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Abstract. This article is focused on the Insertion Modeling System developed 
by A.A. Letichevsky of the department 100/105 of the Glushkov Institute of 
Cybernetics, National Academy of Science of Ukraine, Kyiv, Ukraine  Insertion 
Modeling System (IMS)[1] is buit on the Algebraic Programming System 
(APS) that also was developed by A.A. Letichevsky in 1987. and on the way of 
implementation of strand algebras – a process algebra for DNA computing 
devised by Luca Cardelli in order to compile other formal systems into the 
algebra, and compilation of this algebra into DNA structures. We focus on the 
basic strand algebra – combinatorial strand algebra, which is equivalent to the 
place-transition Petri nets, and on the version of the model driver of the 
Insertion Modeling System, based on the Petri nets.  
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1 Introduction 

DNA technology is reaching the point where one can envision automatically 
compiling high-level formalisms to DNA computational structures [11]. There are 
three compilation processes for concurrent languages, described by Cardelli in 
paper[10]. First, is the compilation of a low-level combinatorial algebra to a certain 
class of composable DNA structures [12]: this is intended to be a direct (but not quite 
trivial) mapping, which provides an algebraic notation for writing concurrent 
molecular programs. Second, is the compilation of a higher-level expression-based 
algebra to the lower-level combinatorial algebra, as a paradigm for compiling 
expressions of arbitrary complexity to `assembly language' DNA combinators. Third 
is translating concurrent interacting automata [13] to molecular structures. There is no 
clear way to implement such system, because one must decompose concurrent 
communication patterns into a form suitable for molecular interactions (a quadratic 
process that is described in [13]), and then one must find some suitable `general 
programmable matter' as a physical substrate. Some solution of this problem, based 
on the combinatorial DNA algebra, was given by Cardelli in paper[10].  
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Process algebras are formal languages designed to describe and analyze the 
concurrent activities of multiple processes. The standard technical presentation of 
process algebras was initially inspired by a chemical metaphor [14], and it is therefore 
natural, as a tutorial, to see how the chemistry of diluted well-mixed solutions can 
itself be presented as a process algebra. Having chemistry in this form also facilitates 
relating it to other process algebras. 

Take a set C of chemical solutions denoted by P,Q,R. Two binary relations are 
defined on this set. The first relation, mixing, QP   is an equivalence relation: its 
purpose is to describe reversible events that amount to `chemical mixing'; that is, to 
bringing components close to each other (syntactically) so that they can conveniently 
react by the second relation. Its basic algebraic laws are the commutative monoid 
laws of + and 0, where + is the chemical combination symbol and 0 represents the 
empty solution. The second relation, reaction, QP  , describes how a (sub-) solution 
P becomes a different solution Q. A reaction QP   operates under a dilution 
assumption; namely, that adding some R to P does not make it then impossible for P 
to become Q (although R may enable additional reactions that overall quantitatively 
repress  by interfering with P). The two relations of mixing and reaction are connected 
by a rule that says that the solution is well mixed: for any reaction to happen it is 
sufficient to mix the solution so that the reagents can interact. In first instance, the 
reaction relation does not have chemical rates. However, from the initial solution, 
from the rates of the base reactions, and from the relation    describing whole-
system transitions, one can generate a continuous time Markov chain representing the 
kinetics of the system. In terms of system evolution, it is also useful to consider the 

symmetric and transitive closure,   , representing sequences of reactions. 
As process algebra, chemistry therefore obeys the following general laws, shown 

lower: 

RPRQQPPQQPPP  ,;;  (1) 

Equivalence 

RQRPQP   (2) 

Congruence 

PPRQPRQPPQQP  0;)()(;  (3) 

 
Diffusion 

RQRPQP   (4) 

Dilusion 

QPQQQPPP  ','','  (5) 

well mixing 
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Algebra is about equations, but in process algebra equations are usually a derived 
concept. Instead of axiomatizing a set of equations, we can use the reaction relation to 
study the equations that hold in a given algebra, meaning that QP   holds if P and Q 
produce the same reactions [15]. The complexity of these derived equational theories 
varies with the algebra. A simple instance here is the equation P + 0 = P, whose 
validity requires verifying that in definition of   there is no reaction for 0, nor for 0 
combined with something else. 

This way, chemistry can be presented as process algebra. But the algebra of 
chemical `+' is one among many: there are other process algebras that can suit 
biochemistry more directly [16,17] or, that can suit DNA computing. In the same way 
the strand algebra represent DNA strands, DNA gates and operations among them 
allowing the higher-level formalisms to be compiled to the DNA structures. I this 
paper we will show the way to represent the simplest strand algebra – combinatorial 
strand algebra as insertion model for the Insertion Modeling System[1], using the fact 
that combinatorial strand algebra is equivalent to place transition Petri nets. There is a 
representation of Petri nets, given by A.A. Letichevsky in form of insertion machines. 
We use this representation in order to build a specified analytical model driver for the 
combinatorial strand algebra.  

2 Insertion Modeling System 

2.1  The Architecture of Insertion Modeling System 

Insertion Modeling System(IMS) [1] developed by A.A. Letichevsky of the Glushkov 
Institute of Cybernetics, National Academy of Science of Ukraine, Kyiv, Ukraine. 
Insertion modeling is the technology of system design founded on the theory of 
interaction of agents and environments.  It is based on process algebra and is intended 
for the unification of different models of interaction and computation (such as CCS, 
CSP, π- calculus, mobile ambients etc.).  

Insertion model of a system represent this system as a composition of environment 
and agents inserted into it. The insertion function is usually denoted as E[u] were E is 
the state of environment and u is the state of an agent. E[u] is a new environment state 
after insertion an agent u. All agents and environments are labeled or attributed 
transition systems (labeled systems with states labeled by attribute labels [9]). The 
states of transition systems are considered up to bisimilarity. The main invariant of 
bisimilarity is the behavior  ][Ebeh  of transition system in the state E (an oriented tree 
with edges labeled by actions and nodes labeled by attribute labels). Behaviors 
themselves can be considered as states of transition systems.  

The general architecture of insertion machine is represented on the fig. 1. 
The main component of insertion machine is model driver, the component which 

controls the machine movement along the behavior tree of a model. The state of a 
model is represented as a text in the input language of insertion machine and is 
considered as an algebraic expression. The input language include the recursive 
definitions of agent behaviors, the notation for insertion function, and possibly some 
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compositions for environment states. The state of a system must be reduced to the 
form ,...],[ 21 uuE . This functionality is performed by the module called agent behavior 

unfolder. 

 

Fig. 1. Architecture of Insertion Machine 

Two kinds of insertion machines are considered: real type or interactive and 
analytical insertion machines. The first ones exist in the real or virtual environment, 
interacting with it in the real or virtual time. Analytical machines intended for model 
analyses, investigation of its properties, solving problems etc. The drivers for two 
kinds of machines correspondingly are also divided on interactive and analytical 
drivers. 

Insertion machine with interactive driver operates as an agent inserted into external 
environment with insertion function defining the laws of functioning of this 
environment. 

Interactive driver can be organized in a rather complex way. If it has criteria of 
successful functioning in external environment intellectual driver can accumulate the 
information about its past, develop the models of external environment, improve the 
algorithms of selecting actions to increase the level of successful functioning. 

Analytical insertion machine as opposed to interactive one can consider different 
variants of making decision about performed actions, returning to choice points (as in 
logic programming) and consider different paths in the behavior tree of a model. The 
model of a system can include the model of external environment of this system, and 
the driver performance depends on the goals of insertion machine. In the general case 
analytical machine solves the problems by search of states, having the corresponding 
properties(goal states) or states in which given safety properties are violated. 

2.2  The Decomposition of Petri Nets into the Composition of Agents and 
Environments 

Petri net (place/transition net) is one of several mathematical modeling languages for 
the description of distributed systems. A Petri net is a directed bipartite graph, in 
which the nodes represent transitions (i.e. events that may occur, signified by bars), 
and places (i.e. conditions, signified by circles). The directed arcs describe which 
places are pre/and/or postconditions for which transitions (signified by arrows). Like 
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the industry standards such as UML activity diagrams, BPMN and EPCs, Petri nets 
offer graphical notation for stepwise processes that include choice, iteration, and 
concurrent execution. Unlike these standards, Petri nets have an exact mathematical 
definition of their execution semantics, with a well-developed theory for process 
analysis.  

A Petri net consists of places, transitions, and arcs. Arcs run from a place to 
transition or vice versa, newer between places or between transitions. The places from 
which an arc runs to a transition are called the input places of the transition; the places 
to which arcs run from a transition are called the output places of the transition. 
Places in a Petri net may contain a discrete number of marks called tokens. Any 
distribution of tokens over the places will represent a configuration of the net called a 
marking. In abstract sense relating to Petri nets diagram, a transition of a Petri net 
may fire whenever there are sufficient tokens at the start of all input arcs; when it 
fires, it consumes this tokens, and places them at the end of all output arcs. A firing is 
atomic, i.e., a single non-interruptible step.  

Execution of Petri nets s nondeterministic: when multiple transitions are enabled at 
the same time, any of them may fire, so multiple tokens may be represented anywhere 
in the net (even in the same place). Petri nets are well suited for modeling the 
concurrent behavior of distributed systems.  

Petri nets are formally defined as a state-transition systems that extend a class of 
nets called elementary nets. Formal definition is represented lower. 

 
1. P   is a set of states, called places. 
2. T is a set of transitions 
3. F where  )()( PTTPF   is a set of relations called arcs 
4. ),,( FTPN   is a net 
5. C is such that  PC  is a configuration 
6. M so that  ZPM : is a place multiset, where Z is a countable set. 
7. W so that  ZFW : is an arc multiset 
8. ),,( WMNPN  is a Petri net 

Fig 2. Formal definition of Petri net. 

Petri net is bipartite graph, where P is one partition and T is the other. Moreover, 
for every t in T there exist p and q in P so that (p, t) and (t, q) are in F, and for every p 
and q in P, if (p, t) and (t, q) are in F then p≠q. 

The set  are the new elements. The set of places define the local states of a net, 
however, the global state of a net can be defined by place subsets.  

In order to represent Petri nets as a composition of agents and environments, we 
represent transitions T as actions, tokens as agents, and places as states. The behavior 
of tokens located in the enabled place s is written as: 




0),(

.)(
tsW
tsu  (6) 

The states of Petri environment are equal to the marks (configurations) of the net.  
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}||)({||)(: )( SssuMENatSM sM   (7) 

The insertion function is defined as: 

uMEuME ||)(])[(   (8) 

The environment transitions are defined as: 

]'[][

'

uEuE

uu
t

t




 (9) 

3 Combinatorial Strand Algebra 

Strand algebra is a process algebra [18] where the main components represent DNA 
strands, DNA gates, and their interactions. The basic algebra is non-deterministic 
algebra, and the further extension is a stochastic variant [10]. Strand algebras may 
look very similar to either chemical reactions, or Petri nets, or multiset-rewriting 
systems. The difference here is that the equivalent of, respectively, reactions, 
transitions, and rewrites, do not live outside the system, but rather are part of the 
system itself and are consumed by their own activity, reflecting their DNA 
implementation. A process algebra formulation is particularly appropriate for such an 
internal representation of active elements. 

The Combinatorial Strand Algebra, P – basic strand algebra has some atomic 
elements (signals and gates), and only two combinators: parallel (concurrent) 

composition QP | , and populations P . An inexhaustible population P  has the 

property that *| PPP  ; that is, there is always one more P that can be taken from the 
population. The set P is formally the set of finite trees P generated by the syntax 
shown below; we freely use parentheses when representing these trees linearly as 
strings. Up to the algebraic equations described below, each P is a multiset, i.e., a 
solution. The signals x,y,... are taken from a countable set. 

0,1;|;0];,...,].[,...,[;:: 2111   mnPPPyyxxxP mn  (10) 

A gate is an operator from signals to signals: ],...,].[,...,[ 11 mn yyxx   is a gate that 

binds signals nxx ,...,1 , produces signals myy ,...,1 , and is consumed in the process. We 

say that this gate joins n signals and then forks m signals; some special cases are 
shown on the fig 4. An inert component is indicated by 0. Signals and gates can be 
combined into a `soup' by parallel composition  21 | PP  (a commutative and associative 

operator, similar to chemical `+'), and can also be assembled into inexhaustible 

populations, P . Square brackets are omitted for single inputs or outputs. 
Explanation of the Syntax and Abbreviations: 
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x (11) 

Signal 

0 (12) 

Inert 

21.xx ≜   ]].[[ 21 xx  (13) 

transduser gate  

21 | PP  (14) 

Composition 

],...,.[ 1 mxxx  ≜ ],...,].[[ 1 mxxx  (15) 

fork gate 

P  (16) 

 
Population 

xxx m ].,...,[ 1  ≜ ]].[,...,[ 1 xxx m   

The relation PP , called mixing, is the smallest relation satisfying the 
following properties; it is a substitutive equivalence relation axiomatizing a well-
mixed solution[3]given lower: 

PP   (17) 

Equivalence 

RQRPQP ||   (18) 

Congruence 

PQQP   (19) 
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  QPQP  (20) 

RPRQQP  ,  (21) 

PPP |   (22) 

population 

PP 0|  (23) 

Diffusion 

00*   (24) 

PQQP ||   (25) 

** |)|( QPQP   (26) 

RQPRQP |)|()|(|   (27) 

  PP  (28) 

The relation PP , called reaction, is the smallest relation satisfying the 

following properties. In addition,  , reaction sequence, is the symmetric and 
transitive closure of   . Reaction is shown lower: 

mmnn yyyyxxxx |..|],...,].[,...,[||..| 1111   gate  0,1  mn  (29) 

RQRPQP ||   (30) 

Dilution 

QPQQQPPP  ','','  (31) 

well mixing 
The first reaction (gate) forms the core of the semantics: the other rules allow 

reactions to happen in context. Note that the special case of the gate rule for m = 0 is 
0].[],...,[||..| 11 nn xxxx . And, in particular, x.[] annihilates an x signal. We can 

choose any association of operators in the formal gate rule: because of the 
associativity of parallel composition under   the exact choice is not important. Since   
is a relation, reactions are in general nondeterministic.  
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Note that signals can interact with gates but signals cannot interact with signals, 
nor gates with gates. As we shall see, in the DNA implementation the input part of a 
gate is the Watson-Crick dual of the corresponding signal strand, so that the inputs are 
always `negative' and the outputs are always `positive'. This Watson-Crick duality 
need not be exposed in the syntax: it is implicit in the separation between signals and 
gates, so we use the same x1 both for the `positive' signal strand and for the 
complementary `negative' gate input in a reaction like 2211 .| xxxx  . 

4 Insertion Machine for Combinatorial Strand Algebra 

The representation of Petri nets as a composition of agents and environments was 
discussed in section 2.2. This will allow us to build a model driver based on the Petri 
nets. Consider a place-transition Petri Net with places xi; then, a transition with 
incoming arcs from places nxx ..1 ,and outgoing arcs to places myy ..1  is represented in 

the combinatorial strand algebra as ])..].[..([ 11 mn yyxx , where an unbounded 

population of gates ensures that the transition can fire repeatedly. The initial token 
marking  kxx ,...,1  (a multiset of places) is represented as kxx |..|1 . Conversely, a 

signal in strand algebra can be represented as a marked place in a Petri net, and a gate 
]..].[,...[ 11 mn yyxx  as a transition with an additional marked `one-shot' place on the 

input that makes it fire only once; then, P  can be represented by connecting the 
transitions of P to refresh the one-shot places (this was suggested by Cosimo Laneve). 
Therefore, the combinatorial strand algebra is equivalent to place-transition Petri nets, 
and can be easily implemented into the Insertion Modeling System, by using the 
model driver based on the Petri nets. 

Conclusions 

Strand algebras in general would allow the compilation of a high-level formalism into 
the DNA structures, using the methods advised by Cardelli in [10]. We have shown 
the way of implementation of the basic strand algebra – combinatorial strand algebra, 
in the Insertion Modeling System, by constructing the model driver for the system, 
based on the Petri nets. Combinatorial strand algebra deals with countable sets of 
signals/gates and so on(as well as Petri nets), we can extend it in future, to make it 
able to handle infinite sets, using the possibilities of insertion modeling, that works 
with infinite models. Implementation of combinatorial strand algebra to the insertion 
modeling system can be considered as the first step for building the insertion models 
of biological systems. However the further extensions of combinatorial strand 
algebra: Nested strand algebra [6], and Stochastic strand algebra, require a 
constructing of a probabilistic model driver, in order to implement them in the 
Insertion Modeling System. The stochastic semantics can be taken for example from 
the Stochastic Petri nets, which are just nets with rates on transitions and with an 
induced Continuous Time Markov Chain semantics.   
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