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Abstract. The contribution deals with decomposition of logical systems for the 
purpose of solving analysis, synthesis and diagnostics tasks. The system can be 
specified by its structure or by algebraic expressions of its function. Particular 
attention is paid to propose algorithms for ordering of components of algebraic 
expression, decomposition of algebraic expression into substrings, and 
composition of modularly-organized logical circuit from those substrings. Also a 
way for the determination of identical and isomorphic modules of de/composed 
circuits is presented. 
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1 Introduction 

The tasks complexity of the logical systems synthesis, analysis and diagnostics are 
often very high and it depends on the system dimension.  

If complexity c(n) of the solution of the task is not linear c(n) ≠ O(n), but 
polynomial c(n) = O(nk), or exponential c(n) = O(gn), then the reduction of the total 
solution complexity  by the decomposition of the system S(n) into p subsystems 
S1(n1), S2(n2), ..., Sp(np), ni < n is used with great advantage (n – parameter which 
determines the system size). This is the reason for decomposition of systems into 
several smaller modules and solving the tasks for separate modules and composing 
module results back into result for whole system. Decomposition makes sense if 
decreasing of the solution time t(S(n)) in decomposed systems is bigger than increase 
of the solution time tds related with decomposition and back composition of the 
system 
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Time tds grows with numbers of modules and numbers of connections among them. 
The decomposition on modules with one (or minimal number of) output is more 
suitable. If some modules are isomorphic (or identical) it is enough solve tasks for one 
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of them and apply for others. For example if we generate tests for complex system, 
we can decompose it into several smaller modules, prepare tests for each group of 
isomorphic modules and compose the test for whole system on the base of module 
tests. 

In separate tasks the systems can be described by different descriptions or formal 
specifications [1], [2], [3]. The definitions of the system can be split into two basic 
groups. In the first group the systems are defined by its function. For example the 
combinational logical circuit can be present by algebraic expressions of system output 
functions. In the second one the systems are defined by its structure. In these cases the 
system can be presented by netlist. The function of the system described by structure 
can be derived from functions of individual components and connections between 
them. To understand the dependence between these different system descriptions it is 
essential to mention, that the given function can be realized by different structures, 
however the given structure of the circuit realizes a unique determined function. 

The logic circuit structure is given by the equation S = (E, C), where E is the set of 
logic elements and C is the set of mutually connections, which are performed in input 
Ni, internal Nr or output No nodes.  

Each element Ej = (Fj, Xj, Yj) is characterized by the logic function Fj, the inputs  
),...,(

21 imjjjj xxxX    and the outputs ),...,(
21 imjjjj yyyY    - jjj YXF : . 

The rij NNx
u

 , orj NNy
v

  signify the node names, which are the elements 

of the set C.  
 Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are mutual connected, if 

},...,,,...,{
2121 imik pppppp yyyxxx  },...,,,...,{

2121 jmkj qqqqqq yyyxxx . 

The module structure Sm= (Em, Cm) is connective, if for Ep, Eq E,  the string 

qiiip EEEEE
u

,,...,,
21

 (u0), in which all adjacent elements are mutual connected. 

Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are identical (Ep  Eq),  if  Fp  Fq, 
Xp  Xq , Yp  Yq. 

Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are isomorphic (Ep  Eq),  if there 
exists such one to one correspondence },...,{

21 ikppp xxx  },...,{
21 kjqqq xxx  

},...,{
21 imppp yyy  },...,{

21 jmqqq yyy and  Fp  Fq.  

Modules ),(
ii mmim CES  , ),(

jj mmjm CES   are isomorphic, if there exists such 

one to one correspondence
imE jmE , 

imC
jmC , that (Ep  Eq), k= 1,2,... p, 

where p is the number of module elements. 
Modules ),(

ii mmim CES  , ),(
jj mmjm CES   are identical, if they are 

isomorphic and 
imC

jmC . 

The decomposition requirements: 
a)  connectivity of modules 
b)  minimal number of connections to other modules 
c)  minimal number of modules 
d)  minimal number of module types 
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e)  minimal number of module elements 
Contradictory requirement c) and e) can be solved by hierarchy of module 

decomposition. 
Specification of logical system by structure is more suitable for manual decomposition 

because in their scheme we can see structure of modules and their connection to other ones. 
Specification of logical system by algebraic expression of function is more suitable for 
automatic decomposition because in the algebraic expression we can find identical or 
isomorphic parts which correspond with system modules.  

 By decomposition of logical systems it is necessary to differentiate between 
combinational part and sequential part of logical circuits. Combinational part which 
represents excitation and output function can be described by Boolean functions. 
Sequential parts can be described by the transition matrix of elementary memory 
elements. In sequential logical circuits are usually used one type - D, T, RS or JK of 
elementary memory elements which present isomorphic modules with different inputs 
and outputs. Excitation and output function in combinational part usually are different 
and it is useful decompose them into several smaller modules and look for their 
isomorphism. 

2 Algebraic Expression of a Logical System Function  

In case of combinational circuits the algebraic expressions – logical operations of 
conjunction (AND) x * y, disjunction (OR) x + y, negation (NOT) ~ x Sheffer’s 
operations (NAND) x | y, Pierce’s operations (NOR) x  y, non-equivalence (XOR) 
x  y - is fully sufficient for system specification. The brackets are used to specify 
priority of operations. Algebraic expressions are represented in the grammar-defined 
language [3]. Operation among primary inputs will be denoted as operation on level 
one. Operation is on level i+1 if maximal level of embedded operations is equal i. The 
maximal number of embedded operations, which must be realized by function 
calculation, will be denoted as depth of function embedding (the degree of the 
corresponding circuit). 

3 De/composition of Logical Systems 

3.1 Ordering of Algebraic Expression Elements  

For decreasing of modules identity detection complexity, it is desirable to order the 
algebraic expression at first [4]. We will begin with the algebraic expression, where 
the individual variables are denoted as xi, and may occur either in direct or in inverse 
instances in the expression.  Position of the given variable in the sequence, according 
to which the expression will be ordered, is chosen in following manner:  

ij 2 , for xi,  

12  ij , for ~ xi, i = 1,…,v 
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where v is the number of primary inputs of the circuit. Further sequence of primary 
variables is obtained this way is ~x1, x1, ~x2, x2, …, ~xn, xn, 

The ordering itself is done in the bottom-up manner for every string, which 
represents one logical operation, separately. Composite strings, which represent the 
outputs of operations on the lower depth of function embedding, will be ordered by 
leading variables in the string, symbols of operators will be ordered by sequence: 
~ (NOT), * (AND), + (OR), | (NAND),  (NOR),  (XOR). This way of the strings 
ordering will be denoted lexicographic ordering. The algorithm of the ordering is 
following:  
INPUT:  

An algebraic expression representation in the grammar-defined language [3]. 
OUTPUT: 

Ordered algebraic expression. 
BODY: 

1. Let 1i , let n be the depth of function embedding. 
2. For every logical operation on the level i order the strings according lexicographic 

ordering. 

3. 1 ii  
4. Repeat steps 2 and 3, until ni  . 

The example of ordered algebraic expression for a circuit realizing the full adder 
circuit (Fig. 1) can be following. The circuit has two outputs – sum and carry into the 
higher level: 

s=~(~x1*x2+x1*~x2)*x3+(~x1*x2+x1*~x2)*~x3 
c=(~x1*x2+x1*~x2)*x3+x1*x2 

3.2  Decomposition of Algebraic Expression into Substrings  

Decomposition of an algebraic expression comes out from the expression described in 
section 3.1, which is analyzed in bottom-up way. The result of decomposition is the 
decomposition of an algebraic expression into substrings that are realizable with only 
one elementary logical operation.  

The algorithm of algebraic expression decomposition into substrings is following: 
INPUT:  

Ordered algebraic expression (section 3.1). 
OUTPUT: 

A system of algebraic expression substrings that contain exactly one logical 
operation. 
BODY: 
1. Search a substring that contains exactly one logical operation. Considered logical 

operations are ~ (NOT), * (AND), + (OR), | (NAND),  (NOR),  (XOR). 
2. Substitute identified substring by one variable marked by symbol x and two 

numeric values. The first value indicates the level of substring (the depth of 
related function embedding). The second value identifies selected substring within 
the given level. 
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3. Compare expressions x[i,j], for j=1, 2, … , u, where u is the number of expression 
with the level  i. Identical expressions x[i,j] and x[i,j+v] replace by expression 
x[i,j]. 

4. Express initial algebraic expression using substitution variables. 
5. Repeat steps 1, 2, 3 and 4 until initial expression is reduced to logical expression 

containing only one logical operation. 
In the case of circuit with more outputs it is necessary to execute this algorithm as 

well as the next algorithm for algebraic expressions of all circuit output functions. 
Example of an application of the presented algorithm for the circuit realizing full 

adder circuit is presented in the Table 1. 

Table 1. Decomposition of full adder algebraic expression into substrings 

Function Substitution Identity 

s = ~(~x 1*x 2 +x1 *~x2 )*x3 +(~x 1*x 2 +x1* ~x2)* ~ x3  x [1 ,1 ]= ~ x1   

s = ~ (  x [ 1 ,1 ]* x2 +x1* ~x 2 )*x 3+(~x1 *x2 +x1*~x2 )* ~x3 x [2 ,1 ]=  x [ 1 ,1 ]* x2   
s = ~ (  x [ 2 ,1 ]+x1 *~x2 )*x3 +(~x 1*x 2 +x1* ~x2)* ~ x3  x [1 ,2 ]= ~ x2   
s = ~ (  x [ 2 ,1 ]+x1 *  x [1 ,2 ] )*x3+(~x1 *x2 +x1*~x2 )* ~x3  x [2 ,2 ]=  x1* x[1 ,2 ]   
s = ~ (  x [ 2 ,1 ]+  x [2 , 2 ] )* x3 + (~x1 *x2 + x1* ~x 2 )* ~x 3  x [3 ,1 ]=  x [ 2 ,1 ]+ x [2 ,2 ]   
s = ~  x [3 ,1 ]*x 3+(~x1 *x2 +x1*~x2 )* ~x3  x [4 ,1 ]  =~  x [ 3 ,1 ]   
s =  x [ 4 ,1 ]  * x3 +(~ x 1*x 2+ x1* ~x 2 )* ~x 3  x [5 ,1 ]  =  x [ 4 ,1 ]* x3   
s =  x [ 5 ,1 ]  + (~x1 *x2 + x1* ~x 2 )* ~x 3  x [1 ,3 ]= ~ x1  x [1 ,1 ]  
s =  x [ 5 ,1 ]  + (x [1 , 1 ]*x 2 +x1 *~x 2 )* ~x 3  x [2 ,3 ]=  x [ 1 ,1 ]* x2  x [2 ,1 ]  
s =  x [ 5 ,1 ]  + (  x [2 ,1 ]+x1 *~x2 )*~x3  x [1 ,3 ]=  ~x 2  x [1 ,2 ]  
s =  x [ 5 ,1 ]  + (  x [2 ,1 ]+x1 *~x2 )*~x3  x [2 ,3 ]=  x1* x[1 ,2 ]  x [2 ,2 ]  
s =  x [ 5 ,1 ]  + (  x [2 ,1 ]+  x [ 2 ,2 ] )*~x3  x [3 ,2 ]=  x [ 2 ,1 ]+ x [2 ,2 ]  x [3 ,1 ]   
s =  x [ 5 ,1 ]  +  x [3 , 1 ]* ~x 3  x [1 ,3 ]=  ~x 3   
s =  x [ 5 ,1 ]  +  x [3 ,1 ]* x [1 ,3 ]  x [4 ,2 ]=  x [ 3 ,1 ]* x [ 1 ,3 ]   
s =  x [ 5 ,1 ]  +  x [4 ,2 ]  x [6 ,1 ]= x [ 5 ,1 ]+ x [4 ,2 ]   
s =  x [ 6 ,1 ]    
c= (~x1*x2+x1*~x2)*x3+x1*x2 x [1 ,4 ]= ~ x1  x [1 ,1 ]  
c= (x [ 1 ,1 ]*x2+x1*~x2)*x3+x1*x2 x [2 ,3 ]=  x [ 1 ,1 ]* x2  x [2 ,1 ]  
c= (x [ 2 ,1 ]+x1*~x2)*x3+x1*x2 x [1 ,4 ]=  ~x 2  x [1 ,2 ]  
c= (x [ 2 ,1 ]+x1* x [1 ,2 ] )*x3+x1*x2 x [2 ,3 ]= x1* x [ 1 ,2 ]  x [2 ,2 ]  
c= (x [ 2 ,1 ]+x [2 ,2 ] )*x3+x1*x2 x [3 ,2 ]=  x [ 2 ,1 ]+ x [2 ,2 ]  x [3 ,1 ]  
c= x [ 3 ,1 ]*x3+x1*x2 x [4 ,3 ]=  x [ 3 ,1 ]*x3  
c= x [ 4 ,3 ]+x1*x2 x [1 ,4 ]= x1*x2  
c= x [ 4 ,3 ]+ x [1 ,4 ]  x [5 ,2 ]=  x [ 4 ,3 ]+ x [1 ,4 ]   
c= x [ 5 ,2 ]    

3.3 Composition of Logical System from Substrings  

Composition of a logical system comes out of a system of substrings obtained by a 
decomposition of an algebraic expression (section 3.2). The result of the composition 
is a system of algebraic expressions of all system modules output functions. Except 
the system of substrings, the degree of modules, which the composed circuit should 
consist of, is the input for the algorithm. Determination of module degrees depends 
upon the task which is the de/composition done for. The module levels can be equal 
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or different for composed modules. The modules composition must be without 
overlapping of modules. 

An algorithm of a logical module composition from substrings representing one-
level circuits can start from primary outputs, primary inputs of circuit or points which 
present inputs for more than one modules. One algorithm of a logical module 
composition, which starts from primary outputs, is following (example of an 
application of the presented algorithm for a full adder circuit is presented in the 
Table 2): 

Table 2. Composition of full adder algebraic expression from substrings 

Function Substitution 
s=  x [6 ,1]  x [6 ,1]=x [5 ,1]+x [4 ,2]  
s=  x [5 ,1]  +  x [4 ,2]  x [5 ,1]  =  x [4 ,1]*x3  
s=  x [4 ,1]*x3+  x [4 ,2]  x [4 ,1]  =~  x [3 ,1]  
s=  =~  x [3 ,1]*x3+  x [4 ,2]  x [4 ,2]= x [3 ,1]*x [1 ,3]  
s=  =~  x [3 ,1]*x3+  x [3 ,1]*x [1 ,3]   x [1 ,3]=  ~x3  
s=  =~  x [3 ,1]*x3+  x [3 ,1]*  ~x3   
x [3 ,1]=  x [2 ,1]+x [2 ,2]  x [2 ,1]=  x [1 ,1]*x2  
x [3 ,1]=  x [1 ,1]*x2+x [2 ,2]   x [1 ,1]=~x1 
x [3 ,1]=  ~x1*x2+x [2 ,2]   x [2 ,2]= x1*x[1,2]  
x [3 ,1]=  ~x1*x2+ x1*x[1,2]  x [1 ,2]=~x2  
x [3 ,1]=  ~x1*x2+ x1*~x2   
c= x [5 ,2]  x [5 ,2]=  x [4 ,3]+ x [1 ,4]  
c= x [4 ,3]+ x [1 ,4]  x [4 ,3]= x [3 ,1]*x3 
c= x [3 ,1]*x3+ x [1 ,4]   x [1 ,4]=x1*x2 
c= x [3 ,1]*x3+ x1*x2  

 
INPUT:  

A system of algebraic expression substrings that contain exactly one logical operation 
(section 3.2). 

Degree of modules, which the resulting circuit should consist of. 
OUTPUT:  

System of algebraic expressions that represent circuit output functions and system modules 
output functions. 
BODY: 
9. Let n be the depth of function embedding.  

Let m be the depth of modules function embedding (degree of modules) that  
resulting circuit should consist of. 
If (n mod m) = 0, let m_temp = n - m, k = m, else m_temp = n - (n mod m),  

  k = (n mod m). 
10. Beginning from a variable of the highest level, continuously substitute all 

variables of higher level than m_temp by strings that contain variables of lower 
level.  

11. In this expression, replace variables with level lower than m_temp by substitution 
of particular substrings. This substitution should be performed until the number of 
substitutions in substring in which the corresponding variable belongs to is not 
higher than k. The obtained expression presents the resulting function of module. 
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12. In this expression, if exists no variable x[p,q], p > 0  then stop else: 
4.1. For every variable x[p,q], p > 0 do the following: 

if p ≥ m, let m_temp = p – m, else m_temp = 0. 
4.2. Let k = m, proceed to step 2. 

Functions of outputs s = x[6,1], c = x[5,2] gained by substitutions presented in 
section 3.2 are inputs for the algorithm. We chose m = 3, because the circuit has to be 
realized by logical elements NOT, AND, OR, and gain a circuit consisting of three-
level modules this way.  

We can find out that the module M1 with output x[3,1] is isomorphic to the 
module M2 with output s, what becomes interesting from the diagnostic point of view 
[5]. The way of determination of identical and isomorphic modules is described in 
section 4. Structural scheme of a de/composed full adder circuit is shown in Fig. 1.  
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Fig. 22. Structural scheme of a de/composed full adder circuit. 

4 Determination of Identical and Isomorphic Circuits 

Determination of identical circuits is executed in the process of corresponding strings 
decomposition to one-level substrings (section 3.2). By comparison of expressions 
obtained this way, we can tell if the given circuits are identical.  

Determination of isomorphic circuits is executed after system modules 
composition (section 3.3). For the determination of isomorphism of the strings it is 
necessary to find out, if the conditions of identity of corresponding operation (type of 
the operator and number of operand) and also the condition of variables substitution 

M1 

M2 

M3 
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are fulfilled. Detection of the last mentioned condition is very demanding, because the 
number of different substitutions is equal to the number of variables permutations. 
That’s why the condition of substitution is detected only when all other conditions are 
fulfilled. 

The number of substitutions can be lowered, if we consider only permutations that 
present only those variables that are inputs of the logical operations with the same 
operator and same number of variables.  

One algorithm for decomposition of circuit into modules and for modules 
isomorphism determination was implemented in [6], [7]. 

5 Conclusion 

Decompositions of logical systems specified by algebraic expressions of its function 
are proposed in the contribution. The degree of modules is input of algorithm of 
modules composition. We can repeat modules composition with different degree of 
modules and look for suitable decomposition.  
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