we can associate a tree structure, which we
call the vector state tree, V STw, and we mean by that a double labelled oriented
rooted tree V STw = (Tw, Lab(V ), Lab(E), q0), Tw = (V,E, r0) is an oriented
rooted tree , V - a set of vertices, E ⊆ V × V - a set of edges, r0 ∈ V - the
root of Tw , Lab(V ) ⊆ INk -a set of vertex labels, Lab(E) ⊆ W - a set of edge
labels that are defined as follows: there are two labelling mappings lab1 : V →
Lab(V ), lab2 : E → Lab(E) such that lab1(r1) = q0 and any vertex of Tw v ∈ V
with lab1(v) = q has a son u ∈ V with lab1(u) = q′ and lab(v, u) = a iff q′ = q+a.

As a very consequence of the above definition we have that Lab(V ) = R(Wk)
where Wk = (q0,W ) is the VAS and we can alternatively write V STw =
(Tw, R(Wk), Lab(E), q0)

2.1 Place/Transition Nets (P/T Nets).

Place/Transition (P/T) Nets stand here for a class of Petri Nets in which
multiple arcs are allowed and places have unlimited capacities. For more de-
tails on PN we refer the reader to the literature , e.g. [8]. For any P/T net
N0 = (P, T, pre, post,m0), where P is a finite set of places, T is a finite set of
transitions, pre : P × T −→ IN - preset function, and post : P × T −→ IN -
postset function, that all define a structure on the set P ∪ T . It is very common
to represent the P/T Net /1 by the oriented bipartite graph (Fig. 1).
Here we have:

Fig. 1. Graph representation of Petri Net

1 We will use Petri Net (PN) occasionally instead of P/T Net, so we consider them as
synonyms
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P = {p1, p2, p3, p4, p5}
T = {t1, t2, t3, t4}

pre and post functions are given in Table 1 and Table 2 respectively.

Table 1:
P T pre(p,t)
p1 t1 1
p2 t2 1
p5 t2 1
p3 t3 1
p4 t4 1

otherwise 0

Table 2:
P T post(p,t)
p1 t2 1
p2 t1 1
p3 t1 1
p4 t1 1
p4 t3 1
p5 t4 1
otherwise 0

In Fig. 2 there is a correspondence shown between the graph representation
of PN N and pre and post functions.

Fig. 2. The correspondence between the graph representation of PN and the pre and
post functions

The following useful notations can be defined:

•t = {p | pre(p, t) 6= 0} the set of preconditions of t
t• = {p | post(p, t) 6= 0} the set of postconditions of t
p• = {t | pre(p, t) 6= 0}
•p = {t | post(p, t) 6= 0}

By the marking of PN N = (P, T, pre, post) we mean a totally defined function

m : P −→ IN (1)

(2)

We use m to describe the situation or configuration in PN N . Namely we say
the condition represented by the place p in PN N holds iff m(p) 6= 0. Without
loss of generality we assume that P and T have k and m elements respectively.
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i.e. P = {p1, p2, , ..., pk}, T = {t1, t2, , ..., tm} and we fix some ordering of
both, places and transitions from now on. Using the ordering of places we can

consider m to be the k-dimensional nonnegative integer vector, i.e.
→
m ∈ INk.

More formally
→
m = (m(p1),m(p2), ...,m(pk))

and m(pi) is the value of m in pi , i = 1, 2, ..., k, according to (1). In our

example (Fig. 1) m(pi) = 1 iff i = 1, or alternatively
→
m = (1, 0, 0, 0, 0).

For the simplicity we will use the denotation m for either interpretations of the
marking m when it doesn’t cause any troubles. We say t is enabled in m, and
denote it m t , iff for every p ∈• t, m(p) ≥ pre(p, t). In Fig. 1 t1 is enabled

in m = (1, 0, 0, 0, 0) because •t1 = {p1} and m(p1) = 1, and pre(p1, t1) = 1.
In general, given PN N, a marking m of N, several transitions from T can be
enabled in m. Once the transition t is enabled it can fire. The effect of the firing
t in m is the creation of a new marking m′ that depends on m and t. We use a
denotation

m t m′

and m′ is defined in the following way:

m′(p) =















m(p) − pre(p, t) p ∈ •t \ t•

m(p) + post(p, t) p ∈ t• \• t
m(p) − pre(p, t) + post(p, t) p ∈ •t ∩ t•

m(p) otherwise

In PN N of Fig. 1 we can write m = (1, 0, 0, 0, 0) t1 m′ = (0, 1, 1, 1, 0).

Notice transitions t3,t4 will be enabled in m′ either.
We say the sequence of transitions σ = t1t2...tr is admissible firing sequence
in PN N, provided a sequence of markings m0,m1, ...,mr exists and such that
mi−1

ti mi , i = 1, 2, ..., r. In that case we write m0
σ mr , or simply m0

? mr,
when σ is immaterial. The marking m is to be called the reachable marking in
N from m0 (via σ). We fix the marking m0 to be the initial marking of PN N =
(P, T, pre, post) and we denote it N0 = (N,m0) or N0 = (P, T, pre, post,m0).
Given PN N0 = (P, T, pre, post,m0) we define the set of reachable markings

R(N0) = {m | m0
σ m, },

We can define the language of PN N0

L(N0) = {σ ∈ T ∗ | m0
σ m,σ ∈ T ∗}

and we call it PN language.
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2.2 VAS and Petri Nets.

Let N0 = (P, T, pre, post,m0) be a Petri Net with the initial marking m0. Recall
m0 can be represented as a k-dimensional nonnegative integer vector, i.e. m0 ∈
Zk and m0 = (m0(p1), . . . ,m0(pk)). Let us fix an ordering of places in P and
transitions in T, i.e. P = {p1, . . . , pk} and T = {t1, . . . , tm}.

In PN literature (e.g. [6],[8]) we have the following characterization of the
marking obtained (reached) in N0 from initial marking m0 under firing transition
sequence σ ∈ T ∗

m0
σ

m⇔m = m0 + (c · ΨT (σ))T

and Ψ(σ) is the Parikh mapping over the (ordered) alphabet T, and ΨT (σ) stands
for the transposition of the row vector Ψ(σ).

Any transition t ∈ T can be represented as a k-dimensional integer vector

t = post(t)− pre(t)

and
post(t) = ((post(p1, t), . . . , post(pk, t)
pre(t) = ((pre(p1, t), . . . , pre(pk, t))

It can be easily seen that

m0
t
m⇔m = m0 + t

and we can construct for PN N0 = (P, T, pre, post,m0) the vector addition sys-
tem Wk = (q0,W ) an such that q0 = m0,W = {t|t ∈ T} , and k = cardP . The
following result holds

Theorem 1. [6]

For any PN N0 = (P, T, pre, post,m0) there is an vector addition system Wk =
(q0,W ) and such that R(Wk) = R(N0), and k = cardP .
Proof:That follows from the above construction.

2.3 Reachability Problem

Reachability problem for Petri nets attracted a lot of attention of experts in
computer science community. It lasted pretty long time (almost 20 years) a so-
lution to RP had been obtained [9],[10],[11],[12],[4]. A full account of the solution
of RP by the author, including the complexity issue of RP- the upper bound of
the worst-case time complexity of the solution, can be found in [6].
We are going now to describe shortly main steps of the author’s RP solution.
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1. Any P/T net N0 = (P, T, pre, post,m0) can be assigned a vector adition
system (VAS) Wk = (q0,W ) via a representation of transitions of P/T net

N0 as vectors, where W =
{→
ti |ti ∈ T

}

, (q0 = m0) and
→
ti= (post(p1, ti) −

pre(p1, ti), ..., post(pk, ti) − pre(pk, ti)), provided P = {p1, ..., pk}. By that
virtue the computations of P/T net N0 are in 1-1 correspondence with com-
putations of the VAS Wk and R(Wk) = R(N0) (see Theorem 1). The com-
putations of the VAS Wk can be represented via rooted labelled tree, termed
as vector state tree - V STw, whose vertices are labelled by reachable states
and edges are labelled by vectorized transitions.

2. Given V STw and its vertex with the label q, it can be characterized by two
languages:Xq, Yq, preffix and suffix language respectively/ which denotes
labelling of paths leading to or from the vertex with the label q. The paths
on V STw can be classified, based on the length of the paths: finite and
infinite, on the one side, and also based on the finite or infinite set of vector-
states: vertex labellings on the other side. Any path on V STw, outgoing from
the root vertex r0, labelled by q0, can be assigned a sequence of its vertex
labels (reachable) vector-states

s = {q0, q1, ..., qi, ...} (3)

The states in (3) are reachable states, that are vectors, i.e. qi ∈ Nk (k=||P ||),
so for any pair of states in (3)- (qi, qj), i < j, we can test their comparabil-
ity, w.r.t. the relation ≤ defined on vectors. (of the same dimension). The
sequence (3) can be accompanied by the sequence of suffix(prefix) languages
associated with the states of the sequence (3) . By the nature and due to
properties of VASs and their computations that is clear that

qi ≤ qj ⇒ Yqi ⊆ Yqj (4)

The necessary and sufficient conditions can be formulated for a path being
infinite with finite or infinite set of reachable states. Based on that a theory
of transformation of infinite paths (a graph morphism), that allows pruning
infinite paths and replacing them by loop-like subgraphs and thus transform-
ing the tree into a rooted graph (vector state graph-vsg). The transformation
(T<m

A
) has a significant property that suffix language of the root of the origi-

nal V STw−Yq0 is included in the suffix language of the root of the resulting
vsg T<m

A
(q0), i.e. Yq0 ⊆ YT<m

A
(q0). In the case the strong inequality holds

between the two states on the path (q ≤ q
′

and q 6= q
′

), that causes in-
troducing so-called ω-cordinates, that means replacing the cordinates of the
both states in which the strong inequality (<) holds, by the special value
ω, and thus creating the ω-lized state ωAq and ωAq

′

, that become identical,
i.e. ωAq = ωAq

′

(A is the set of coordinate indices on which the relation <
holds).
By that virtue, due to the properties of ω (ω + a = ω − a = ω for any
natural number a), any such the transformation has two-side effect: pruning
the infinite path by replacing it by a finite (loop-like) subgraph, and lowering
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number of coordinates w.r.t. which a comparison satisfiability of reachable
(macro) states should be checked. That guaranties that in a finite number
of transformation steps a finite (rooted) vsg structure T ω

f can be obtained.
The significant property of the vsg T ω

f is that YT∗(q0) ⊇ Yq0 , provided that
T ∗(q0) is the macrostate on which the initial state q0 is mapped after the
sequence of transformations denoted as T ∗.

3. Vsg T ω
f can be thought of as a special kind of finite state automaton (fsa)

with some interpretation of its states, and with the input alphabet W =
{→
ti |ti ∈ T

}

. The definition of the automaton (we used to call it finite state

automaton (fsa) (of the type) Mw) can be given as Mw = (Qf ,W, δ, ρ0),
provided the vsg T ω

f = (Qf , Tf , ρ0 and Tf is the graph representation of state
trasition funcion δ. To characterize the behaviour of fsa Mw we introduce
special regular expressions (wre-vector regular expressions(w stands here
after the set W of vectors)). Any wre α is given two semantics: [α]-vector
semantics; [[ α ]] - (ordinary) language semantics. Let Lρ0 be the wre that
denotes the language of Mw (i.e.L(Mw)= [[ Lρ0 ]] ), and q0 to be the initial
state of VAS Wk. Then [q0L

ρ0 ] denotes all reachable states. To be more
precise

[u] = [u] if u ∈W

[au] = a+ [u] if a ∈W and u ∈W ∗

∀q ∈ Nk, u ∈W ∗ [qu] = q + [u] and ∀i(1 ≤ i ≤ |ui|).qi = [qui] ∈ Nk,

[q0L
ρ0 ] =

{

q
′

|q
′

= [q0u] , u ∈ [[ Lρ0 ]]
}

(5)

4. Having constructed fsa Mw it is worth to say few words about its structure
w.r.t. how it can be useful in RP solving:

– The structure of the state diagram of Mw is, in almost all cases, consist-
ing of n ≥ 1 strongly connected components (scc), due to transforma-
tions applied to V STw initially and to vsg afterwards. The class of scc-
like Mws, can be divided into two subclasses. The first subclass contains
Mws whose states are labelled by simple (k-dimensional) nonnegative
integer vectors. Such Mw manifests that P/T net in question N0 (and
corresponding VAS Wk) has finite set of reachable states. The second
subclass consists of Mws whose states are labelled by ω (k-dimensional)
nonnegative integer vectors (vectors having at least one ω coordinate).
Such Mw manifests that P/T net in question N0 (and corresponding
VAS Wk) has infinite set of reachable states.

– The way how to solve the reachability problem w.r.t. a state q ∈ Nk

will differ depending on whether R(N0) is finite or infinite. In the finite
case RP (q,N0) can be solved trivially by inspecting the state diagram
of Mw and checking whether there is a state with the label q or not. In
the second case we have to do the following steps:

1) to find a state ρ of Mw such that q ≤ ρ; if such a state does not
exists, then RP (q,N0) has negative solution (q /∈ R(N0) ).
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2) assume we found such the state ρ; now we have to construct a path
leading from the root state ρ0 that is the image of the initial state
q0 under chain of transformations (ρ = T ∗

<m
A
(q0))(for more details

see [6]). By that way a wre u over the alphabet WL ∪ W (WL is
the alphabet of (ρ0)-simple loops of scc, i.e. WL ⊆ W ∗ ) can be
constructed, yielding the equation

[q0uv] = q (6)

Wre u (under assumption of one scc in Mw, rooted in ρ0) has the
structure u = `1`2...`p, where `i ∈WL, i = 1, 2, ..., p and v is a path
leading from ρ0 to ρ such that q ≤ ρ.

– The equation (6) yields integer linear programming problem (ILP)

AX = B(q), B(q) = q − q0 − [v] (7)

A = ([`1]
T , [`2]

T · · · [`m0
]T )

provided WL = {`1, `2, ..., `m0
}.

5. ILP constructed does not express exactly conditions to hold for the reach-
ability of the state q. The reason is that at building ILP (7) based on (6)
some information is lost. Particularly the information that is connected with
an ordering of loops passed, that is prescribed by definition of [q0uv](all
reachable states by wre uv). To check the so called ’proper choice condition’
property special test should be performed, that is expressed in the predicate
conWk

(A, X0, B0). So finally the RP algorithm is

RP algorithm:
Given: VAS Wk = (q0,W ), q ∈ INk - a state to be decided reachable or not;

Step 1 : Create fsa Mw;
Step 2 : Construct MILPw(A,X0, B(q), r);
Step 3 : if MILPw(A,X0, B(q), r) = true then go to Step 4

else go to Step 5 ;
Step 4 : q ∈ R(Wk). Stop.
Step 5 : q 6∈ R(Wk). Stop.

We use the abbreviation

MILPWk
(A, X0, B(q)) ≡ ILPWk

(A, X0, B(q)) ∧
conWk

(A, X0, B0)

Finally

RP (q,Wk) ≡ MILPWk
(A, X, B(q))

Since ILP is decidable, and also due to finiteness of X0 establishing truth of
conWk

(A, X0, B0) is also decidable, so is the reachability problem.
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3 Algebraic properties of Mw automaton

Let us have one more look at fsa Mw = (Q,W, δ, ρ0). For simplicity let us assume
that Mw consists of single scc with its root state ρ0. Example of such Mw is
depicted in Fig. 3

Fig. 3. State diagram of fsa Mw with a single strongly connected component

Notice that all states of the state diagram are labelled with ωvectors, e.g. ρ0 =
(1, 0, ω, 0, ω, 0), ρ1 = (0, 0, ω, 1, ω, 0), ρ2 = (0, 1, ω, 0, ω, 0), ρ3 = (0, 0, ω, 0, ω, 1).
Important feature of labels of the states of the Mw’s state diagram is that they
are mutually incomparable as vectors.
We can look at labels of the states of the Mw’s state diagram asmacrostates, that
represent (cover) sets of reachable states. For that, we may call any macrostate
ρ - a label of a state in Mw’s state diagram, as the reachable macrostate. We will
say that two macrostates ρ and ρ

′

are comparable, and we write ρ ≤ ρ
′

, provided
that ρ

′

covers at least those reachable states, that are covered by ρ.
To express it more formally, we introduce for the macrostate ρ the set of covered
reachable states- denoted by Sρ i.e.

Sρ = {q|q ∈ R(N0), q ≤ ρ}

Sρ is simply partially ordered set(poset). The notion is well-known [19]. For
any poset, particularly for Sρ, there can be found the set of minimal, or maximal
elements (states) respectively. The notions the lower bound, or the upper bound
of the states of Sρ are also well defined and used. The notion the greatest lower
bound (glb), and the least upper bound (lub) are also used in that context. We
only mention here, that while minimal (maximal) states belong to Sρ, that might
not be true for glb or lub respectively. We will use the notation t,u to denote
the binary operation of calculating lub(q, q

′

) = q t q
′

, or glb(q, q
′

) = q u q
′

respectively.
For the definition of poset, and further properties and other results reader

can consult a specialized literature on the subject, e.g. see [18],[19].
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For our purpose to use the information captured in fsa Mw for deadlock analysis
we have to modify the algorithm of creating Mw. The information that is hidden
in the state diagram of Mw is the value of particular coordinate of the state q
at the moment when the coordinate is being ω-lized. .
To capture the information hidden (and lost) by the original algorithm to con-
struct the fsa of the type Mw, we have to distinguish three types of indexing ω
coordinates:

– ω∆
a - denotes an ω coordinate in a loop-root state ρ, with initial value of the

coordinate a , with ∆ as a loop added value to the coordinate after each
repetition of the loop; such the ω is called the independent root ω ,

– ω
i,t,∆j

b - denotes so-called dependent ω coordinate in a loop-root state ρ, that
depends on i-th ω coordinate that should generate (via repetition of its loop)
a minimal value v in i-th coordinate such that v ≥ pre(pi, t) for the transition
t to be firable in corresponding state while the initial value of the coordinate
the dependant ω belongs to is b; ∆j is the increase of the dependent ω (in the
j-th coordinate) caused by the repetition of the loop started by the transition
t.

– ωc- denotes so-called overflowed ω coordinate with the minimal initial value
of the coordinate at the time it was overflowed for the first time.

To get a flavour why we are introducing indexed ωs , we are now turning our
attention to properties of the poset Sρ = (Sρ,≤,t,u) with respect to a deadlock
state π, that can be eventually covered by a macrostate ρ, i.e. π ≤ ρ.

3.1 Properties of the poset Sρ with respect to the deadlock analysis

In the previous section we have discovered, that any macrostate ρ can be taken as
the poset
Sρ = (Sρ,≤,t,u) . For the discovering a deadlock state of P/T net N0 we
would like to make a use of information captured in the Mw’s state diagram,
specifically in macrostates by which the states are labelled with.

Assume that we are given ω-state ρ, and to be more specific, let’s say that

ρ = ωAq = (ρ1, ρ2, ..., ρk) (8)

where q = (q1, q2, ..., qk) is a reachable state, A ⊆ {1, 2, ..., k} = K is the set of
indices in which ρ has ω - coordinates. To put it in other words that means that

ρj =

{

$ if j ∈ A
qj if j /∈ A

and $ ∈
{

ω∆i
a , ω

i,t,∆j

b , ωc

}

.
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Now we are introducing some notions.

First we fix the macrostate ρ and its representation (8). We define

Baseρ = { qBρ,i =
(

q
′

1, q
′

2, ..., q
′

k

)

|i ∈ A, q
′

` = ρ` if i 6= `, ` ∈ K − {i} , (9)

q
′

i = r if ρi = $ }

where $ ∈
{

ω∆i
r , ω

j,t,∆i

r , ωr

}

.

That is clear that every qBρ,i ≤ ρ; in a case ρ has only one ω coordinate then qBρ,i
is the glb(Sρ). In the case that ||A|| > 1 qBρ,i is the macrostate covering a set of
minimal elements of the poset Sρ.

We will call the macrostates labelling states of Mw the reachable macrostates.
Any macrostate π ≤ ρ we will call also the reachable macrostate. From that
point of view we may consider elements of Baseρ as the collection of reachable
macrostates.

Still another notion should be introduced; we define

qBρ =
(

q
′′

1 , q
′′

2 , ..., q
′′

k

)

(10)

where
q
′′

j = r ⇔ ρj = $

q
′′

j = ρj ⇔ ρj ∈ N

and $ ∈
{

ω
∆j
r , ω

i,t,∆j

r , ωr

}

for some r ∈ N.

It is clear that
qBρ ≤ ρ

The crucial problem is to decide whether qBρ is reachable state or not. In the
latter case it will be called spurious state [1]. We will postpone answering that
question later on.

Any deadlock state of P/T net

N0 = (P, T, pre, post, q0)

is such a state q, that is

1. reachable state, i.e. q ∈ R(N0), and
2. for any transition t ∈ T and at least one p ∈• t, pre(p, t) > q(p)

In other words there are not enough tokens at least in one of pre-places •t of
any t ∈ T .

Assume we have a deadlock state d ∈ ρ; that means that any reachable state
q ∈ ρ and such that q ≤ d will be a deadlock state either. From that we have
immediately, that if qBρ were reachable state, it would be a deadlock state of
P/T net N0 = (P, T, pre, post, q0) since it would have been either the least or
minimal element of the poset Sρ. We can summarize the properties described.

332  Š. Hudák 



Assertion 1 Let Sρ = (Sρ,≤,t,u) be the poset formed by the macrostate ρ
of the fsa Mw representing the set of reachable states of a P/T net N0 =
(P, T, pre, post, q0). Then if there exists a deadlock state d in ρ, then at least
one of minimal elements or the least element of the poset Sρ- qmin will be the
deadlock state too and such that qmin ≤ d.

So, it means that the least and minimal elements of the poset Sρ, if they
exist, serve as a good indicator of presence and/or absence of deadlocks in the
system represented by any P/T net.

In the algorithm of the construction of fsa Mw [6] we apply some transfor-
mations to the paths of the tree of computations of the VAS Wk = (q0,W ),
which results in introducing ω values into corresponding coordinates of a state
vector. We have shown above there are three types of ω coordinates (ωcords in
short):independent, dependent and overflowed ωcords.

The issue of creating independent ω coordinate is depicted in Fig. 4.

Fig. 4. Path transformation creating independent ωs

There is a state q, having values a and b in its i-th and j-th coordinate re-
spectively. There are also two transitions (vectors) say ta and tb that are firable
(applicable) in q. An aplication of ta at q followed by other transitions leads
to a state q′ = (q1, ...a

′

, ..., b, ...qk) , where a < a
′

is a new value of the i-th
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coordinate, and according to the algorithm which construts automaton Mw the
transformation T<i

applies, that creates a loop labelled with the string τa = taα,
that replaces the path leading from q to q

′

which is labelled with τa = taα as
well. The effect of the transformation is that the state q

′

collapses to q creating
a new state ω{i}q = (q1, ..., ω, ..., b, ...qk). Because we are interested in the data
keeping information on the value of the i-th coordinate which has been replaced
by ω, we suggest to keep the data as a part of the new ’value’ of the coordi-
nate. Another information which we are interested in is the value ∆i = a

′

− a
which expresses the increase of the i-th coordinate after repetition of the loop
τa = taα. After all we prefer to denote the new ω value of the i-th coordinate by
ω∆i
a , and to call such the ωcoordinate to be independent ωcoordinate. Another

independent ωcoordinate can be created due to firing the sequencce of transi-
tions τb = tbβ starting at the state ω{i}q. Notice that in the intermediate state p
in the i-th coordinate so called overflowed ωc cord apears. The case of creating
dependent ωcords can be visualized in similar way. Due to space lack we have
to skip that and we refer the reader to [7].

4 Analysis of creating ωcoordinates

It was already mentioned the importance of the least and minimal states with
respect to (wrt) deadlock analysis of P/T net (sect.3.1). Now we return back
to the problem with an aim to analyze in the depth the issue of the role least
or minimal states will play in the reachability and deadlok analysis. The main
problem here is to decide in any particular case of least and/or minimal state
qBρ whether it is reachable or not.

Let us consider that qBρ,i ∈ Baseρ; then qBρ,i ⊆ <(N0) and thus qBρ,i is a
macrostate covering a set of reachable states which all have the same i-th co-
ordinate, say ai. Moreover, the macrostate qBρ,i is the macrostate consisting of
minimal states wrt macrostate ρ. The nature of the fsa of the type Mw [6] guar-
antees nonemptiness of qBρ,i. The latter guarantees an existence of at least one

reachable minimal element belonging to the macrostate qBρ,i.

The state qBρ can be considered to be the least element of the poset Sρ,
provided it is a reachable state, otherwise it can serve as a lower bound for the
reachable states- elements of Sρ. Very often such the state qBρ will be just spurious

reachable state, and there will be a need for qBρ to be proved its reachability. To
underpin that assertion some kind of analysis should be introduced first.

The case analysis of different types of n > 1 ωcoordinates have been accom-
plished [7]. In every case there that has been proven, that either Baseρ ⊆ <(N0),
or qBρ ∈ <(N0). The case of n=2 ωcoordinates is quite simple. The case of n ≥ 3 is
more complicated. There is few typical situations in the case of n=3 ωcoordinates
that shows the table below.

In the table the entry (1, 1 →, 1) stands for a dependence of ωcord dep on
ow, and the entry (1, ← 1, 1) stands for a dependence of ωcord dep on ind.
We illustrate that only for two cases:(3,0,0).
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Table:Case analysis for 3 ωcords

Type of ωcords

N0 ind dep ow

1 3 0 0

2 2 1 0

3 2 0 1

4 1 0 2

5 1 1→ 1

6 1 ←1 1

7 1 ←2 0

8 0 2→ 1

9 0 1→ 2

10 0 0 3

Table 1. Case analysis for 3 ωcords

The results on creating ωcoordinates for the case ||A|| ≤ 3 can be generalized
to any n ∈ N. The conclusion we have come to is that ωcoordinates can assume
one of the following forms.

a) single indices

indωcord Bdepωcord owωcord

ω∆i
a ω

B,tb,∆j

b ωc
B ⊆ K

b) multiple indices

indωcord

ω∆i
a ω∆i,−

a, a′
ω∆i,−,−

a, a′ ,a′′

Bdepωcord

ω
B,tb,∆j

b ω
B,tb,∆j ,−

b, b′
ω
B,tb,∆j ,−,−

b, b′ ,b′′

B ⊆ K

owωcord

ωc ωc,c′ ωc,c′ ,c′′
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We propose to use a generalized form to represent ωcoordinates, and we will
call it as form (f).

ω

[(

h1, · · · hk
d1, · · · dk

)]

(11)

where

(

h1

d1

)

∈

{(

∆i

a

)

,

(

A, t,∆i

b

)}

(

hi
di

)

i>1

∈

{(

−
a

)

,

(

λ
c

)}

(12)

Here λ stands for empty symbol. Basically, in the case of overflowed ωcoordinates
we will use just ωc instead of ωλ

c or ω−
c . In the case of independent and dependent

ωcoordinates we will use instead of empty symbol ’-’ to visualize the correspon-
dence of high and low indices.

In our consideration we will use shorthand notation for indexed ωcoordinates
as

ω [Ik] where Ik =

(

h1, · · · , hk
d1, · · · , dk

)

The following results have been proven as far as the generalization of the process
of indexed ωcoordinates is concerned:

1. the form (f) of ωcoordinates has been chosen correctly, and it will be pre-
served by any application of T<ω

A
transformation, and

2. the procedure to obtain the set of minimal elements of the poset represented
by a macrostate ρ- Baseρ, is determined by a choice of proper combination
of low indices.

5 A case study and further analysis of ωcoordinates

In his paper [1] T.Murata studied two PNs (Fig. 5) with respect to discovering
liveness or deadlock, based on the coverability graphs of Petri Nets, the struc-
ture that is widely used to represent the state space of their reachable states. He
showed that two PNs having the identical coverability graphs differ what con-
cerns of liveness or deadlock properties. In this section we will use our method
based on the finite automaton Mw and the properties of ωcoordinates to demon-
strate the power of the approach to discover safely the deadlock of Petri nets in
general and it will be demonstrated by the example Petri nets by T. Murata.
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Fig. 5. Case study: Two Petri Nets with identical coverability graphs

Let us have a closer look at the two PNs. Comparing coverabiity graphs of the
two PNs we can see they are indeed identical. Now we are going to apply the
aproach based on the methodology developed, that is backed by our algorithm of
constructing fsa of the type Mw (in some cases state diagrams of Mw and cover-
ability graph coincide, but in some cases they look quite different). Construction
of fsas of the type Mw fo the two nets can be seen in Fig. 6 and Fig. 7.

We can see that Mw automata are isomorphic, but they differ in ωcords as
far as their indices are concerned.

Let us have a closer look at the Mw automata from that perspective. In
Mw automaton of PN N1 we have two macrostates: ρ1 = (1, 0, ω1

0) and ρ2 =
(0, 1, ω0,1). If we look at ρ1 = (1, 0, ω1

0) as at the poset, we can have the only
minimal and thus the least (infimum) state

qBρ1
= (1, 0, 0)

In the case of ρ2 = (0, 1, ω0,1) we have the basis of this poset

Base(ρ2) = {(0, 1, 0), (0, 1, 1)}

There are actually 2 minimal states.
Let us turn our atention to the net N2. In Mw automaton of PN N2 we have
also two macrostates: ρ1 = (1, 0, ω2,−

0,1 ) and ρ2 = (0, 1, ω0,2). If we look at ρ1 as
at the poset, we can have here no infimum state, but we still have two minimal
states that creates :

Base(ρ1) = {(1, 0, 0), (1, 0, 1)}
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Fig. 6. Mw construction for the live Petri Net N1 with inexed ωcords

If we look at ρ2 as at the poset, we can have also here no infimum state, but
we still have two minimal states that creates :

Base(ρ2) = {(0, 1, 0), (0, 1, 2)}

5.1 Deadlock analysis

In [6] the deadlock problem is dealt with, based on the use of original RP algo-
rithm. We wil use of the notion ’deadlock candidates’ states introduced there.
The latter can be derived from the structure of PN in question.

Let us consider PN N = (P, T, pre, post) and let
→
t= −

→

pre(p, t) +
→

post(p, t).
For any t ∈ T and p ∈ P we say

p covers t ⇔df pre(p, t) 6= 0 (13)

In other words we are saying by (13) that

p covers t ⇔df t ∈ p• (14)

The (13) and (14) simply mean that p is included in t’s enabling. That is
reasonable to define

C(p) = {t ∈ T |p covers t}
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Fig. 7. Mw construction for the deadlock Petri Net N2 with inexed ωcords

Obviously C(p) = p•. We are now looking for such a minimal subset Ci of P,
that the union of the covers of places form the subset that will give the whole
set T. We propose to call such the subset Ci the minimal cover of T. The notion
minimal is connected with the number of places covering the set T. Notice, there
can be more than one minimal cover of T.

We associate with each total cover of T -Ci, the set of deadlock markings,
denoted as - CanMi.

CanMi = { m ∈ INk|m ≤Ci mi, p ∈ Ci ⇒ mi(p) ≤ r − 1,

r = minri {ri|pre(p, ti) = ri, ti ∈ p•} }

where m ≤Ci mi ⇔df ∀p ∈ Ci : m(p) ≤ mi(p).
We can define the notion

CovT = {Ci|Ci ⊆ P,Ci is total cover of T} (15)

Based on the CovT we may define now the overall set of dead markings

CanM =
{

m ∈ INk|∃Ci ∈ CovT : m ≤Ci mi, p ∈ Ci ⇒ mi(p) ≤ r − 1,

r = minri {ri|pre(p, ti) = ri, ti ∈ p•} (16)
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Notice that notions CanMi and CanM are based only on the structure of PN
in question and nothing is known about the reachability of the states contained
there. That is why we have used to call them ’deadlock candidates’, or potential
deadlock states. Any of such the states becomes real deadlock provided it is
reachable, the issue connected with dynamic aspect of the PN in question.
Now we are prepared to formalize the procedure, based on the method devel-
oped so far, as far as deadlock analysis is concerned. We do it in the form of a
procedure.

DA(N0):Algorithm for doing the deadlock analysis of Nets (P/T nets).
Input:

Petri Net (P/T net) N0 = (P, T.pre, post,m0), of the type Mw

of PN N0

Output:
yes, if D(N0) 6= Φ
no, if D(N0) = Φ

Method:
Method is based on the results achieved in the analysis of nature
of ωcoordinates, that occur in ω macrostates ρ = ωAq. Approach
is based on interpretation of any such ω macrostate ρ = ωAq as
a representaion of the poset of reachable states in PN N0, having
minimal or the least elements (MoL states). The special procedure
CanM(N0 ) is used for creation of the set of potential deadlocks of
PN N0.

Body of the algorithm:

begin
D(N0)← Φ; */D(N0) - the set of MoL deadlock states/*
D ← Φ; */D - variable - buffer for the actual set of

MoL deadlock states/*
C ← CanM(N0); */D - variable - container of

potential deadlock states /*
S ← Qω; */Qω - the set of states of fsa Mw = (Qω,W, δ, ρ0)

W-the set of vectorized transitions,δ-transition function,ρ0 containing m0/*
while S 6= Φ do;

begin
choose ρ ∈ S;
MoL← Baseρ;
S ← S − {ρ} ;
if C ∩MoL 6= Φ then D ← D ∪ C ∩MoL;

end
if D = Φ then return NO

else D(N0)← D;
return YES:D(N0)

end
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The algorithm DA(N0) guarantees all MoL deadlocks will be found out and
delivered as the set D(N0). Actually that can be considered as solving the prob-
lem of discovering presence or absence of deadlock states in the PN N0.

5.2 Case study continued

We can now continue to analyze state diagrams of the two PNs. We wil use the
results of previous section and particularly the result of the Lemma ??.
So according to that we have to calculate now total covers for the two PNs.
In the tables below there are calculated both:the minimal total cover of T and
pre-set for the net N1.

Total Cover of T for PN N1

t1 t2 t3 t4 Total Cover of T
p1 ∨ ∨ C1 = {p1, p2}
p2 ∨ ∨
p3 ∨ ∨

Function pre for PN N1

pre p1 p2 p3

t1 1
t2 1
t3 1
t4 1

CanM = CanM1 = {0, 0, ω}

inf(1, 0, ω1
0) = (1, 0, 0) /∈ CanM

inf(0, 1, ω0,1) nejestvuje

Base((0, 1, ω0,1)) = {(0, 1, 0), (0, 1, 1)} ∩ CanM = {(0, 0, ω)} = Φ

So we jump to the conclusion that PN N1 does not contain any deadlock!
Now we are going to turn our attention to the PN N2. First we calculate

minimal total cover of PN N2 and pre-set for the PN N2.

Total Cover of T for PN N2

t1 t2 t3 t4 Total Cover of T
p1 ∨ ∨ C1 = {p1, p2}
p2 ∨ ∨ C2 = {p1, p3}
p3 ∨ ∨ ∨

Function pre for PN N2

pre p1 p2 p3

t1 1
t2 1 1
t3 1 2
t4 1 1

CanM1 = {(0, 0, ω)} , CanM2 = {(0, ω, 0)}

CanM = {(0, 0, ω), (0, ω, 0)}

Base((1, 0, ω2,−
0,1 )) = {(1, 0, 0), (1, 0, 1)}

Base((0, 1, ω0,2)) = {(0, 1, 0), (0, 1, 2)}

Base((1, 0, ω2,−
0,1 )) ∩ CanM = Φ

Base(0, 1, ω0,2) ∩ CanM = {(0, 1, 0), (0, 1, 2)} ∩ {(0, 0, ω), (0, ω, 0)} = {(0, 1, 0)}

So we may jump to the conclusion that PN N2 has indeed deadlock state
{(0, 1, 0)}!
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6 Conclusion

The issue of deadlock analysis is important for the development of discrete state-
based systems. The method of discovering a presence, or an absence of deadlocks
in the system coined and demonstrated in the paper is based on the study
of the properties of the automaton Mw. We should mention that the results
presented in the paper manifest the depth and the vitality of the new method
to deal with the issue of reachability in Petri Nets, particularly the part which
was connected with the study of the algebraic properties of interpretations of
the automaton of the type Mw. In [6] there are some results presented on the
nature of that interpretation. The automaton Mw bears some similarity with
coverability graphs used in Petri Nets, but as it was proven, it is more powerful
to deal with deadlock analysis. Beside of that, the structure of the automaton
Mw plays the central role in reachability analysis of the systems (represented
via PN) with infinite state space [6]. The most important property of Mw is its
reusability for reachability analysis of the PN in question wrt to any other state,
not only wrt to that it was constructed for initially. On the other side it turns
out that one automaton of the type Mw, sayM can serve in that role for whole
class of PNs with the same number of places and some structure that induces
corresponding set of transitions wich are consistent with theM structure. There
is still another way how the Mw structure can be used. The fsaM can be thought
of as a coupleM=(M,I), where M and I stand for basic fsa without interpreted
states and interpretation respectively. For any k ∈ IN- the number of places and
given structure of basic fsa M we can construct corresponding interpretation I
consistent with M. By that virtue, the same applies wrt doing deadlock analysis.

Due to space we have not dealt with the issue of modification of the algo-
rithm ofM construction, and also many details and proofs have been skipped.
There can be found in [7]. At the workplace of the author there has been envi-
ronment - termed as mFDTE [16], developed. The results will be implemented
in the environment. The latter combines three formal descriptions of systems:
Petri Nets, process algebra, and B AMN. The latter substantiate the acronym
mFDTE-multi Formal Description Techniques Environment. More details can
be found in [16].
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7. Hudák, Š.: Deadlock Analysis of Place/Transition Nets.Manuscript, DCI FEI TU
Kosice, 79 p. (2010)

8. Reisig, W.: Petri Nets: An Introduction. Springer Verlag, Heidelberg (1985)
9. Sacerdote, G.S., Tenney, L.: The Decidability of the Reachability Problem for Vector

Addition Systems (preliminary version). Proceedings of the 9th Ann. ACM Sympo-
sium on Theory of Computing, New York (1977)

10. Muller, H.: On the Reachability Problem for Persistent Vector Replacement Sys-
tems. Computing Suppl. 3, 89–104. In: Knodel, H., Schneider, H.J. (eds.) Parallel
Processes and Related Automata (1981)

11. Mayr, E.W.: An Algorithm for the General Reachability Problem in Petri Nets.
SIAM J. of Computing. 13 (1984)

12. Kosaraju, S.R.: Decidability of Reachability in Vector Addition Systems. In Proc.
14th Annual ACM STOC, 267–281 (1982)

13. Valk, R.: Generalizations of Petri Nets. In: Gruska, J., Chytil, M. (eds.) MFCS
1981. LNCS vol.118, pp. 140–155 (1981)

14. Karp, R.M., Miller, R.E.: Parallel Program Schemata. Journal of Computer and
System Sciences. 3, 147–195 (1969)

15. Keller, R.M.: Vector Replacement Systems: A formaism for Modeling Asynhronous
Problms. Technical Report 117, Princeton University (1972)
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