

Decomposition and Isomorphism of Logical Systems

Ján Bača1

1Department of Computers and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Jan.Baca@tuke.sk

Abstract. The contribution deals with decomposition of logical systems for the
purpose of solving analysis, synthesis and diagnostics tasks. The system can be
specified by its structure or by algebraic expressions of its function. Particular
attention is paid to propose algorithms for ordering of components of algebraic
expression, decomposition of algebraic expression into substrings, and
composition of modularly-organized logical circuit from those substrings. Also a
way for the determination of identical and isomorphic modules of de/composed
circuits is presented.

Keywords. logical system, decomposition of systems, isomorphic modules,
algebraic expression.

Key Terms. Mathematical Model, Research, Development.

1 Introduction

The tasks complexity of the logical systems synthesis, analysis and diagnostics are
often very high and it depends on the system dimension.

If complexity c(n) of the solution of the task is not linear c(n) ≠ O(n), but
polynomial c(n) = O(nk), or exponential c(n) = O(gn), then the reduction of the total
solution complexity by the decomposition of the system S(n) into p subsystems
S1(n1), S2(n2), ..., Sp(np), ni < n is used with great advantage (n – parameter which
determines the system size). This is the reason for decomposition of systems into
several smaller modules and solving the tasks for separate modules and composing
module results back into result for whole system. Decomposition makes sense if
decreasing of the solution time t(S(n)) in decomposed systems is bigger than increase
of the solution time tds related with decomposition and back composition of the
system





p

i
dsíi tnStnSt

1
))(())((

Time tds grows with numbers of modules and numbers of connections among them.
The decomposition on modules with one (or minimal number of) output is more
suitable. If some modules are isomorphic (or identical) it is enough solve tasks for one

Decomposition and Isomorphism of Logical Systems 345

of them and apply for others. For example if we generate tests for complex system,
we can decompose it into several smaller modules, prepare tests for each group of
isomorphic modules and compose the test for whole system on the base of module
tests.

In separate tasks the systems can be described by different descriptions or formal
specifications [1], [2], [3]. The definitions of the system can be split into two basic
groups. In the first group the systems are defined by its function. For example the
combinational logical circuit can be present by algebraic expressions of system output
functions. In the second one the systems are defined by its structure. In these cases the
system can be presented by netlist. The function of the system described by structure
can be derived from functions of individual components and connections between
them. To understand the dependence between these different system descriptions it is
essential to mention, that the given function can be realized by different structures,
however the given structure of the circuit realizes a unique determined function.

The logic circuit structure is given by the equation S = (E, C), where E is the set of
logic elements and C is the set of mutually connections, which are performed in input
Ni, internal Nr or output No nodes.

Each element Ej = (Fj, Xj, Yj) is characterized by the logic function Fj, the inputs
),...,(

21 imjjjj xxxX  and the outputs),...,(
21 imjjjj yyyY  - jjj YXF : .

The rij NNx
u

 , orj NNy
v

 signify the node names, which are the elements

of the set C.
 Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are mutual connected, if

},...,,,...,{
2121 imik pppppp yyyxxx  },...,,,...,{

2121 jmkj qqqqqq yyyxxx .

The module structure Sm= (Em, Cm) is connective, if for Ep, Eq E,  the string

qiiip EEEEE
u

,,...,,
21

 (u0), in which all adjacent elements are mutual connected.

Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are identical (Ep  Eq), if Fp  Fq,
Xp  Xq , Yp  Yq.

Elements Ep = (Fp, Xp, Yp), Eq = (Fq, Xq, Yq) are isomorphic (Ep  Eq), if there
exists such one to one correspondence },...,{

21 ikppp xxx  },...,{
21 kjqqq xxx

},...,{
21 imppp yyy  },...,{

21 jmqqq yyy and Fp  Fq.

Modules),(
ii mmim CES  ,),(

jj mmjm CES  are isomorphic, if there exists such

one to one correspondence
imE jmE , 

imC
jmC , that (Ep  Eq), k= 1,2,... p,

where p is the number of module elements.
Modules),(

ii mmim CES  ,),(
jj mmjm CES  are identical, if they are

isomorphic and 
imC

jmC .

The decomposition requirements:
a) connectivity of modules
b) minimal number of connections to other modules
c) minimal number of modules
d) minimal number of module types

346 J. Bača

e) minimal number of module elements
Contradictory requirement c) and e) can be solved by hierarchy of module

decomposition.
Specification of logical system by structure is more suitable for manual decomposition

because in their scheme we can see structure of modules and their connection to other ones.
Specification of logical system by algebraic expression of function is more suitable for
automatic decomposition because in the algebraic expression we can find identical or
isomorphic parts which correspond with system modules.

 By decomposition of logical systems it is necessary to differentiate between
combinational part and sequential part of logical circuits. Combinational part which
represents excitation and output function can be described by Boolean functions.
Sequential parts can be described by the transition matrix of elementary memory
elements. In sequential logical circuits are usually used one type - D, T, RS or JK of
elementary memory elements which present isomorphic modules with different inputs
and outputs. Excitation and output function in combinational part usually are different
and it is useful decompose them into several smaller modules and look for their
isomorphism.

2 Algebraic Expression of a Logical System Function

In case of combinational circuits the algebraic expressions – logical operations of
conjunction (AND) x * y, disjunction (OR) x + y, negation (NOT) ~ x Sheffer’s
operations (NAND) x | y, Pierce’s operations (NOR) x  y, non-equivalence (XOR)
x  y - is fully sufficient for system specification. The brackets are used to specify
priority of operations. Algebraic expressions are represented in the grammar-defined
language [3]. Operation among primary inputs will be denoted as operation on level
one. Operation is on level i+1 if maximal level of embedded operations is equal i. The
maximal number of embedded operations, which must be realized by function
calculation, will be denoted as depth of function embedding (the degree of the
corresponding circuit).

3 De/composition of Logical Systems

3.1 Ordering of Algebraic Expression Elements

For decreasing of modules identity detection complexity, it is desirable to order the
algebraic expression at first [4]. We will begin with the algebraic expression, where
the individual variables are denoted as xi, and may occur either in direct or in inverse
instances in the expression. Position of the given variable in the sequence, according
to which the expression will be ordered, is chosen in following manner:

ij 2 , for xi,

12  ij , for ~ xi, i = 1,…,v

Decomposition and Isomorphism of Logical Systems 347

where v is the number of primary inputs of the circuit. Further sequence of primary
variables is obtained this way is ~x1, x1, ~x2, x2, …, ~xn, xn,

The ordering itself is done in the bottom-up manner for every string, which
represents one logical operation, separately. Composite strings, which represent the
outputs of operations on the lower depth of function embedding, will be ordered by
leading variables in the string, symbols of operators will be ordered by sequence:
~ (NOT), * (AND), + (OR), | (NAND),  (NOR),  (XOR). This way of the strings
ordering will be denoted lexicographic ordering. The algorithm of the ordering is
following:
INPUT:

An algebraic expression representation in the grammar-defined language [3].
OUTPUT:

Ordered algebraic expression.
BODY:

1. Let 1i , let n be the depth of function embedding.
2. For every logical operation on the level i order the strings according lexicographic

ordering.

3. 1 ii
4. Repeat steps 2 and 3, until ni  .

The example of ordered algebraic expression for a circuit realizing the full adder
circuit (Fig. 1) can be following. The circuit has two outputs – sum and carry into the
higher level:

s=~(~x1*x2+x1*~x2)*x3+(~x1*x2+x1*~x2)*~x3
c=(~x1*x2+x1*~x2)*x3+x1*x2

3.2 Decomposition of Algebraic Expression into Substrings

Decomposition of an algebraic expression comes out from the expression described in
section 3.1, which is analyzed in bottom-up way. The result of decomposition is the
decomposition of an algebraic expression into substrings that are realizable with only
one elementary logical operation.

The algorithm of algebraic expression decomposition into substrings is following:
INPUT:

Ordered algebraic expression (section 3.1).
OUTPUT:

A system of algebraic expression substrings that contain exactly one logical
operation.
BODY:
1. Search a substring that contains exactly one logical operation. Considered logical

operations are ~ (NOT), * (AND), + (OR), | (NAND),  (NOR),  (XOR).
2. Substitute identified substring by one variable marked by symbol x and two

numeric values. The first value indicates the level of substring (the depth of
related function embedding). The second value identifies selected substring within
the given level.

348 J. Bača

3. Compare expressions x[i,j], for j=1, 2, … , u, where u is the number of expression
with the level i. Identical expressions x[i,j] and x[i,j+v] replace by expression
x[i,j].

4. Express initial algebraic expression using substitution variables.
5. Repeat steps 1, 2, 3 and 4 until initial expression is reduced to logical expression

containing only one logical operation.
In the case of circuit with more outputs it is necessary to execute this algorithm as

well as the next algorithm for algebraic expressions of all circuit output functions.
Example of an application of the presented algorithm for the circuit realizing full

adder circuit is presented in the Table 1.

Table 1. Decomposition of full adder algebraic expression into substrings

Function Substitution Identity

s = ~(~x 1*x 2 +x1 *~x2)*x3 +(~x 1*x 2 +x1* ~x2)* ~ x3 x [1 ,1]= ~ x1

s = ~ (x [1 ,1]* x2 +x1* ~x 2)*x 3+(~x1 *x2 +x1*~x2)* ~x3 x [2 ,1]= x [1 ,1]* x2
s = ~ (x [2 ,1]+x1 *~x2)*x3 +(~x 1*x 2 +x1* ~x2)* ~ x3 x [1 ,2]= ~ x2
s = ~ (x [2 ,1]+x1 * x [1 ,2])*x3+(~x1 *x2 +x1*~x2)* ~x3 x [2 ,2]= x1* x[1 ,2]
s = ~ (x [2 ,1]+ x [2 , 2])* x3 + (~x1 *x2 + x1* ~x 2)* ~x 3 x [3 ,1]= x [2 ,1]+ x [2 ,2]
s = ~ x [3 ,1]*x 3+(~x1 *x2 +x1*~x2)* ~x3 x [4 ,1] =~ x [3 ,1]
s = x [4 ,1] * x3 +(~ x 1*x 2+ x1* ~x 2)* ~x 3 x [5 ,1] = x [4 ,1]* x3
s = x [5 ,1] + (~x1 *x2 + x1* ~x 2)* ~x 3 x [1 ,3]= ~ x1 x [1 ,1]
s = x [5 ,1] + (x [1 , 1]*x 2 +x1 *~x 2)* ~x 3 x [2 ,3]= x [1 ,1]* x2 x [2 ,1]
s = x [5 ,1] + (x [2 ,1]+x1 *~x2)*~x3 x [1 ,3]= ~x 2 x [1 ,2]
s = x [5 ,1] + (x [2 ,1]+x1 *~x2)*~x3 x [2 ,3]= x1* x[1 ,2] x [2 ,2]
s = x [5 ,1] + (x [2 ,1]+ x [2 ,2])*~x3 x [3 ,2]= x [2 ,1]+ x [2 ,2] x [3 ,1]
s = x [5 ,1] + x [3 , 1]* ~x 3 x [1 ,3]= ~x 3
s = x [5 ,1] + x [3 ,1]* x [1 ,3] x [4 ,2]= x [3 ,1]* x [1 ,3]
s = x [5 ,1] + x [4 ,2] x [6 ,1]= x [5 ,1]+ x [4 ,2]
s = x [6 ,1]
c= (~x1*x2+x1*~x2)*x3+x1*x2 x [1 ,4]= ~ x1 x [1 ,1]
c= (x [1 ,1]*x2+x1*~x2)*x3+x1*x2 x [2 ,3]= x [1 ,1]* x2 x [2 ,1]
c= (x [2 ,1]+x1*~x2)*x3+x1*x2 x [1 ,4]= ~x 2 x [1 ,2]
c= (x [2 ,1]+x1* x [1 ,2])*x3+x1*x2 x [2 ,3]= x1* x [1 ,2] x [2 ,2]
c= (x [2 ,1]+x [2 ,2])*x3+x1*x2 x [3 ,2]= x [2 ,1]+ x [2 ,2] x [3 ,1]
c= x [3 ,1]*x3+x1*x2 x [4 ,3]= x [3 ,1]*x3
c= x [4 ,3]+x1*x2 x [1 ,4]= x1*x2
c= x [4 ,3]+ x [1 ,4] x [5 ,2]= x [4 ,3]+ x [1 ,4]
c= x [5 ,2]

3.3 Composition of Logical System from Substrings

Composition of a logical system comes out of a system of substrings obtained by a
decomposition of an algebraic expression (section 3.2). The result of the composition
is a system of algebraic expressions of all system modules output functions. Except
the system of substrings, the degree of modules, which the composed circuit should
consist of, is the input for the algorithm. Determination of module degrees depends
upon the task which is the de/composition done for. The module levels can be equal

Decomposition and Isomorphism of Logical Systems 349

or different for composed modules. The modules composition must be without
overlapping of modules.

An algorithm of a logical module composition from substrings representing one-
level circuits can start from primary outputs, primary inputs of circuit or points which
present inputs for more than one modules. One algorithm of a logical module
composition, which starts from primary outputs, is following (example of an
application of the presented algorithm for a full adder circuit is presented in the
Table 2):

Table 2. Composition of full adder algebraic expression from substrings

Function Substitution
s= x [6 ,1] x [6 ,1]=x [5 ,1]+x [4 ,2]
s= x [5 ,1] + x [4 ,2] x [5 ,1] = x [4 ,1]*x3
s= x [4 ,1]*x3+ x [4 ,2] x [4 ,1] =~ x [3 ,1]
s= =~ x [3 ,1]*x3+ x [4 ,2] x [4 ,2]= x [3 ,1]*x [1 ,3]
s= =~ x [3 ,1]*x3+ x [3 ,1]*x [1 ,3] x [1 ,3]= ~x3
s= =~ x [3 ,1]*x3+ x [3 ,1]* ~x3
x [3 ,1]= x [2 ,1]+x [2 ,2] x [2 ,1]= x [1 ,1]*x2
x [3 ,1]= x [1 ,1]*x2+x [2 ,2] x [1 ,1]=~x1
x [3 ,1]= ~x1*x2+x [2 ,2] x [2 ,2]= x1*x[1,2]
x [3 ,1]= ~x1*x2+ x1*x[1,2] x [1 ,2]=~x2
x [3 ,1]= ~x1*x2+ x1*~x2
c= x [5 ,2] x [5 ,2]= x [4 ,3]+ x [1 ,4]
c= x [4 ,3]+ x [1 ,4] x [4 ,3]= x [3 ,1]*x3
c= x [3 ,1]*x3+ x [1 ,4] x [1 ,4]=x1*x2
c= x [3 ,1]*x3+ x1*x2

INPUT:

A system of algebraic expression substrings that contain exactly one logical operation
(section 3.2).

Degree of modules, which the resulting circuit should consist of.
OUTPUT:

System of algebraic expressions that represent circuit output functions and system modules
output functions.
BODY:
9. Let n be the depth of function embedding.

Let m be the depth of modules function embedding (degree of modules) that
resulting circuit should consist of.
If (n mod m) = 0, let m_temp = n - m, k = m, else m_temp = n - (n mod m),

 k = (n mod m).
10. Beginning from a variable of the highest level, continuously substitute all

variables of higher level than m_temp by strings that contain variables of lower
level.

11. In this expression, replace variables with level lower than m_temp by substitution
of particular substrings. This substitution should be performed until the number of
substitutions in substring in which the corresponding variable belongs to is not
higher than k. The obtained expression presents the resulting function of module.

350 J. Bača

12. In this expression, if exists no variable x[p,q], p > 0 then stop else:
4.1. For every variable x[p,q], p > 0 do the following:

if p ≥ m, let m_temp = p – m, else m_temp = 0.
4.2. Let k = m, proceed to step 2.

Functions of outputs s = x[6,1], c = x[5,2] gained by substitutions presented in
section 3.2 are inputs for the algorithm. We chose m = 3, because the circuit has to be
realized by logical elements NOT, AND, OR, and gain a circuit consisting of three-
level modules this way.

We can find out that the module M1 with output x[3,1] is isomorphic to the
module M2 with output s, what becomes interesting from the diagnostic point of view
[5]. The way of determination of identical and isomorphic modules is described in
section 4. Structural scheme of a de/composed full adder circuit is shown in Fig. 1.

1 &

&

1

1

1 &

&

1

1

&

1
&

x

s

c

x[3,1]

1

x 2

x 3

Fig. 22. Structural scheme of a de/composed full adder circuit.

4 Determination of Identical and Isomorphic Circuits

Determination of identical circuits is executed in the process of corresponding strings
decomposition to one-level substrings (section 3.2). By comparison of expressions
obtained this way, we can tell if the given circuits are identical.

Determination of isomorphic circuits is executed after system modules
composition (section 3.3). For the determination of isomorphism of the strings it is
necessary to find out, if the conditions of identity of corresponding operation (type of
the operator and number of operand) and also the condition of variables substitution

M1

M2

M3

Decomposition and Isomorphism of Logical Systems 351

are fulfilled. Detection of the last mentioned condition is very demanding, because the
number of different substitutions is equal to the number of variables permutations.
That’s why the condition of substitution is detected only when all other conditions are
fulfilled.

The number of substitutions can be lowered, if we consider only permutations that
present only those variables that are inputs of the logical operations with the same
operator and same number of variables.

One algorithm for decomposition of circuit into modules and for modules
isomorphism determination was implemented in [6], [7].

5 Conclusion

Decompositions of logical systems specified by algebraic expressions of its function
are proposed in the contribution. The degree of modules is input of algorithm of
modules composition. We can repeat modules composition with different degree of
modules and look for suitable decomposition.

Acknowledgments

This work is the result of the project implementation: Development of the Center of
Information and Communication Technologies for Knowledge Systems (ITMS
project code: 26220120030) supported by the Research & Development Operational
Program funded by the ERDF.

References

1. Korečko, Š., Hudák, Š., Šimoňák, S.: Formal Methods Integration for Design and Analysis
of Time-critical Systems. Informatika, Bratislava, pp. 211--216 (2003)

2. Chladný, V., Havlice, Z., Szaniszló, P.: Modeling Tools Description Language. In
Proceedings of the International scientific conference MOSIS in Rožnov pod Radhoštěm,
Czech Republic, pp. 107--112 (2000)

3. Bača J., Chladný V., Giertl J.: Formal Specifications and Decomposition of Logic Systems
for Purposes of Analysis, Synthesis and Diagnostics, Problemy programmirovanija 16, 2-3,
pp. 102--107 (2004)

4. Bača, J.: Decomposition of Logic Circuits. In Proceedings of International Conference
Electronic Computers and Informatics ’98, FEI TU Košice-Herľany, pp.100--103 (1998)

5. Hlavička, J., Kottek. E., Zelený, J.: Diagnostika elektronických číslicových obvodů. SNTL,
Praha (1982)

6. Hlinka, V.: Dekompozícia logických obvodov. Bakalárska práca, Košice, Technická
univerzita v Košiciach, Fakulta elektrotechniky a informatiky (2011)

7. Dzubajová, B.: Dekompozícia logických obvodov. Bakalárska práca, Košice, Technická
univerzita v Košiciach, Fakulta elektrotechniky a informatiky (2011)

