
Getting the Best from Two Worlds: Converting Between
OBO and OWL Formats

Vicky Dritsou1, Elvira Mitraka1,2, Pantelis Topalis1, and Christos Louis1,2

1 Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology,
Heraklion, Crete, Greece

2 Department of Biology, University of Crete, Heraklion, Crete, Greece
{vdritsou, elvira, topalis, louis}@imbb.forth.gr

Abstract. OWL is one of the most popular ontology languages, mostly due to
its expressiveness as well as its formal semantics. Yet, in the biomedical do-
main, OBO, a language that was expressly developed for the construction of bio-
ontologies, is the format preferred by the community for this purpose. This is
best exemplified by the fact that OBO-based ontologies are driving the model or-
ganism databases that use the common schema named Chado, a standard in the
GMOD project. Thus, converting ontologies written in OWL to OBO and vice
versa are crucial processes, in order to take full advantage of all resources that
are being developed. In this report we describe first the hurdles that we faced
while using the existing tools for converting ontologies between the two differ-
ent formats. Furthermore, we present two scripts that we developed in order to
overcome the recorded difficulties. A number of tests performed on several bio-
ontologies show that these scripts are in position to successfully carry out these
conversions.

1 Introduction

In the Semantic Web community, the Web Ontology Language (OWL[21]) has been the
recommendation of the World Wide Web Consortium (W3C) for defining and express-
ing ontologies, thus serving as a very popular web standard. Its well defined semantics
and the high expressiveness it provides, facilitated the increase of its popularity even
more. Indeed, several tools and applications have been developed for OWL ontologies.
Among others, Protégé[8] is one of the most widely known open-source OWL ontol-
ogy editors. Many reasoner engines have also been developed, such as RacerPro[17]
and FaCT++[27].

At the same time, researchers in the biomedical community have put a lot of ef-
fort in developing biomedical ontologies; the National Center for Biomedical Ontol-
ogy BioPortal3 currently hosts 305 ontologies. In contrast to ontologies representing
other domains, the majority of these bio-ontologies is structured according to OBO
Flat File Format[24]. This was first introduced in the previous decade, when the Gene
Ontology[10] was developed, and is now widely adopted. OBO ontologies are ex-
pressed by defining stanzas, which can be either terms, typedefs or instances.
Each stanza is followed by tag-value pairs, with valid tags being predefined in the
OBO specification. Most of its statements can be converted to OWL statements with

3 http://bioportal.bioontology.org/

respect to their semantics. Semantical issues can rise in few specific cases when con-
verting these expressions, for example due to the multiple synonym elements that OBO
allows to be defined. In the opposite direction, OWL is considered a more powerful
ontology with strict formalization and semantics, allowing the developer to express
classes, (different types of) properties and resources, even rules and
axioms. The two latter cases can become complex sometimes and there are cases
where the expressiveness of OWL can not be described in OBO. Towards the vision of
the Semantic Web however, the ability to share and reuse knowledge among different
ontological sources becomes a necessity. A variety of systems has been developed that
can import ontologies of only one format. For example, the model organism databases
that use the common schema named Chado[23], a standard in the GMOD project4, rely
on OBO ontologies only. In order to take advantage of the knowledge being expressed,
regardless of the format it is structured in, we need the means to convert such ontolo-
gies, from OBO to OWL and vice-versa. These conversions may lead to minor loss of
information or no loss at all. Moreover, when such conversions are applicable, OBO
developers can take advantage of the various OWL reasoners to check and validate the
consistency of their ontologies.

Converting ontologies between OBO and OWL has already been attempted and
applied. In Section 2 we provide a description of methods and tools that have been pro-
posed in the literature. However, our experience has shown that there are some special
cases, where either the methods fail to convert successfully the ontologies or where they
omit information that could be maintained. In an attempt to overcome these obstacles,
we have developed two Perl scripts that convert OBO files to OWL and backwards.
These are described in Section 3. Finally, in Section 4 we summarize the findings of
this work and provide concluding remarks.

2 Existing Tools and Experiences

Procedures meant to convert OBO ontologies to OWL and vice versa have already
been described in the literature and several tools have been developed for this purpose.
OWLTools[5] is a popular java Application Programming Interface (API) for managing
and analyzing ontologies with many features, built on top of the java OWL API[20]
created for manipulating OWL ontologies. One of the included applications of OWL-
Tools is the Obo Ontology Release Tool (OORT)[7]. This tool exploits the oboformat
converter[3] and performs conversions between OBO and OWL files. In order to fully
describe all the expressions present in an OBO file in OWL, the converter uses the
oboInOwl mapping[4]. This mapping is also used in two popular plugins, one for each
of the most commonly used ontology editors for each format: (i) in Protégé ontology
editor, the OBO Converter Tab plugin[22] reads and writes OBO files, and (ii) in OBO-
Edit[13], which is an OBO ontology editor, the OboEdit OWL plugin[2] imports and ex-
ports ontologies in OWL format. The same mapping is used in ONTO-PERL Applica-
tion Programming Interface[9], a java application that is built on a set of object-oriented
Perl modules and which enables such conversions. Other mappings for the conversion
of OBO files to OWL have been proposed in the literature as well. In [25] the authors
describe a methodology for mapping OBO ontologies to OWL, while a grammar for
OBO syntax and its derived mapping is proposed in [14] and [15]. In [19] the authors

4 http://gmod.org/wiki/Main Page

implement their own mapping form OBO to OWL avoiding a loss of information for
roundtrip conversions (OBO to OWL to OBO). Regardless of the mapping we adopt to
transform an OBO file to OWL, a common feature of such transformations is that the re-
sulting OWL file contains statements that help us identify the initial expressions present
in the OBO format. These statements are identified by the aforementioned converters
in order to produce an OBO file, i.e. to perform the reverse conversion. However, there
are some cases where an ontology written from scratch in OWL must be converted to
the OBO format, e.g. when it is required to import an ontology in OBO-based tools
like the relational database schema for biological knowledge Chado[23]. If the OWL
ontology we wish to convert does not rely on any OBO to OWL mapping (i.e. is written
from scratch in OWL), then the above converters will not be able to identify all the
statements contained in it. For instance, imagine that we want to convert the following
OWL statements to OBO

<owl:Class rdf:ID="alanyl tRNA">
<rdfs:subClassOf>

<owl:Class rdf:ID="tRNA"/>
</rdfs:subClassOf>
<rdfs:isDefinedBy rdf:datatype="http://www.w3.org/
2001/XMLSchema#string">A tRNA sequence that has an
alanine anticodon, and a 3’ alanine binding region.
[SO:0000254]</rdfs:isDefinedBy>

</owl:Class>
and that we use one of the above converters. Then the resulting OBO statements will be

[Term]
id: alanyl tRNA
is a: tRNA !

which means that we have lost the definition of the concept. Consider for example that
we use the Oort tool mentioned above to transform this OWL statement to OBO. Then
the definition could be identified by the tool if it was embraced by the tag <obo:
IAO 0000115> referring to the ID of the annotation property for definitions in the
Information Artifact Ontology[1]. Moreover, this definition could be identified by the
Protégé OboConverter Tab if the tag <oboInOwl:hasDefinition> was used. In
both cases, the definition of the term will be lost.

In cases like the one described in the above example, we loose important informa-
tion. Recall that an ontology is “formal, explicit specification of a shared conceptual-
ization” [16] where all concepts should be accompanied by their definition. In OWL
ontologies the formal way of expressing the definition of a class (or any other concept)
is by using the tag <rdfs:isDefinedBy>. If we were able to identify this tag within
the OWL files, then we would maintain the information into the generated OBO file.
Of course, there is a difference between the definition expressed in OWL with the def-
inition in OBO: while in OWL we only need to express the statement that defines the
concept, in OBO this statement should also be followed by the cross reference where
this definition originates from. If this cross-reference does not exist in the OWL def-
inition, we believe that it is more preferable to retrieve the definition statement even
without a cross-reference than to loose it entirely. Therefore, our goal here is to de-
velop a tool that is able to convert such ontologies that were originally written in OWL
without loosing any important information that can be also expressed in OBO.

Moreover, while attempting to make conversions in both directions (i.e. both from
OWL to OBO and from OBO to OWL), we have experienced some issues regarding
the scalability of the existing tools when dealing with large, but not huge, ontology
files. More precisely, none of the above tools was able to successfully complete (due to
memory issues) the conversion of either the GAZ5 ontology or the NCBI6 taxonomy,
to which 134MB and 76,3MB of disk space are allocated, respectively. To be more
precise, our tests were performed using an Intel Core i3 Processor clocked at 2.53GHz
with 4GB RAM running Ubuntu 11.10 operating system. More efficient tools could
thus be developed, so that they would scale when using such file sizes and enable the
conversions of larger ontologies.

3 Conversion Scripts

In an attempt to overcome the issues faced with the existing tools, we have developed
two individual scripts in Perl to transform ontologies between the two different formats,
OBO and OWL. The scripts are available at code.google.com/p/obowl.

3.1 OWL to OBO Script

Using OBO to OWL mappings for the conversion between these two formats is im-
portant to fully express and maintain all the information in OBO ontologies. However,
when relying on such mappings for the conversion of arbitrary OWL files to OBO we
cannot maintain all the information, even in cases where the lost information can be
expressed in OBO. By the term arbitrary OWL files we mean here files that have not
been written by considering any OBO to OWL mapping, but instead have been written
from scratch in OWL and use its predefined tags.

In our work we have developed a Perl script that converts such OWL files, written
in RDF/XML syntax, to OBO format. Alongside arbitrary OWL files, this script also
successfully converts to OBO the ontologies that rely on the oboInOwl mapping for
expressing the OWL statements. The script takes as input an OWL file and gives in the
output the OBO file (together with a supplementary file explained later). The process
followed for the conversion is described in Algorithm 1. First, the script opens the files
and starts processing the OWL statements. In order to be able to parse large OWL files
(i.e. make the script scale), we chose not to load the contents into memory but instead
we make use of the Perl Tie::File function for this processing. The Tie::File function
represents a file as an array, where each element corresponds to the contents of a line
in the file. It does not load the file into memory, and as a consequence it can deal with
very large files. We then process the first element of the tied array, i.e. the header block,
line by line. For each line we try to match the contained statement to one of the prede-
fined patterns, this way detecting the corresponding OBO statement. After completing
the header block, we continue with a similar process for all remaining elements. When
entering each block, we first detect whether it concerns a class or a property. Then,
we make use of two data structures, two hashes of arrays, one for the detected terms
and one for the detected typedefs. Within each hash we store the information that
will be afterwards printed to OBO file regarding each identified stanza. The keys of

5 http://bioportal.bioontology.org/ontologies/1397
6 http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

code.google.com/p/obowl

Algorithm 1 OwlToObo
Require owlFile
Open owlFile, oboFile or else die with error message
tie each block of statements of oboFile to temp
for all line in the first element of temp do

match line with one of the predefined expressions
print to oboFile the corresponding owl statement

end for
for all element of temp (besides the first) do

match its statement with predefined expression
if statement can not be matched then

print statement to logFile
else

add to hash the tag-value pair
end if

end for
sort the two hashes alphabetically based on their IDs
for all term contained in hash do

print to oboFile all the stored information
end for
for all typedef contained in hash do

print to oboFile all the stored information
end for
if logF ile has contents then

prompt the user for unmatched statements
end if

Algorithm 2 OboToOwl
Require oboFile
Open oboFile, owlFile or else die and print error mes-
sage
tie each block of statements of oboFile to temp
for all line in the first element of temp do

match line with one of the mapping expressions
print to owlFile the corresponding owl statement

end for
print to owlFile all required annotation properties
for all line of temp (besides the first) do

match line with one of the predefined expressions
if line can not be matched then

print line to logF ile
else

print to string the corresponding owl statement
if thenstring contains special characters

replace any special characters by numeric refer-
ence

end if
append string to owlFile

end if
end for
if logF ile has contents then

prompt the user for unmatched statements
end if

the hashes are the IDs of the concepts and within the arrays of each key we keep the
tag-value pairs of the concept. For each block, the algorithm examines the statements
line by line. When the end of the statement has been found, it attempts to match the
predefined strings to its contents. If the statement fails to get matched, then it is printed
in a log file together with the line it appears in. Otherwise, the statement is matched and
the corresponding tag-value pair is stored as an array in the hash it refers to. According
to the specification of OBO, stanzas should appear in a specific order in the file. We
thus sort the hashes of terms and typedefs in alphabetical order and finally print to
the output file the OBO statements starting with the terms in alphabetical order fol-
lowed by the typedefs also in alphabetical order. While exiting, if the supplementary
log file has contents, i.e. if there are statements that failed to get matched, the user is
prompted that there exists information that is missing.

Special attention is paid whenever we store the definition of a term or typedef.
As we have mentioned in the previous section, definitions in OBO are followed by
a cross-reference to the source they originate from. Therefore, whenever detecting an
OWL definition, we parse the statement and try to identify whether it follows this struc-
ture. If it does follow this structure, we do not ignore it, but instead we convert this ex-
pression into OBO. In order to be fully compatible with the latter and avoid parsing er-
rors, we add after the definition the “invalid” cross-reference [fromOwl:fromOwl].

Backward compatibility to previous OBO specifications has also been considered
in our work. More precisely, version 1.4 of OBO specification declares the name tag as
optional. However, in the previous versions (1.0, 1.2) this tag was required. Even though
the most recent specification considers it optional, some existing tools can be OBO1.2-
dependent, like Chado for example. In order to provide backward compatibility, we give
to the user the option to choose whether the name tag would be optional or required
in each conversion. Consider now that the user chooses names to be required and that

From OWL to OBO From OBO to OWL
(converted) GAZ GAZ
Information Artifact Ontology (IAO) Gene Ontology[10]
Single Nucleotide Polymorphism Ontology[12] (SNPO) NCBI Taxonomy
RNA Ontology[18] (RNAO) Sequence Ontology[6]
Gene Regulation Ontology[11] (GRO) Malaria Ontology[26] (IDOMAL)

Table 1: Ontologies Tested by Proposed Scripts

the script identifies in the OWL file a class with no defined label. Then it will be
converted to a term having a name identical with its ID.

To check whether the script scales, we have tested it with the OWL version of GAZ
(generated by the reverse script we implemented) which has a size of 370MB. Using
the same machine mentioned earlier (Intel Core i3, 4GB RAM, Ubuntu 11.10) the script
completes successfully the conversion in 949sec (15min), whereas other existing tools
failed to complete the conversion: OORT freezes due to lack of memory, OWLDEF fails
to handle such large file, while Protégé runs out of memory while loading the OWL file,
so that a conversion cannot be performed. Besides GAZ, the script has also been tested
with a number of other (smaller) OWL ontologies that do not rely on any OBO to OWL
mapping. A list of these tested ontologies is presented in the leftmost column of Table 1.
Regarding all mentioned ontologies, the script terminated with success requiring only a
few seconds to convert them to OBO.

3.2 OBO to OWL Script

Recall that in Section 2 we report on the scalability issues faced when trying to con-
vert large OBO files to OWL. To overcome these issues, we have implemented a Perl
script that automatically performs this conversion, taking in the input the OBO file and
giving the corresponding OWL file in the output. A decision we had to take before
implementing the script was whether we would use in the generated OWL file one of
the available mappings or not. First of all, we want to give the opportunity to users
that start from an arbitrary OWL file to perform a round-trip of conversions and get
in the output the initial arbitrary OWL file. However, we also wish to be compatible
with existing tools that consider mappings in their converters. Considering these facts,
we have decided to implement both options and let the user decide if a mapping will
be included or not. Since our reverse script takes into account both versions of OWL
files, OBO files can be successfully converted by the proposed script to OWL with or
without mapping. In case users choose the “with mapping” option, then the oboInOwl
mapping is used to express the OWL statements. Otherwise, we express the required
Annotation Properties within the generated OWL file and make use of tags
defined in the OWL specification.

The incremental steps of the algorithm are presented in Algorithm 2. First, the script
tries to open the two required files. If an error occurs while opening the files, the algo-
rithm dies printing the appropriate message. Following, we once again use the Tie::File
function of Perl to link the file contents to an array. As we have mentioned earlier, this
function gives us the ability not to load the contents into memory but, instead, load only
one element each time. This makes the script much less memory consuming with the

ability to deal with large files (even with files taking up a few gigabytes in disk space).
Moreover, this time we do not need to create any other data structures to store additional
information, since there is no restriction on the ordering of statements in OWL. We
therefore tie each block of statements found in the OBO file to an element of an array
and process the file sequentially. First we consider the header (first element of array),
and match each line with one of the expressions that implement the correspondences
between tags. We then print to the output file all the Annotation Properties
required, either by using the mapping or not. For the remaining elements of the array,
we parse them sequentially and for each line of the block, we match its contents with
one of the known OBO tags. If for any reason the script fails to identify a tag, then
the statement is written to a log file accompanied by the number of the line it appears
at. Each identified tag is converted to the corresponding statement in OWL, all special
characters it possibly contains are replaced and the final statement is printed to the out-
put file. The algorithm terminates when all elements have been parsed and prompts the
user while exiting if non-identified statements have been detected.

The scalability of the script has been tested with some ontologies that are relatively
big showing successful results, whereas it has been proved to be efficient in process time
as well. When converting the GAZ ontology with the same machine mentioned above,
the script took 663sec (11min), while OORT fails to run this conversion (freezes due
to lack of memory), Protégé plugin also fails due to the special characters contained in
the ontology that are not allowed in OWL and OWLDEF fails to open such a large file.
Besides this big ontology, others have also been tested with successful results. The list
of these ontologies is presented on the rightmost column of Table 1.

4 Conclusions

In the last decade a lot of effort has been made to express domain knowledge with
the aid of ontologies. In order to take full advantage of knowledge sharing and reuse,
we need to develop the appropriate tools so that these ontologies can “understand”
each other. Therefore the goal of successfully converting OBO ontologies to OWL and
conversely becomes a necessity. This problem has received a lot of attention during the
past years, thus resulting in the development of a variety of tools. However, to the best
of our knowledge, there is no tool that deals with “arbitrary” OWL files and converts
them to OBO. At the same time, scalability issues rise when the size of the ontology
becomes relatively large. In this work, two Perl scripts we have developed for such
conversions are described. Our goal was to build the necessary tools to overcome the
hurdles we have come across. Indeed, a variety of tests we performed, using different
ontologies, show that our scripts manage to successfully convert them between the two
formats, even in cases when other tools fail to do so.

Acknowledgements

We would like to thank Emmanuel Dialynas for his help throughout this work. The work
was supported by the NIAID (contract HHSN272200900039C to the core VectorBase
project) and the Hellenic General Secretariat for Research and Technology (MicroRNA
project, 09SYN-13-1055).

References
1. Information Artifact Ontology, http://code.google.com/p/information-artifact-ontology/
2. OBOEdit OWL Plugin, http://smi-protege.stanford.edu/ nigam/OboEditPlugin.zip
3. Oboformat: Parser and OWLAPI mapping for OBO Format,

http://code.google.com/p/oboformat/
4. oboInOwl Mapping, http://www.bioontology.org/wiki/index.php/OboInOwl:Main Page
5. OWLTools Java API, http://code.google.com/p/owltools/
6. Sequence Ontology, http://www.sequenceontology.org/
7. The OBO Ontology Release Tool, http://code.google.com/p/owltools/wiki/Oort
8. The Protégé Ontology Editor and Knowledge Acquisition System,

http://protege.stanford.edu
9. Antezana, E., Egaña, M., Baets, B.D., Kuiper, M., Mironov, V.: ONTO-PERL: An API for

supporting the development and analysis of bio-ontologies. Bioinformatics 24(6) (2008)
10. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,

Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis,
A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene
Ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

11. Beisswanger, E., Lee, V., jae Kim, J., Rebholz-Schuhmann, D., Splendiani, A., Dameron, O.,
Schulz, S., Hahn, U.: Gene Regulation Ontology (GRO): Design Principles and Use Cases.
In: MIE. pp. 9–14 (2008)

12. Coulet, A., Smail-Tabbone, M., Benlian, P., Napoli, A., Devignes, M.D.: SNP-Ontology for
semantic integration of genomic variation data (2006)

13. Day-Richter, J., Harris, M.A., Haendel, M., Lewis, S.: Obo-edit–an ontology editor for biol-
ogists. Bioinformatics 23, 2198–2200 (August 2007)

14. Golbreich, C., Horridge, M., Horrocks, I., Motik, B., Shearer, R.: OBO and OWL: Leverag-
ing Semantic Web Technologies for the Life Sciences. In: ISWC/ASWC (2007)

15. Golbreich, C., Horrocks, I.: The OBO to OWL mapping, GO to OWL 1.1! In: OWLED
(2007)

16. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acqui-
sition 5, 199–220 (June 1993)

17. Haarslev, V., Möller, R.: Racer system description. In: IJCAR. pp. 701–706 (2001)
18. Hoehndorf, R., Batchelor, C., Bittner, T., Dumontier, M., Eilbeck, K., Knight, R., Mungall,

C.J., Richardson, J.S., Stombaugh, J., Westhof, E., Zirbel, C.L., Leontis, N.B.: The RNA
Ontology (RNAO): An ontology for integrating RNA sequence and structure data. Applied
Ontology 6(1), 53–89 (2011)

19. Hoehndorf, R., Oellrich, A., Dumontier, M., Kelso, J., Rebholz-Schuhmann, D., Herre, H.:
Relations as patterns: bridging the gap between OBO and OWL. BMC Bioinf. 11, 441 (2010)

20. Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2 Ontolo-
gies. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2008)

21. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language, W3C Recommenda-
tion, http://www.w3.org/TR/owl-features/

22. Moreira, D.A., Musen, M.A.: OBO to OWL: a protégé OWL tab to read/save OBO ontolo-
gies. Bioinformatics 23(14), 1868–1870 (2007)

23. Mungall, C., Emmert, D.B.: A Chado case study: an ontology-based modular schema for rep-
resenting genome-associated biological information. In: Bioinformatics. pp. 337–346 (2007)

24. Mungall, C., Ireland, A.: The OBO Flat File Format Guide, version 1.4,
http://www.geneontology.org/GO.format.obo-1 4.shtml

25. Tirmizi, S.H., Aitken, S., Moreira, D.A., Mungall, C., Sequeda, J., Shah, N.H., Miranker,
D.P.: Mapping between the OBO and OWL ontology languages. J Biomed Semantics 2 Suppl
1, S3 (2011)

26. Topalis, P., Mitraka, E., Bujila, I., Deligianni, E., Dialynas, E., Siden-Kiamos, I., Troye-
Blomberg, M., Louis, C.: IDOMAL: an ontology for malaria. Malar Journal 9 (2010)

27. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: In
Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006. pp. 292–297 (2006)

	Getting the Best from Two Worlds: Converting Between OBO and OWL Formats

