
Satisfiability Problem in Composition-Nominative Logics 
of Quantifier-Equational Level 

Mykola S. Nikitchenko1 and Valentyn G. Tymofieiev1 

    1 Department of Theory and Technology of Programming  
Taras Shevchenko National University of Kyiv 
64, Volodymyrska Street, 01601 Kyiv, Ukraine 

nikitchenko@unicyb.kiev.ua 
tvalentyn@univ.kiev.ua 

Abstract. We investigate algorithms for solving the satisfiability problem in 
composition-nominative logics of quantifier-equational level. These logics are 
algebra-based logics of partial predicates constructed in a semantic-syntactic 
style on the methodological basis, which is common with programming; they 
can be considered as generalizations of traditional logics on classes of partial 
predicates that do not have fixed arity. We show the reduction of the problem in 
hand to the satisfiability problem for classical first-order predicate logic with 
equality. The proposed reduction requires extension of logic language and logic 
models with an infinite number of unessential variables. The method developed 
in the paper enables us to use existent satisfiability checking procedures also for 
quantifier composition-nominative logic with equality.  

Keywords: Composition-nominative logics, partial predicates, partial logics, 
first-order logics, satisfiability, validity. 

Key Terms. Research, MathematicalModel, FormalMethods,                        
MachineIntelligence. 
 

1 Introduction  

Last years the interest to the satisfiability problem [1] has risen due to practical value it 
has obtained in such areas as program verification, synthesis, analysis, testing, etc. [2–
5]. In this paper we address the satisfiability problem in the context of the composition-
nominative approach [6], which aims to construct a hierarchy of logics of various ab-
straction and generality levels on the methodological basis, which is common with 
programming. The main principles of the approach are principles of development from 
abstract to concrete, priority of semantics, compositionality, and nominativity.  

These principles specify a hierarchy of new logics that are semantically based on 
algebras of predicates. Predicates are considered as partial mappings from a certain 
class of data D into the class of Boolean values Bool. Operations over predicates are 
called compositions. They are treated as predicate construction tools. Data classes are 
considered on various abstraction levels, but the main attention is paid to the class of 



Satisfiability Problem in Composition-Nominative Logics …  57 
 

nominative data.  Such data consist of pairs name–value. Nominative data can repre-
sent various data structures such as records, arrays, lists, relations, etc. [6, 7]; this fact 
explains the importance of the notion of nominative data. In the simplest case nomi-
native data can be considered as partial mappings from a certain set of names (vari-
ables) V into a set of basic (atomic) values A. These data are called nominative sets; 
their class is denoted VA. Nominative sets represent program states for simple pro-
gramming languages (see, for example, [6, 8]). Partial predicates and functions over 
VA are called quasiary, their classes are denoted PrV,А= VA → p  Bool and FnV,А= 

VA → p  A respectively. Partial mappings of type  VA → p  VA are called bi-
quasiary. Such mappings represent program semantics for simple programming lan-
guages; therefore their class is denoted PrgV,A. From this follows that semantic models 
of programs and logics are mathematically based on the notion of nominative set 
(nominative data in general case). This fact permits to integrate models of programs 
and logics and represent them as hierarchy of composition-nominative models [9, 10]. 
Logics developed within such approach are called composition-nominative logics 
(CNL) because their predicates and functions are defined on classes of nominative 
data, and logical connectives and quantifiers are formalized as predicate composi-
tions.  

CNL can be considered as generalization of classical predicate logic but for all that 
many methods developed within classical logic can also be applied to CNL. Here we 
confirm this statement for the satisfiability problem in CNL. In this paper we consider 
composition-nominative logic of quantifier-equational level and construct an algo-
rithm that reduces the satisfiability problem in this logic to the same problem in clas-
sical first-order predicate logic with equality. The reduction proposed requires the 
logic language to be extended with an infinite number of unessential variables.  

The paper is structured in the following way. In section 2 we give an overview of 
the composition-nominative logics classification; then in section 3 we give formal 
definitions of the logics that we consider in this paper, and define the satisfiability 
problem. In section 4 we describe the reduction method for solving the satisfiability 
problem. In section 5 we discuss related work. In section 6 we summarize our results 
and formulate directions for future investigations.  

Proofs are omitted here and will be provided in an extended version of the paper. 
Notions and notations not defined in the paper are understood in the sense of [10].  

2 Classification of Composition-Nominative Logics  

Classification of composition-nominative logics is based on classification of their 
parameters: data, predicates, and compositions. The main semantic notion of mathe-
matical logic – the notion of predicate – can be defined as a partial function from a 
data class D to Bool. For the most abstract level of data consideration such composi-
tions as disjunction ∨ , negation ¬ , etc., can be defined. These compositions are de-
rived from Kleene’s strong connectives [11] when partiality of predicates is taken into 
consideration. Thus, the main semantic objects for logics of this level are algebras of 

partial predicates of the type <D → p Bool; ∨ , ¬>.  The obtained logics may be 



58                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

called propositional logics of partial predicates. Such logics are rather abstract, there-
fore their further development is required at the nominative level. At this level we 
have two sublevels determined respectively by flat and hierarchic nominative data.   

Three kinds of logics can be constructed from program models on the flat nomina-
tive data level: 
1. pure quasiary predicate logics based on algebras with one sort: PrV,А; 
2. quasiary predicate-function logics based on algebras with two sorts: Pr V,А and 

FnV,А; 
3. quasiary program logics based on algebras with three sorts: PrV,А, FnV,А, and 

PrgV,А. 
For logics of pure quasiary predicates we identify renominative, quantifier, and 

quantifier-equational levels.  
Renominative logics [10] are most abstract among the above-mentioned logics. The 

main composition for these logics is the composition of renomination (renaming), 

which is a total mapping R 1

1

,...,
,...,

n

n

v v
x x : PrV,А → t

 PrV,А. Intuitively, given a quasiary 

predicate P and a nominative set d, the value of R 1

1

,...,
,...,

n

n

v v
x x (P)(d) is evaluated in the 

following way: first, a new nominative set d ′ is constructed from d by changing the 
values of the names v1,...,vn in d to the values of the names  x1,..., xn respectively; then 
predicate P is applied to d ′. The obtained value of P (if it was evaluated) will be the 

result of R 1

1

,...,
,...,

n

n

v v
x x (P)(d). For simplicity’s sake we will also use the simplified notation 

Rv
x  for renomination composition.  The basic composition operations of renominative 

logics are ∨ , ¬ , and Rv
x .  

At the quantifier level, all basic (object) values can be used to construct different 
nominative sets to which quasiary predicates can be applied. This allows one to intro-
duce the compositions of quantification ∃ x in style of Kleene’s strong quantifiers. The 

basic compositions of logics of the quantifier level are ∨ , ¬ , Rv
x , and ∃ x. 

At the quantifier-equational level, new possibilities arise for equating and differen-
tiating values using special 0-ary compositions, i.e., parametric equality predicates 

=xy . Basic compositions of logics of the quantifier-equational level are ∨ , ¬ , Rv
x , ∃ x, 

and =ху . 
All specified logics (renominative, quantifier, and quantifier-equational) are based 

on algebras which have only one sort: a class of quasiary predicates.  
For quasiary predicate-function logics we identify function level and function-

equational levels. 
At the function level, we have extended capabilities of formation of new arguments 

for functions and predicates. In this case it is possible to introduce the superposition 

composition xS  (see [6, 10]), which formalizes substitution of functions into predi-
cate. It also seems natural to introduce special 0-ary compositions, called denaming 
functions 'x. Given a nominative set, 'x yields a value of the name x in this set. Intro-
duction of such functions allows one to model renomination compositions with the 
help of superposition. The basic compositions of logics of the function level are  ∨ , ¬ , 

xS , ∃ x, and 'x. 



Satisfiability Problem in Composition-Nominative Logics …  59 
 

At the function-equational level a special equality composition = can be introduced 
additionally [10]. The basic compositions of logics of the function-equational level 

are  ∨ , ¬ , xS , ∃ x, 'x, and = . At this level different classes of first-order logics can be 
presented. 

This means that two-sorted algebras (with sets of predicates and functions as sorts 
and above-mentioned compositions as operations) form a semantic base for first-order 
CNL.  

The level of program logics is quite rich. First, program compositions should be 
defined that describe the structure of programs. In the simplest case these are:  

1. assignment composition ASx: FnV,А → t PrgV,А, 

2. composition of sequential execution • : PrgV,А×PrgV,А → t PrgV,А,  

3. conditional composition IF: PrV,А×PrgV,А×PrgV,А → t PrgV,А,  

4. cycling composition WH: PrV,А×PrgV,А → t PrgV,А.   
Then we should define compositions specifying program properties. Here we only 

mention a composition which formalizes the notion of assertion in Floyd-Hoare logic. 
From a semantic point of view an assertion scheme of the form {P} prog{ Q} may be 
considered as composition FH, which given two quasiary predicates P (precondition), 
Q (postcondition), and a bi-quasiary function (a program) prog produces new quasi-
ary predicate denoted by FH(P, prog, Q). At this level we obtained a three-sorted 
predicate-function-program algebra. Classes of terms of this algebra may be consid-
ered as sets of formulas (or their components) of corresponding logics.  

Having described classification of composition-nominative logics we can formulate 
a task of investigation of logics presented in this classification. For many of such 
logics axiomatic calculi were constructed and their properties were investigated [10, 
12]. 

In this paper we will consider the satisfiability problem for logics of quantifier-
equational level. This problem for logics of the previous levels (propositional, 
renominative, and quantifier) was considered in [13]. We choose a reduction method 
that reduces the satisfiability problem of composition-nominative logic to the satisfi-
ability in classical logic. To simplify this reduction we will use an intermediate logic 
with unessential variables. Thus, we will define three logics of quantifier-equational 
level: composition-nominative logic, logic with unessential variables, and classical 
first-order logic. 

3 Formal Definitions of Logics of Quantifier-Equational Level 

At first, we describe a general mechanism of specifying composition-nominative logics 
and then provide definitions for the logics considered in this paper. To do this we 
should specify three logic components that reflect the semantic-syntactic scheme of 
logic definition: 
− semantic component: a class of algebras of quasiary predicates that forms a se-

mantic base for a logic. In our case we consider algebras of the form 



60                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

AQE(V, A)=<PrV,A, ¬∨ , , v
xR , ∃ x, =xy> for various sets of atomic values A (recall 

that PrV,А= VA → p  Bool  is a class of partial predicates over VA); 
− syntactic component: a logic language specified by a class of logic formulas. This 

class is determined by the logic signature Σ, which includes the infinite set of 
names V, a set Ps of predicate symbols and a set Cs of composition symbols;  the 
set of formulas Fr(Σ) is constructed inductively over the set of atomic formulas 
AFr(Σ) with the help of symbols of compositions;  

− interpretational (denotational) component: a parametric total mapping that pre-
scribes to  a formula its meaning as a predicate. Parameters are algebra AQE(V, A)  

and interpretation for atomic formulas I: AFr(V,Ps) → t PrV,A called σ-
interpretation. A pair (AQE(V, A), I) is called a model of the logic. Given a model 
M = (AQE(V, A), I) an interpretational mapping for each formula Φ specifies its 
meaning as a quasiary predicate in AQE(V, A) denoted ΦM. Usually models are 
represented in simplified form, say J=(V, A, I), called π-interpretations; then the 
meaning of the formula is denoted ΦJ.  

A logic defined according to this scheme is denoted L(Σ). 

3.1 Algebras of Quasiary Predicates of Quantifier-Equational Level 

Semantic base of composition-nominative logics is specified by classes of data, predi-
cates, and compositions. The latter are determined by the abstraction level of logic 
under consideration and are the same for all logics of the level. As was formulated 
earlier, for the logics of quantifier-equational level (QE-level) the class of composi-
tions consists of basic propositional connectives, renomination composition, quantifi-
ers, and equality predicate. The compositions (except propositional connectives) are 
parametric with parameters from an infinite set of names V.  

Therefore we consider the following set of composition symbols: 

 CsQE(V)= { ¬∨ , } ∪ { v
xR | ),...,( 1 nvvv = , ),...,( 1 nxxx = , v  is a list of distinct 

names, vi , xi ∈ V for all },...,1{ ni ∈ , n ≥ 0} ∪ { ∃ x| x∈ V} ∪ {  =xy | x,y∈ V}. 

For the sake of simplicity we will write CsQE(V)={ ¬∨ , , v
xR , ∃ x, =xy }. 

Given an algebra AQE(V, A)=<PrV,A, ¬∨ , , v
xR , ∃ x, =xy> we now define interpreta-

tion of composition symbols. Again, for simplicity’s sake we will use the same nota-
tions for compositions (as operations in the algebra) and their symbols. 

In definitions of compositions we will use the following notation: 
− ↓)(dp means that a predicate p  is defined on data d ; 

− bdp ↓=)( means that a predicate p  is defined on data d with a Boolean value b; 

− ↑)(dp means that a predicate p on d is undefined; 

− for nominative data representation we use the form d = [vi aai | i∈ I]. Nominative 
membership relation is denoted by ∈ n. Thus, vi aai ∈ n d means that the value of 
vi in d  is defined and is equal to ai; this can be written in another form as 
d(vi)↓=a.  



Satisfiability Problem in Composition-Nominative Logics …  61 
 

Propositional compositions are defined by the following formulas (p, q∈  PrV,A, 
d∈ VA):  









↓=↓=
↓=↓=

=∨
 cases.other in undefined

,)(and )( if  ,

,)(or    )( if  ,

))(( FdqFdpF

TdqTdpT

dqp  









↑
↓=
↓=

=¬
 .)( if undefined

,)( if ,

,)( if  ,

))((

dp

ТdpF

FdpT

dp  

Unary renomination composition v
xR  is a mapping v

xR : PrV,A → t PrV,A, 

where ),...,( 1 nvvv = and ),...,( 1 nxxx = are lists of names from a set V; names from v  

are called upper names of renomination composition and should be distinct, n ≥ 0.  

Please note that vxR  is a parametric composition which represents a class of renomina-

tion compositions with different parameters, which are elements of V. This composi-
tion is defined by the following formula (p∈ PrV,A, d∈ VA): 

}]).,...,1{,)(|)([}],...,{|([)()( 1
,...,
,...,

1
1

nixdxdvvvvdavpdpR iiinn
vv
xx
n
n

∈↓∇∉∈= aa

 
The ∇  operation is defined as follows: if d1 and d2 are two nominative sets, then 

21 ddd ∇= consists of all named pairs of d2 and only those pairs of d1, whose names 

are not defined (do not have values) in d2.  
Unary parametric composition of existential quantification ∃ x with the parameter 

x∈ V is defined by the following formula (p∈ PrV,A, d∈  VA): 









∈↓=∇
↓=∇∈

=∃
 .casesother in  undefined

   ,each  for   )(     ,

,)(  :exists    if    ,

))(( AaFaxdpF

TbxdpAbT

dpx a

a

 
Here axd a∇ is a shorter form for ][ axd a∇ .  

Finally, null-ary parametric equality composition =ху  (x, y∈ V) is defined as follows: 

=ху (d) 
,   if  ( )  ,  ( )   and  ( ) ( ),
,   if  ( )  and  ( ) ,   
 otherwise 

T d x d y d x d y
T d x d y
F

 ↓ ↓ =
= ↑ ↑


 

Now we will give definitions for all logics with a fixed infinite set of names V and a 
fixed set of predicate symbols Ps.  Note that according to the tradition elements of V 
are also called variables.  As semantic components for all logics are the same, we need 
to define only syntactic and interpretational components. 



62                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

3.2 Composition-Nominative Logic LQE(ΣΣΣΣQE)  of Quantifier-Equational Level 

1. Syntactic component. A tuple ΣQE= (V, { ∨ , ¬ , v
xR , ∃ x, =xy}, Ps) is called a signa-

ture of composition-nominative logic of QE-level. Taking into consideration that a set 
of composition symbols is determined by the set of variables V, we will use for a signa-
ture a simplified notation (V, Ps). Language of LQE(ΣQE) is represented by a class of 
formulas FrQE (V, Ps), which is defined inductively: 
− If PsP ∈  then ∈P  FrQE(V, Ps). Such formulas are called atomic and belong to 

the class AFrQE(V, Ps) of atomic formulas. 
− If Vyx ∈,  then =ху ∈  FrQE(V, Ps). Such formulas are called atomic and belong to 

the class AFrQE(V, Ps) of atomic formulas. 
− If  Φ, Ψ∈  FrQE(V, Ps) then  (Φ∨Ψ )∈ FrQE(V, Ps)  and ¬Φ∈  FrQE(V, Ps). 
− If ),...,( 1 nvvv = , ),...,( 1 nxxx = , v  is a list of distinct variables, vi , xi ∈ V for all 

},...,1{ ni ∈ , n ≥ 0, QEFr∈Φ (V, Ps) then QE
v
x FrR ∈Φ (V, Ps). 

− If x∈ V, Φ∈ FrQE(V, Ps) then ∃ xΦ∈  FrQE(V, Ps).  
Note, that predicate symbols and symbols of null-ary compositions are atomic for-

mulas.  

2. Interpretational component. Let AQE(V, A)=<PrV,A, ¬∨ , , v
xR , ∃ x, =xy> be an al-

gebra of quasiary predicates of quantifier-equational level. In this algebra composition 
symbols obtain their interpretations as operations over predicates. In particular, atomic 
formulas for null-ary compositions =ху  are interpreted as equality predicates in this 
algebra. Thus, we need to specify interpretation mappings for predicate symbols only. 

This is done with a mapping Ps
QEI :Ps → t PrV,A called a σ-interpretation. Having the 

interpretational mapping for predicate symbols, we can compositionally construct in-

terpretational mapping for all formulas. A pair (AQE(V, A), Ps
QEI ) is called a model for 

LQE(ΣQE). A model is determined by a tuple Ps
QEJ =(V, A, Ps

QEI )  called π-interpretation. 

In simplified form interpretations will be denoted J. For interpretation J and a formula 
Φ the meaning of Φ is denoted ΦJ. 

3.3 Composition-Nominative Logic LQEU(ΣΣΣΣQEU) of Quantifier-Equational Level 
with Unessential Variables  

Unessential variables play a role of additional memory and are used for “storing” val-
ues during formula transformations. We assume that a set U of unessential variables is 
an infinite subset of V (U ⊆ V). Informally speaking, logic with unessential variables is 
a logic LQE (ΣQE) with restriction on interpretations of predicate symbols specified by 
the set U.  

1. Syntactic component. A tuple ΣQEU =(V, U, { ∨ , ¬ , v
xR , ∃ x, =xy}, Ps) is called a 

signature of CNL of QE-level with unessential variables. A class of formulas for LQEU 
is FrQEU (V, U, Ps)= FrQE (V, Ps) . 



Satisfiability Problem in Composition-Nominative Logics …  63 
 

2. Interpretational component. Let AQE(V, A) = <PrV,A, ¬∨ , , v
xR , ∃ x, =xy> be an 

algebra of quasiary predicates of quantifier-equational level. By calling variables from 
U unessential we actually put a restriction on interpretations of predicate symbols. This 

restriction asserts that in σ-interpretation Ps
QEUI : Ps → t  PrV , A for every P∈ Ps and 

for every d∈ VA the value of Ps
QEUI (P)(d) does not depend on values of variables from 

the set U in d. Formally, for every  d∈ VA the values Ps
QEUI (P)(d) and Ps

QEUI (P)(d \\ U) 

should either be equal or be undefined simultaneously. Here d \\ U= {v aa ∈ n d | 

v∉ U}. A π-interpretation will be denoted Ps
QEUJ  = (V, U, A, Ps

QEUI ). Indexes may be 

omitted if they are clear from the context.  
This completes a formal definition of logic LQEU(ΣQEU).  

3.4 Classical First-Order Predicate Logic L QECL(ΣΣΣΣQECL) with Equality  

A definition of classical logic differs from definitions of CNL because it is oriented not 
on quasiary but on n-ary predicates.     

1. Syntactic component. A tuple ΣQECL = (V, { ∨ , ¬ , ∃ x, =}, Ps, arity) is called a sig-

nature of a classical logic with equality (here arity: Ps → t {0,1,2, …} is a function 
that for each predicate symbol yields its arity). A signature in a simplified form is de-
noted (V, Ps, arity). The language FrQECL (V, Ps, arity) is defined inductively: 
− If PsP ∈ , arity(P)=n, and х1, ..., хn  ∈ V,  then Р( х1, ..., хn) ∈  FrQECL (V, Ps, ar-

ity). Such formulas are called atomic and belong to the class AFrQECL(V, Ps, arity) 
of atomic formulas. 

− If Vyx ∈,  then x=y ∈  Fr QECL (V, Ps, arity). Such formulas are called atomic and 

belong to the class AFrQECL(V, Ps, arity) of atomic formulas. 
− If Φ, Ψ∈  FrQECL (V, Ps, arity) then  (Φ∨Ψ )∈ FrQECL (V, Ps, arity) and ¬Φ∈  

FrQECL (V, Ps, arity). 
− If x∈ V, Φ∈  FrQECL (V, Ps, arity) then ∃ xΦ∈  FrQECL (V, Ps, arity).  

2. Interpretational component. Let AQE(V, A)=<PrV,A, ¬∨ , , v
xR , ∃ x, =xy> be an al-

gebra of quasiary predicates of QE-level (for classical logic we assume that A is non-
empty). Note that the renomination composition is present as operation in this alge-
bra, though it is not explicitly used in classical logic. Formulas of the language are 
interpreted as predicates in this algebra. Atomic formula x=y is interpreted as a predi-
cate =ху. To give an interpretation of atomic formulas of the form Р( х1, ..., хn)  we 
need to specify an interpretational mapping for predicate symbols. In case of classical 

logic it  is specified by a mapping Ps
NArI : Ps → t

U
0

(
≥n

nA → t Bool) such that 

Ps
NArI (P) nA∈ → t Bool if  nParity =)(  for PsP ∈ . This mapping interprets predi-

cate symbols as total n-ary predicates. Thus, π-interpretations have the form 
Ps
CLEJ =(V, A, arity, Ps

NArI ). Such π-interpretation Ps
CLEJ  (or simply J) for every 



64                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

atomic formula  Р(х1, ..., хn)  defines its meaning in PrV,A as a predicate Р(х1,..., хn)J 

such that Р( х1, ..., хn)J (d) = Ps
NArI (Р)(d(х1), …, d(хп)) for every d ∈ VA; if one of the 

values d(х1), …, d(хп) is not defined then Р( х1, ..., хn)J  is undefined on d. Let us note 
that in classical logic d is called variable valuation or variable assignment. The mean-
ing ΦJ of a complex formula Φ∈  FrQECL (Ps, V, arity) is defined in a usual way. 

For all three logics derived compositions (such as conjunction &, universal quantifi-
cation ∀ x, negated equality xy≠  etc.) are defined in a traditional way. In the sequel we 

consider formulas in their traditional form using infix operations and brackets; brackets 
can be omitted according to common rules for the priorities of operations (priority of 
the binary disjunction is weaker than priory of unary operations). We will also consider 

a more general case for  Ps
NArI  permitting partial n-ary predicates as values of predi-

cate symbols, thus, Ps
NArI (P) nA∈ → p Bool; still, this generalization does not affect 

the satisfiability problem due to monotonicity of considered compositions under predi-
cate extensions [13]. 

To simplify notation we will often omit parameters of logic signatures and write 
simply LQE, LQEU, and LQECL;  for classes of formulas we use notations FrQE,  FrQEU , 
and  FrQECL; formulas of these classes will be called QE-, QEU-, and CL-formulas, π-
interpretations in LQE, LQEU, LQECL will also be called QE-, QEU-, CL-interpretations 
respectively.  

3.5 Satisfiability Problem  

For all three logics the definition of satisfiability can be given in the same way. 
A formula Φ is called satisfiable in a π-interpretation J if there is d ∈  VA such that 

ΦJ (d)↓= T.  We shall denote this by J |≈ Φ. A formula Φ is called satisfiable if there 
exists an interpretation J in which Φ is satisfiable. We shall denote this as |≈ Φ. We 
call formulas Φ and Ψ equisatisfiable if they are either both satisfiable or both not 
satisfiable (i.e., unsatisfiable). When needed we will underline the corresponding logic 
in the satisfiability sign ≈| , e.g. QE≈| , QEU≈| , or QECL≈| . 

Satisfiability of a formula is related to its validity. A formula Φ is called valid in a 
π-interpretation J  if there is no d ∈  VA  such that ΦJ (d)↓= F. We shall denote this as 
J |= Φ, which means that Φ is not refutable in J. A formula Φ is called valid if J |= Φ 
for every interpretation J. We call formulas Φ and Ψ equivalent  if ΦJ =ΨJ for every 
interpretation J. 

Due to possible presence of a nowhere defined predicate (which is a valid predicate) 
we do not have in CNL the property that Φ is satisfiable if Φ is valid (which holds for 
classical first-order logic). But reduction of satisfiability to validity still holds in CNL: 
formula Φ is satisfiable in a π-interpretation J iff ¬Φ  is not valid in J. 



Satisfiability Problem in Composition-Nominative Logics …  65 
 

4 Reduction of Satisfiability Problem for LQE(ΣΣΣΣQE)   

The problem discussed in this paper is to check whether Φ≈QE|  holds given an arbi-

trary formula Φ∈ FrQE(W, Ps); here we choose W as an initial set of variables in the 
considered logic. Our main aim is to transform this QE-formula Φ  to an equisatisfi-
able formula CLΦ of classical first-order predicate logic with equality so that we can 

use existent methods for solving this problem developed for classical logic. To carry 
out necessary equivalent transformations we need to consider Φ in an intermediate 
logic – CNL of QE-level with unessential variables – extending the initial set of vari-
ables W with a set U of unessential variables (W∩U= ∅ ). For these needs we will 

consider a logic LQEU with the signature ΣQEU =(V, U, { ∨ , ¬ , v
xR , ∃ x, =xy}, Ps), where 

V=W∪ U. Within LQEU  we transform Φ  to a formula Φ UR being in a special normal 
form; then the latter formula is translated to its classical counterpart Φ CL. 

The overall circular reduction scheme is grounded on following statements.  
1. From  Φ≈QE|  follows Φ≈QEU|  (lemma 1). 

2. From Φ≈QEU| follows URQEU Φ≈|  (lemma 2, 3). 

3. From URQEU Φ≈|  follows CLQECL Φ≈|  (lemma 4). 

4. From CLQECL Φ≈| follows URQEU Φ≈|  (lemma 5). 

5. From URQEU Φ≈|  follows Φ≈QEU|  (lemma 2). 

6. From Φ≈QEU| follows Φ≈QE|  (lemma 6). 

 
Lemma 1. Let Φ∈ FrQE(W, Ps). Then from Φ≈QE|  follows Φ≈QEU| . 

Consider the transformation rules (T1-T9) of the form rl ΦΦ a , where lΦ , 

),( UVFrQEUr ∈Φ . 

T1) yxxy
v
xR ~~== a  

T2) Φ¬Φ¬ v
x

v
x RR a  

T3) 2121 )( Φ∨ΦΦ∨Φ v
x

v
x

v
x RRR a  

T4) ΦΦ kmn
kmn

kп

kп

mn
mn

uuwwvv
yy

uuvv
zzss

wwvv
yyxx RRR ,...,,,...,,,...,

,...,,,...,,,...,
,...,,,...
,...,,,...,

,...,,,...,
,...,,,...,

111
111

11
11

11
11 ββααa  

T5) Φ∃Φ∃ v
x

v
x RyyR a , when y∉ { v , x }  

T6) R vy
xz
,
, ∃ yΦ  a  ∃ y Rv

x ( Φ ) 

T7) vz
xyR ,

, ∃ yΦ  a  ∃ u vz
xyR ,

,
y
uR Φ , u∈ U, u does not occur in the formula on the 

left hand side of the rule. 

T8) Ru
q P a  R u

q
,z
,z P (in case when vectors vu, are empty this rule is represented as 

P a PRz
z . 



66                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

T9) PRPR nij

nij

nji

nji

uuuu
qqqq

uuuu
qqqq

,...,,...,,...,
,...,,...,...,

,...,,...,,...,
,...,,...,,...,

1

1

1

1
=  

Here for the rule T1 )/(~ xvxx = , )/(~ xvyy = , for the rule T4 αi = si(v1,...,vn, 

w1,...,wm / x1,...,xn, y1,...,ym), βj = zj(v1,...,vn, w1,...,wm / x1,...,xn, y1,...,ym), where 
r(b1,...,bq / c1,...,cq) = r if r∉ {b1,...,bq}, r(b1,...,bq / c1,...,cq) = ci if r = bi for some i.  

The rule T4 represents explicitly the result of functional composition of parameters 
of two successive renominations.  

The rule T7 permits to assume w.l.o.g. that all quantified variables in initial formula 
are different. 
Lemma 2. Let ),,(, PsUVFrQEUrl ∈ΦΦ  be such formulas that rΦ  is a result of 

application of some T1-T9 rule to lΦ . Then lΦ  and rΦ  are equisatisfiable in LQEU. 
A formula Φ is said to be in unified renominative normal form (URNF) if the fol-

lowing requirements are satisfied: 
− the renomination composition is only applied in Φ to predicate symbols. It means 

that for every sub-formula of the form Rv
x Ψ we have that Ψ∈ Ps;  

− for every pair of its renominative atoms Ru
q P and Rw

y Q we have that vectors u  

and w  coincide; so, in all renominative atoms the lists of their upper names are 
the same; 

− for every renominative atom Rv
x P and every quantifier ∃ y that occurs in the ini-

tial formula Φ we have that vy ∈ . 

When formula is in URNF we call its atomic subformula PRv
x  a renominative 

atom (P∈ Ps). Note that if a formula is in URNF then every its subformula is in URNF 
as well. 
Lemma 3. Given an arbitrary formula ),,( PsUVFrQEU∈Φ  we can construct its 

unified renominative normal form ][Φurnf  by applying rules T1-T9. 

According to lemmas 2 and 3, we can think of a total multi-valued (non-deterministic) 

mapping QEU
tm

QEU FrFrurnf →:  that transforms in a satisfiability-preserving 

way every QEU-formula to its URNF.  
In order to reduce the satisfiability problem in LQEU to that of LQECL we extend the 

set of basic values A with additional value ε . Informally, this value will represent 
undefined components of nominative sets. 

We formalize the syntactical reduction → t
QEU PsUVFrclf ),,(:  

),,( arityPsVFrQECL  of QEU-formulas in unified renominative normal form to CL-

formulas inductively as follows: 
1. PPclf =][  

2. xyxyclf === ][  

3. ),...,(][ 1
,...,

,...,
1
1 n

vv
xx xxPPRclf n
n

=  

4. ][][ Φ¬=Φ¬ clfclf  



Satisfiability Problem in Composition-Nominative Logics …  67 
 

5. ])[][()][( 2121 Φ∨Φ=Φ∨Φ clfclfclf  

6. ])[&(][ Φ≠∃=Φ∃ clfexxxclf , Ue∈ , e is a predefined variable. 

Note that all applications of the 6-th rule introduce the same variable e; e is some 
predefined variable from U in the sense that it does not occur in URNF.  
This reduction transforms the formula to the language of classical logic but pre-

serves its satisfiability. 
Given a formula ),,( PsUVFrQEU∈Φ  in unified renominative normal form we de-

note by VV ⊆Φ  the set of all variables that occur as upper names in renominative 

atoms of Φ . 
Lemma 4. Let Φ be a formula in unified renominative normal form, Φ ∈  FrQEU(V, U, 
Ps). Then from Φ≈QEU|  follows ][| Φ≈ clfQECL . 

Lemma 5. Let Φ be a formula in renominative normal form, Φ ∈  FrQEU(V, U, Ps). 
Then from ][| Φ≈ clfQECL  follows Φ≈QEU| . 

Lemma 6. Let Φ∈ FrQE(W, Ps). Then from Φ≈QEU|  follows Φ≈QE| . 

Lemmas 1-6 justify all reductions described in the article and the main theorem of the 
article. 
Theorem. Let  Φ∈ FrQE(W, Ps). Then  Φ≈QE|  if and only if  ]][[| Φ≈ clfurnfQECL . 

The theorem states the reduction of satisfiability problem in composition-nominative 
logic of quantifier-equational level to the satisfiability problem in classical first-order 
logic with equality. 

Let us illustrate the method proposed on a simple example.  
Example. Consider the following QE-formula Φ with one predicate symbol P :  

)&(& PzRP zy
z
x ¬∀==Φ  

Let us construct its unified renominative normal form URΦ . 

a)&(& PzRP zy
z
x ¬∀==Φ  / push the renomination down to predicate symbols/  

a a)(&& PzRP z
xxy ¬∀= /renomination is removed due to T6/ a  

a a)&(& PzP xy ¬∀=  /add z
zR  to P as the predicate occurs under z∀ / a  

a a)&(& PRzP z
zxy ¬∀= /unify renominative atoms / a  

a .&& UR
z
zxy

z
z PRzPR Φ=¬∀=  

Note that we use derived transformation rules that handle compositions & and∀ . 

Now ))()((&&)(][ zPezzyxzPcnl URCL ¬→≠∀==Φ=Φ . Formula CLΦ  is 

satisfiable in LCL. That means that Φ  is satisfiable in LQE. 
Indeed, let J = (W, A, I) be such an interpretation that W={x,y,z}, A={1,2}. Let 

I(P)(d)↓  = F if a pair daz n∈a for some a∈ A and T in all other cases. In other 

words, the predicate P takes the value T on some data d if the variable z is undefined in 
d. Now we have that ΦJ ([ 1,1 aa yx ])↓  = T.  



68                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

5 Related work  

Many different aspects of the composition-nominative approach such as partiality, 
compositionality, nominativity, have long history of development, which is also re-
flected in works in the field of logic and computer science.  

The importance of partiality, for example, was already being discussed in detail by 
the time of 80-ties [14], and many different approaches have emerged since that time. 
In [15, 16] there is a survey of some of those and a comparison of different formalisms. 
Partiality receives more and more attention nowadays, the support for partial functions 
is being introduced in theorem proving systems and validity checkers [17, 18].  

Compositionality can be traced back to works of G. Frege; the history of this princi-
ple is presented in [19]. The importance of the compositionality principle grows due to 
the necessity of investigation and verification of complex systems [20, 21], in particu-
lar, concurrent systems [22]. Our approach takes compositionality as a basic principle, 
thus, the constructed formal languages are compositional by construction when we 
consider functions (predicates) as meanings of expressions (of formulas).  

Nominativity is also a fundamental aspect not only in computer science but in other 
branches of science as well, especially in philosophy. This topic requires a special 
treatment, but here we would like to mention nominal logic [23] only, which has simi-
larities with the logic defined in this paper. Nominal logic addresses such special ques-
tions of nominativity as name bindings, swapping, and freshness. The predicates inves-
tigated in nominal logic should be equivariant (their validity is invariant under name 
swapping); in our work we consider general classes of partial predicates.   

A thorough comparison of composition-nominative approach with other approaches 
that address compositionality, nominativity or allow reasoning about partial functions 
and predicates is by far beyond the scope of this paper, but still we would like to stress 
on the important differences. Our approach is based on algebras of partial predicates 
over nominative data, and especially, algebras of quasiary functions and predicates as 
opposed to traditional algebras of n-ary functions and predicates. It involves new com-
positions, in particular, renomination composition, which take into account nominative 
aspects of data structures. Composition-nominative approach also prescribes the se-
mantic-syntactic style of logic definitions. This style simplifies construction and inves-
tigation of such logics.  

6 Conclusions 

This paper investigates the satisfiability problem for composition-nominative logic 
(CNL) of quantifier-equational level. As a main result we have shown that this prob-
lem can be reduced by using more powerful language to the satisfiability problem for 
classical predicate logic with equality. Thus, existent state-of-the-art methods and 
techniques for checking satisfiability in classical logics can also be applied to CNL. 

Future work on the topic will include investigation of satisfiability problem for 
richer CNL of predicate-function level and for CNL over hierarchic nominative data. 
Hierarchic data permit to represent such complex structures as lists, stacks, arrays etc; 
thus, such logics will be closer to program models with more rich data types. Another 



Satisfiability Problem in Composition-Nominative Logics …  69 
 

direction is related with identification of classes of formulas in various types of CNL 
for which satisfiability problem can be solved efficiently. In particular, this concerns 
specialized theories, where some predicates have specific interpretations and several 
axioms shall hold for such interpretations. This is often referred to as satisfiability 
modulo theory (SMT) problem [24]. At last, prototypes of software systems for satisfi-
ability checking in CNL should be developed.  

References 

1. Mendelson E.: Introduction to Mathematical Logic, 4th ed. Chapman & Hall, London 
(1997) 

2. Kroening D., Strichman O.: Decision Procedures – an Algorithmic Point of View. 
Springer-Verlag, Berlin Heidelberg (2008) 

3. Marques-Silva J.: Practical Applications of Boolean Satisfiability. In: Workshop on Dis-
crete Event Systems (28-30 May 2008, Goteborg, Sweden), pp. 74--80 (2008) 

4. Nieuwenhuis R., Oliveras A., Tinelli C.: Solving SAT and SAT modulo theories: from an 
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J ACM 53, pp. 937--
977 (2006) 

5. de Moura L., Bjørner N.: Satisfiability Modulo Theories: Introduction and Applications. 
COMMUN ACM 54 (9),  pp. 69--77 (2011) 

6. Nikitchenko, N.S.: A Composition Nominative Approach to Program Semantics. Techni-
cal Report IT−TR 1998-020, Technical University of Denmark (1998) 

7. Basarab I.A., Gubsky B.V., Nikitchenko N.S., Red'ko V.N.: Composition Models of Da-
tabases. In: Eder J., Kalinichenko L.A. (eds.), East-West Database Workshop (Workshops 
in Computing Series), pp. 221--231. Springer, London (1995)  

8. Nielson H.R., Nielson F.: Semantics with Applications: A Formal Introduction. John 
Wiley & Sons Inc (1992) 

9. Nikitchenko M.S.: Composition-nominative aspects of address programming. Kibernetika 
I Sistemnyi Analiz 6, pp. 24--35 (In Russian) (2009) 

10. Nikitchenko M.S., Shkilnyak S.S.: Mathematical logic and theory of algorithms. Publish-
ing house of Taras Shevchenko National University of Kyiv, Kyiv, (in Ukrainian) (2008) 

11. Kleene, S. C.: Introduction to Metamathematics. Van Nostrand, New York (1952) 
12. Shkilniak S. S.:  First-order logics of quasiary predicates. Kibernetika I Sistemnyi 

Analiz 6, pp. 32--50, (in Russian) (2010) 
13. Nikitchenko M.S., Tymofieiev V.G.: Satisfiability Problem in Composition-Nominative 

Logics. In: Proceedings of the Eleventh International Conference on Informatics 
INFORMATICS’2011, Roznava, Slovakia, November 16-18, pp. 75--80 (2011) 

14. Blamey, S.: Partial Logic. In Gabbay D., Guenthner F. (eds.), Handbook of Philosophical 
Logic, Volume III, D. Reidel Publishing Company (1986) 

15. Jones C. B.: Reasoning About Partial Functions in the Formal Development of Programs. 
ENTCS 145, pp. 3--25 (2006)  

16. Owe O.: Partial Logics Reconsidered: A Conservative Approach. FORM ASP 
COMPUT 5, pp. 208--223 (1997) 

17. Mehta F. A.: Practical Approach to Partiality A Proof Based Approach. LNCS, vol. 5256, 
pp. 238--257. Springer, Heidelberg (2005) 

18. Berezin S., Barrett C., Shikanian I., Chechik M., Gurfinkel A., Dill D.L.: A Practical Ap-
proach to Partial Functions in CVC Lite. ENTCS 125, pp. 13--23 (2005) 



70                                              M. S. Nikitchenko and V. G. Tymofieiev 
 

19. Janssen T.M.V.: Compositionality. In van Benthem J., ter Meulen A. (eds.), Handbook of 
Logic and Language, pp. 417--473. Elsevier and MIT Press (1997) 

20. de Roever, W.-P., Langmaack H., Pnueli A. (eds.): Compositionality: The Significant 
Difference. LNCS, vol. 1536, VIII. Springer, Heidelberg (1998) 

21. Bjørner D., Eir A.: Compositionality: Ontology and Mereology of Domains. LNCS, 
vol. 5930, pp. 22--59. Springer, Heidelberg (2010) 

22. Dams D., Hannemann U., Steffen M. (eds.): Concurrency, Compositionality, and Cor-
rectness, Essays in Honor of Willem-Paul de Roever. LNCS, vol. 5930. Springer, Heidel-
berg (2010) 

23. Pitts, A. M.: Nominal Logic, A First Order Theory of Names and Binding. INFORM 
COMPUT 186, pp. 165--193 (2003) 

24. Barrett C., Sebastiani R, Seshia S. A., Tinelli C.: Satisfiability Modulo Theories. 
In: Biere A., Heule M., van Maaren H., Walsh T. (eds.), Handbook of Satisfiability. IOS 
Press (2009) 

 


