

Efficient Algorithm for Reachability Checking
in Modeling

Alexander Letichevsky1, Olexander Letychevskyi1, and Vladimir Peschanenko2

1 Glushkov Institute of Cybernetics of NAS of Ukraine, 40 Glushkova ave., Kyiv, Ukraine
let@cyfra.net, lit@iss.org.ua

2 Kherson State University, 27, 40 Rokiv Zhovtnya str, Kherson, Ukraine
vladimirius@gmail.com

Abstract. The problem of reachability of the states of transition systems is
considered hereby. The notions of partial unfolding and permutability of two
operators (including the notion of statically permutable operators) are
presented. New algorithm for reachability problem in terms of insertion
modeling is described. An example of application of such algorithm is
considered.

Keywords: insertion modeling, reachability, verification, interleaving,
introduction

Key Terms: MathematicalModel, Process, Research.

1 Introduction

The verification of models of multiagent distributed systems and models of parallel
computation usually need symbolic modeling and high level of abstraction. These
models are highly nondeterministic because of symbolic nature of models and use of
parallel composition adds a new level of non-determinism by interleaving. The main
problem of verification is the problem of combinatorial explosion of states of the
model. A state of model checking includes a lot of attributes and processes. The total
number of states could be very large even if the number of processes is finite and all
of the attributes are taken by finite number of values. Main source of combinatorial
explosion of states are the number of processes and interleaving between them,
nondeterministic behavior of them etc. Usually the systems are parallel and the
number of their states grows exponentially with the number of processes. Our
experience of verification of industrial systems shows that the total number of states is
more than 21000. Obviously, model checking by naive enumeration of states is not
feasible. Devoted to solving the problem many different technologies: developed
methods for the partial order to reduce interleaving, used methods for determining the
symmetry when verifying the equivalence of states, studied the information
dependence to phase of verification components, applied techniques of abstraction,
factorization, approximation, symbolic modeling etc. The standard model checking
algorithms work only when the set of states reachable from the given initial state is

72 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

finite. Insertion modeling is a symbolic modeling with infinite number of states.
There are various model checking techniques for infinite-state systems, but they are
less developed than finite-state techniques and tend to place stronger limitations on
the kind of systems and/or the properties that can be model checked. One of such
techniques is presented in [1].

In Petri net theory there is well known the McMillan algorithm of unfolding that in
many cases helps the exponential decreasing of interleaving in system analyses [2].
The book [3] generalizes this technique to the finite automata networks. So, the paper
presents the new algorithm for reachability problem in terms of insertion modeling
[4,5,6] for models with infinite number of states. The algorithm combines the ideas of
economic unfolding of McMillan with on-line reachability checking using some
general assumptions about the nature of information dependencies in the states of
distributed system expressed in terms of permutability of actions.

So, the paper is devoted to the solution of a problem of reduce interleaving in
insertion models with infinite number of states.

The algebra of behavior is presented in section Behavior Algebras, the verification
environments and corresponded insertion function, predicate transformer are
considered in section Verification Environments. The normal form of behavior is
defined in section Behaviors Over Basis B. The problem of reachability of the states
is described in section Verification. The notion of partial unfolding is examined in
section Partial Unfolding. The optimization of partial unfolding by statically
permutable operators is reviewed in section Static Permutability Property. The
algorithm for reducing of interleaving for transitional systems is presented in section
Algorithm of Reducing Interleaving. The example which demonstrates a good result
of using the partial unfolding algorithm is presented in section Example of
Application.

2 Behavior Algebras

Behavior algebra [5] is a kind of process algebra and it is used to express the behavior
of agents (transition systems) considered up to bisimilarity or trace equivalence. To
make economic unfolding we need to distinguish sequential and parallel behaviors.
So we consider the following modification of the notion of behavior algebra. It is a
multisorted algebra with three components: the algebra of actions, the algebra of
sequential behaviors, and the algebra of parallel behaviors.

The algebra of sequential behaviors has operations of prefixing: <action> .
<sequential behavior> and one internal operation of nondeterministic choice (()+())
which is associative commutative and idempotent operation with neutral element 0.
We also consider the constant behavior  (successful termination) which is the
common element of the algebra of sequential and the algebra of parallel behaviors.
The operations of action algebra will be considered later.

The algebra of parallel behaviors has the parallel composition ()||() of sequential
behaviors as the main binary operation. It is associative commutative (not
idempotent) with the neutral element  . It also has the prefixing operation and
nondeterministic choice. The algebra of sequential behaviors is implicitly included to

Efficient Algorithm For Reachability Checking in Modeling 73

the algebra of parallel behaviors by identity  ||uu (parallel composition with one

component). The unfolding of parallel composition by interleaving will be considered
only after inserting the agents formed by parallel composition into the environment.

3 Verification Environments

These environments),,(BPUEE  are defined by the following parameters: the set

of conditional expressions U, the set of operators P, and the set of basic behaviors B.
The set of conditions and the set of operators are used to define actions (it is a union
of these two sets). The set of basic behaviors are used to define the behaviors of
agents inserted into environment in the way which will be explained later. We also
suppose that some logic language (first order or temporal) called as basic language is
fixed to define the states of environment and checking conditions for verification. The
conditional expressions also belong to this language.

The state of environment is represented as][uE , where E is a statement of basic

language and u is a parallel composition of sequential behaviors of agents inserted
into environment. We suppose that operators are divided into the set of conditional
and unconditional operators. Conditional operator has the form a where  is a
condition and a is an unconditional operator. Unconditional operator a is identified
with conditional operator a1 . The associative product ()*() and the function

UPUpt : (predicate transformer) are defined by the set of actions so that the

following identities are valid:
)(),(aptapt  

)*,()),,((baptbaptpt  

),),(()(*)(baptptba  

 *

Here  and  are conditions, a and b are unconditional operators.

Predicate transformer is supposed to be monotonic:
),(),(aptapt   . In general case, the pt function is defined by some

concrete syntax. One of the examples of such pair (syntax, pt) could be found [7].
Example. Basic language is a first order language. Conditions are formulae over

simple attributes - the symbols that change their values when system changes its state.
Formally they are considered as functional symbols with arity 0. Unconditional
operators are assignments (parallel assignments, sequences of assignments and if-
then-else operators, loops with finite number of repetitions etc.). As usually in this
case

)))()(()(())),(:),(:(),((22112211   ztxztxzzxtxxtxxpt 

Actually this is the strongest postcondition for precondition  .
Insertion function is defined by the following identities and rules.
1.]||[],[vuEvuE  , u,v are agents with sequential behavior (see sec. 1).

Identities for conditions.

74 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

2.][].[vEvuE  , if 0)(E .

3.].[]..[vuEvuE   , if 0)(E (merging conditions).

4.].[]..[vuaEvuaE   , if 0)( E . Special cases of

these identities are obtained when v=0 or 1 as special cases.

5.][].[  EE , if 0)(E .

Identities for operators.
6.][].[vEvuaE  , if 0),(aEpt .

7.)],(||)[,(.].[EauaEptauaE  , if 0),(aEpt ,),(Ea is a parallel

composition of sequential behaviors (generating some new parallel branches). If
),(Ea , then uuEau  ||),(|| and u remains unchanged.

Nondeterministic choice.
8.]).([]..[wvuaEwvauaE  . The use of left distributivity means that

environment considers behavior expressions up to trace equivalence. It also means
that a system uses delayed (angelic) choice.

9.][][][ EuEuE . The states]0[E and][E are called terminal states of

environment. Formally the states of the form]0[E are equivalent to 0, and states of a

form][E are equivalent to  (if the ][][EE is added). But from the point

of view of verification it is useful to distinguish syntactically different terminal states.
Parallel behaviors.
10.]||[]||[][][wvEwuEvEuE  . Therefore all identities for conditions and

operators can be applied within the parallel composition. A component

nn uaua .. 11  of parallel composition is called degenerated relative to the state E,

if for all operators 0),(. ii aEpta and for all conditions i it is true that

0)( iE  . Each component that is degenerated relatively to the state E is

equivalent to 0 relatively to this state.
11.][][][vFvFuE  , if parallel composition u contains degenerated component

relative to E. So all states of environment with degenerated components are
equivalent to 0.

12.][]||[]||[vEvuEvuE  .

13.  ]||.[]||.[]..[22112211 vuaEvuaEuauaE , if all actions ia are

different, if ia is a condition then iu is terminal constant, and v does not contain

components degenerated relatively to the state E. The state of environment][uE is

called dead lock state, if there are no transitions from this state, but u is not successful
termination. If there is at least one degenerated component in parallel composition,
then corresponding state is a dead lock state and all dead lock states are equivalent to
0, but it is useful to distinguish them as well as terminal constants. The rules (9), (12),
and (13) are called unfolding of nondeterministic choice.

14.    n
i iiiiiinn uauuaauauaE 1 111111)||.||||.||.(].||||.[ , if all

components of parallel composition are non-degenerated. This relation is called
unfolding of a parallel composition. This is a complete unfolding and the main result

Efficient Algorithm For Reachability Checking in Modeling 75

of this paper shows that it is not needed to make the complete unfolding at each step
of verification. Let be nn uauau .||||. 11  ,

)||.||||.||.(),(1111   iiiiii uauuaaiuunfold

The identity (14) can be rewritten as

14a.   n
inn iuunfolduauaE 111),(].||||.[ .

Environment does not distinguish trace equivalent behaviors and consequently
bisimilar states of environment are trace equivalent. The identity (14) defines the
main transition rule for the system:

][][uEuE ia  ,

if u is a parallel composition with non-degenerated components and][uE  is defined

by the identity (7).

4 Behaviors Over Basis B

The set of symbols is given for the set B of behavior basis. These symbols are called
basic sequential behaviors. The expression of the algebra of sequential behaviors
constructed from these symbols and termination constants are called sequential
behavior over basis B. Suppose that for each symbol Bv an equation of the form

),,(21 vvFv v is given with sequential behavior over basis B as a right hand side.

This equation is called the definition of a basic behavior v. The application of this
definition (the substitution of the right hand side for the left hand one) is called the
unfolding of this behavior. System of basic behaviors is called non-degenerated if
each path in the tree representation of the expression),,(21 vvFv v contains at

least one operator.
Normal form of sequential behavior is an expression of the form

 nn uauaua ... 2211  where ,, 21 uu are sequential behaviors. If ia is a

condition, then iu is a termination constant, 0n , and all actions are different (not

equivalent with respect to the environment E), because of delayed (angelic) choice
(see sec. 2).

Each sequential behavior u over non-degenerated basis in a state][uE can be

reduced to a normal form v equivalent to u with respect to E.
Parallel behavior over B is a parallel composition of sequential behaviors over B.
Normal form of parallel behavior is a nondeterministic sum of behaviors of the

form  2211 .. uaua , where ,, 21 uu are sequential behaviors over B, ,, 21 aa -

operators or conditions at what if ia is a condition, then iu is a termination constant.

Normal form of environment state is a term of a form    Ii Jjiii uEa][.

or 0. Each environment state with non-degenerated system of basic behaviors is trace
equivalent to some normal form.

76 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

5 Verification

A property  of environment state is called to be correct if it does not distinguish

equivalent states. A property  of environment state is monotonic if

])[(])[(uEuEEE   .

5.1 Verification problem

For a given set  of correct and monotonic checked properties, defined on the set of
environment states, the set of initial states defines which properties are reachable(not
reachable) from the initial states for a finite number of steps or a number of steps
bounded by some constant. It is supposed that the set of checked properties contains
the property of a state to be dead lock and to be a state of successful termination.

The simplest verification algorithm is exhaustive unfolding of initial states up to
saturation or depletion of a given number of steps. It uses the next formulae of

unfolding:  
n
i iuunfoldE1)],([. The checked properties are checked in the process of

unfolding and the states satisfying checked properties are collected. More economic
algorithm can be constructed using the following partial unfolding algorithm.

6 Partial Unfolding

Two operators a and a' are called permutable with respect to the state E, if

)(]*[]*[aaaaEaaE E  . Let the state of environment].||||.[][11 nn uauaEuE 

be given. Select a component ii uas . and construct for this component the set

),(sEnonp of those components jiua jj ,. such that ia

and ja are not permutable

with respect to the current state E. Obtain
),(),()(),,(iECiEBiAiuEpunfold 

)||.||||.||.()(1111   iiiiii uauuaaiA

  ),(),(1111)||.||||.||.(),(sEnonpaaji jjjjjjji

uauuaaiEB 

  



w
E

kik aasEnonpaaik kkkwkkkk uauaauaa

iEC

),(),(1111)||.||.||.||.(

),(



An expression)],,([iuEpunfoldE is called a partial unfolding of parallel
composition by the component i (unlike the complete unfolding).

In general case, the algorithm uses dynamic permutablity of operators, but it isn't
optimal because using four times of pt function for each pair of the operators is
required. This problem could be improved by using the notion of statically permutable
operators.

Efficient Algorithm For Reachability Checking in Modeling 77

6.1 Static Permutability Property

Theorem 1. If two operators bqap   , are permutable with respect to the

states  1E ,  2E ,  3E then they are permutable for all states.

Assume the contrary that])*[]*[(pqeqpee  and
],*[]*[11 pqEqpE ],*[]*[22 pqEqpE ]*[]*[33 pqEqpE  .

 Consider

]*[]*[11 pqEqpE  :

))),,((])[,(]*[(baptptpaptqp 
))),,((])[,(]*[(abptptqbptpq 

])*[]*[(pqqp 
)),,(()),,((abptptbaptpt 

)),),((()),),(((abeeptptbaeeptpt 

)),,(()),,((

)),),(()),),((

abeptptabeptpt

baeptptbaeptpt







Consider]*[]*[22 pqEqpE  :

)0])[,(]*[(qaptqp 
))),,((])[,(]*[(abptptpbptpq 

])*[]*[(pqqp 
)0)),,((( abptpt 

Consider]*[]*[33 pqEqpE  :

)0])[,(]*[(qbptpq 
))),,((])[,(]*[(baptptqbptqp 

])*[]*[(pqqp 
)0)),,((( baptpt 

Let's try to prove this theorem by contradiction. Let's consider insertion of two
operators p,q:

)),,((])[,()](*)[(]*[baeptptbaeptbaeqpe  
)),,((])[,()](*)[(]*[abeptptabeptabepqe  

So,))),,(()),,(((abeptptbaeptpte   .
))),),((()),),((((abeptptbaeptpte 




))),,((

)),,(((

abeeptpt

baeeptpte







))),,(()),,((

)),,(()),,(((

abeptptabeptpt

baeptptbaeptpte




So, using monotonic property of pt function obtain

0)),,((

)),,(()),,((

),(),(





abeptpt

abptptabeptpt

bptbepte






0)),,((

)),,(()),,((

),(),(





baeptpt

baptptbaeptpt

aptaepte






78 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

It means that

)))),,(()),,(((

))),,(()),,((((

])*[]*[(

))),,(()),,(((

11

abeptptbaeptpt

baeptptabeptpte

pqEqpE

abeptptbaeptpte












Let consider the cases when
))),,(()),,(((baeptptabeptpte  

0  ee means that the pt function translates this formulae into one

state independently from e and e . It is possible then all attributes expressions from
e are in r,s list of pt and after application of both protocols p,q no restrictions are left
from e and e , because of contradiction in other cases. It means that both operators
p,q translate all sub-formulae which depend on attribute expressions from e into one
sub-formulae, independently from sequence of application. So, by obtaining a
contradiction, due to that case)),,(()),,((baeptptabeptpt   , theorem is
proved.

Two operators bqap   , are called statically permutable if they satisfy
the next conditions:
1. 1.)),,(()),,((baptptabptpt  
2. 2. 0)),,(( abptpt 
3. 3. 0)),,(( baptpt 

From practical point of view, to make 8 calls of pt function to check the static
permutability property for two operators is a slow process. So, let's define the weak
property for static permutability of two operators.

Let r(p),s(p),z(p) be the lists of predicate transformer for operator ap  ,
where r(p) - the list of the attribute expressions from left part of assignment of a, r(p)
- the list of the attribute expressions from the formulae part of a, z(p) - the list of
attribute expressions from  which are not in)()(pspr  [7].

Two operators bqap   , are called weak static permutable if

)))()()(())()(((

)))()()(())()(((




pzpsprqsqr

qzqsqrpspr

Theorem 2. If two operators bqap   , satisfy weak condition of static
permutability then they are statically permutable

If p, q satisfy weak condition of static permutability then both operators work with
different memory. It means that all conditions for static permutability are satisfied and
the theorem proved.

7 Algorithm of Reducing Interleaving

Using of the Breadth-first search (BFS) algorithm is better then the Depth-first search
(DFS) algorithm for checking of reachability property. But, in general case, our
algorithm could be used with any traversal strategy. So, let use BFS algorithm and the
component which was chosen is in normal form iii uasuauaE .],||.||.[2211  . Then

Efficient Algorithm For Reachability Checking in Modeling 79

component)(min)(iij snonpsnonp  is chosen for partial

unfolding },2,1{),,||.||.(2211  jjuauapunfold . Of course the algorithms for visited

and dead lock detection should be defined for partial unfolding.
 The state in the set of search tree is considered as visited if it is in the set of

already visited states and all its possible successors are in this set:
visiteduauauauaE nnii )].||||.||||.||.([2211 


visiteduauauuauaaE nniiiiii )].||||.||||.||||..([111111 


visiteduuauaaE nnnn )]||.||||..([1111 

The state in the set of search tree is considered as dead lock if some of inserted
actions gives 0:

0)].||||.||||.||.([2211 nnii uauauauaE 


0)].||||.||||.||||..([111111  nniiiiii uauauuauaaE 


0)]||.||||..([1111  nnnn uuauaaE 

In general case the partial unfolding loses states, because),(),(iuunfoldiupunfold  .
Theorem 3. The function),(iupunfold doesn't break reachability property if

algorithm checks reachability property for lost states after partial unfolding.
 First of all the partial unfolding doesn't break the reachability of terminal states: 0,
, , because of definition of dead lock state, uu || , ||u . Algorithm for

visited doesn't break reachability property because of definition which helps system to
stop the consideration of infinite number of states.

Finally, let's check the reachability property for goal and safety detection
algorithm. The partial unfolder),(iupunfold loses the states for components of
parallel composition jj ua . which are considered as permutable for current action

)(),(iji snonpaa  and))(),)(((ijijj snonpaaua  . In that case punfold loses states

].||||||||.[. 11 nnjj uauuaEa  . It means that the algorithm should check the

reachability property here. From other point of view, it's known that
]*[]*[ijji aaEaaE  , because)(),(iji snonpaa  . It means that the reachability

property after insertion of ja operator will be saved and after sequential insertion of

ji aa , . So, the theorem is proved.

If the algorithm of partial unfolding is used for checking reachability property of
goal and safety states then algorithm should check those states after each work of
function punfold.

80 A. Letichevsky, O. Letychevskyi, and V. Peschanenko

8 Example of Application

Let initial state be]312||20[URE . The behavior R20 and U312 is defined by the
following graphs fig. 1, fig. 2 respectively.

Fig. 1. Behavior for R20.

Fig. 2. Behavior for U312.

The */R2 means all operators except R2, the red color in fig. 1 means the special
situation when the R2 could be inserted after any of operators except R2 and that after
insertion of R2 any protocol could be inserted except R2. The red color on fig. 2 used
to mark sub-path for successful termination state (terminal states).

The following results are obtained after analyzing the two lists of operators from
behavior R20 and U312:
1. Behavior R20 has 5 from 20 operators which are statically permutable for all

operators from U312.
2. Behavior U312 has 31 from 33 operators which are statically permutable for all

operators from R20.
3. The time for creating the list of statically permutable operators is aprox. 1 min.
4. The whole state space was covered after aprox. 25 min.
5. Total number of covered states is 1102.

Efficient Algorithm For Reachability Checking in Modeling 81

Out of memory error was obtained without partial unfolding algorithm after aprox.
1 hour of work and aprox. 50000 of states were covered. So, it is good results for this
example, because if one of operators is statically permutable for all of the operators
from other parallel processes then)(),(iAiupunfold  , because 0)()( iCiB here.

9 Conclusions

The verification algorithm based on partial unfolding has been implemented in the
system of insertion modeling IMS and has shown considerable decreasing of the
verification time on this example. Generally speaking, the C++ version (the language
of implementation of IMS) of this algorithm will be faster not less than 10 times. It is
true because of well known notion of IMS: C++ algorithm is faster not less in 10
times than corresponded prototype (which was written on APLAN language – the
language of IMS) of this algorithm in IMS. We hope this algorithm will be fast for the
similar examples as well.

In the near future this algorithm will be applied for the verification of set of
industrial examples, for verification of parallel programs [8], and for VFS
(verification of formal specification) - our tool for symbolic modeling with infinite
number of states.

References

1. Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Using
Narrowing. Proceedings of the 18th International Conference on Term Rewriting and
Applications, LNCS 4533, pp. 153--168, Springer (2007).

2. McMillan, K.L.: Trace Theoretic Verification of Asynchronous Circuits Using Unfoldings.
Proceedings of the 7th Workshop on Computer Aided Verification, Liege, LNCS 939, pp.
180-195, Springer (1995)

3. Esparza, J. and Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science, ISBN: 978-3-540-77425-9,
Springer-Verlag,172 p. (2008)

4. Letichevsky, A., Gilbert, D.: A Model for Interaction of Agents and Environments. In D.
Bert, C. Choppy, P. Moses, editors. Recent Trends in Algebraic Development Techniques.
Lecture Notes in Computer Science 1827, Springer (1999)

5. Letichevsky, A.: Algebra of behavior transformations and its applications, in
V.B.Kudryavtsev, I.G.Rosenberg (eds.) Structural theory of Automata, Semigroups, and
Universal Algebra, NATO Science Series II. Mathematics, Physics and Chemistry - Vol.
207, pp. 241-272, Springer (2005)

6. Letichevsky, A., Kapitonova, J., Kotlyarov, V., Letichevsky Jr., A., Nikitchenko, N.,
Volkov, V., Weigert, T.: Insertion modeling in distributed system design, Problems of
programming (ISSN 1727-4907), Vol. 4, pp. 13-39 (2008)

7. Letichevsky, A.A., Godlevsky, A.B., Letichevsky, A.A., Jr., Potienko, S.V., Peschanenko,
V.S.: Properties of Predicate Transformer of VRS System. Cybernetics and System
Analyses, 4:3-16 (2010) (in Russian)

8. Letichevsky, A., Letychevskyi, O., Peschanenko, V.: Insertion Modeling System, PSI 2011,
Lecture Notes in Computer Science, Vol.7162, pp. 262-274. Springer (2011)

