
Semanticizing syntactic patterns in NLP
processing using SPARQL-DL queries

Nicola Vitucci, Mario Arrigoni Neri, Roberto Tedesco, Giuseppina Gini

Politecnico di Milano - Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133 Milano, Italy

{vitucci, arrigoni, tedesco, gini}@elet.polimi.it

Abstract. Some recent works on natural language semantic parsing
make use of syntax and semantics together using different combination
models. In our work we attempt to use SPARQL-DL as an interface
between syntactic information given by the Stanford statistical parser
(namely part-of-speech tagged text and typed dependency representa-
tion) and semantic information obtained from the FrameNet database.
We use SPARQL-DL queries to check the presence of syntactic patterns
within a sentence and identify their role as frame elements. The choice
of SPARQL-DL is due to its usage as a common reference language for
semantic applications and its high expressivity, which let rules to be gen-
eralized exploiting the inference capabilities of the underlying reasoner.

1 Introduction

The tools available nowadays for natural language processing can achieve very
good results on many complex tasks such as the parsing of a sentence. The
limitations of such tools are in the richness of their output: the Stanford parser1,
for example, can produce a parse tree, a POS tagging and a dependency graph,
but it does not provide any clues about the meaning and the topic nor it uses any
semantic information to check that the sentence is semantically correct. On the
other hand, projects such as FrameNet [2] aim to add some semantics to their
lexical resources using the concept of semantic frame, intended as “a script-
like conceptual structure that describes a particular type of situation, object,
or event along with its participants and props”, but they can only be used as
references.

Several approaches have been proposed to bridge the gap, using probabilistic
models [4] or a toolchain of independent components [8], using parse trees [5] or
dependency graphs [1] or integrating different sources of information [10]; in this
work we propose the use of SPARQL-DL2 and the OWL API3 as an interface
between a statistical parser (i.e., the Stanford parser) and a lexical semantically-
enriched resource (i.e., the FrameNet database) in order to obtain a semantic
parse of a sentence.
1 http://nlp.stanford.edu/software/lex-parser.shtml (see [7] for further details)
2 http://www.derivo.de/en/resources/sparql-dl-api.html (see [11] for further details)
3 http://owlapi.sourceforge.net/



The paper is organized as follows: in Section 2 we describe the sources of
information we use; in Section 3 we describe the mapping between the different
sources, while in Section 4 we show the whole process of a sentence analysis; in
Section 5 we summarize our work and propose some future extensions.

2 Information sources

2.1 Information obtained from the Stanford parser

The Stanford parser can provide several types of output, such as part-of-speech
(POS) tagging [9], typed dependencies [6] and parse tree of a sentence. The
POS tags capture the role of each word in a sentence, while typed dependencies
capture grammatical relations between different words; the parse tree, which we
are not currently using, shows the grammatical structure of the whole sentence.
The dependencies form a taxonomy: for instance, a dependency such as dobj
(describing the direct object of a verb) is a specification of the dependency obj
(a generic object). In the following we will speak of a dependency graph even
if, strictly speaking, dependencies can be represented as a tree, an acyclic or a
cyclic graph depending on the use of collapsed dependencies, propagation etc.
(see the Stanford typed dependencies manual for more information).
As an example, parsing the sentence I like him as a fellow we get as a result:

I/PRP like/VBP him/PRP as/IN a/DT fellow/NN ./.

nsubj(like-2, I-1) root(ROOT-0, like-2)
dobj(like-2, him-3) prep(like-2, as-4)
det(fellow-6, a-5) pobj(as-4, fellow-6)

In the first output each word is tagged with a part-of-speech (POS) tag, which
captures its role in the sentence (e.g., PRP means that the tagged word is a
personal pronoun, while VBP stands for “non-3rd person singular present verb”);
in the second output typed dependencies are shown (e.g., the nsubj tag means
that the word I, having position 1 in the sentence, is the nominal subject for the
phrase governed by the verb like found in position 2).

2.2 Information obtained from FrameNet

The most important role within FrameNet is played by lexical units (LUs),
which can be considered as “frame-evoking words” in the sense that they are
used within an event or situation captured by a frame, having a specific role and
meaning; for instance, the LU like.v is related to the use of the verb to like within
the frame Experiencer focus (it only appears in one frame). Every LU, which
usually is a verb, comes in a variety of different syntactic realizations (SRs),
which means that it can be used in different ways within a sentence depending on
its role and form (e.g., I like apples and I like climbing mountains). Every type of
realization is presented as a valence pattern, a combination of concepts pertaining



to the frame called frame elements (FEs) such as Experiencer, Reason and
Content, associated to syntactic realizations.
An example of valence pattern from FrameNet is:

NP.ObjContent NP.ExtExperiencer PP[as].DepParameter

where the subscripts are the FEs and the words separated by a dot are called
respectively phrase type (PT ) and grammatical function (GF ), capturing respec-
tively the “shape” and the function of a specific FE in a sentence.
In the previous example, the sentence tagged with frame elements would be:

[I]Experiencer like [him]Content [as a fellow]Parameter.

For the lexical unit like.v, other examples of valence patterns would be:

NP.ObjContent NP.ExtExperiencer PP[for].DepReason

[I]Experiencer like [the rounds]Content [for their versatility]Reason

PP[at].DepCircumstances NP.ObjContent NP.ExtExperiencer

[They]Experiencer liked [the play]Content [at court]Circumstances

NP.ExtContent AVP.DepDegree PP[by].DepExperiencer

[This man]Content was [very much]Degree liked [by the Masai]Experiencer

A phrase type such as PP[at], for example, means that the corresponding FE
should be a phrase containing a preposition (in this case at); a grammatical
function such as Obj, instead, means that the corresponding FE has an object
function according to FrameNet specification (i.e. not necessarily according to
its syntactic position within the sentence). In our approach, we always use these
two descriptors together as a pair.

3 Mapping

3.1 Representation of a sentence

First of all, the sentence to analyze is converted to a temporary ontology where
the individuals are the words in the sentence along with their position, a datatype
property called lemma is the word itself in its base form, the classes are the
POS tags and the roles are the dependency types; we use a pre-defined ontology
containing all the possible POS tags and dependency types as they have been
defined in the related papers (see [9] and [6]), where we added some levels of
hierarchy stating, for example, that all the forms of a verb are subclasses of the
class VB, i.e. of a generic verb; from this ontology we delete and create only the
individuals every time a new sentence is analyzed. Differently from [3] we do not
generalize words using their related synsets obtained from WordNet; we instead
exploit their associated POS tags, the reason being a higher degree of general-
ity of a <PT, GF> pair (i.e., we can extract different syntactic realizations of



the PP[as].Dep pair without the need to be bound to any specific verb). This
approach also has the advantage of helping in the detection of parsing errors,
when for instance a verb in the -ing form is tagged as an adjective.
In the previous example we would have:

Class(I-1, PRP) ObjectProperty(like-2, nsubj, I-1)
Class(like-2, VBP) ObjectProperty(ROOT-0, root, like-2)
Class(him-3, PRP) ObjectProperty(like-2, dobj, him-3)
Class(as-4, IN) ObjectProperty(like-2, prep, as-4)
Class(a-5, DT) ObjectProperty(fellow-6, det, a-5)
Class(fellow-6, NN) ObjectProperty(as-4, pobj, fellow-6)

from which we derive:

ObjectProperty(VBP, nsubj, PRP) ObjectProperty(ROOT, root, VBP)
ObjectProperty(VBP, dobj, PRP) ObjectProperty(VBP, prep, IN)
ObjectProperty(NN, det, DT) ObjectProperty(IN, pobj, NN)

Now we can select the object properties containing only the words tagged as
PP[as].Dep, thus obtaining a rule stating that a PP[as].Dep pair is character-
ized by the presence of the roles:

ObjectProperty(VBP, prep, IN) ObjectProperty(IN, pobj, NN)

where the individual belonging to the class IN (in this case as-4) must have
the string as as the value of the datatype property lemma(this is useful because
the Stanford parser associates most of the prepositions with the same POS tag
IN). The pattern given above can be used to check whether a sentence contains
the given <PT, GF> pair (and, consequently, its related FE). In the ontology of
POS tags and roles we have defined a taxonomy of POS tags as well, so rules can
be easily generalized using a reasoner; in the example above the class VBP (a verb
in non-3rd person singular present) is actually a subclass of VB (a verb in its base
form), so the first relation can be replaced by ObjectProperty(VB, prep, IN)
(if the presence of a verb in non-3rd person singular present is found not to be
mandatory for the specific pattern). This approach is especially useful when no
rules matching a sentence can be found, in that it makes it possible to loosen
some constraints (e.g., it makes it possible to look for a verb in its base form
when a verb in the 3rd person form is expected).

3.2 Building the matching queries

In order to match a pattern in a sentence, we represent it as a SPARQL-DL
query. For example, the pattern

NP.ObjContent NP.ExtExperiencer PP[as].DepParameter

can be represented by the SPARQL-DL query



PREFIX : <ontology prefix>

SELECT ?n1 ?n2 ?n3
WHERE { Type(?n1, :VB), Type(?n2, :IN), Type(?n3, :NN),

PropertyValue(?n1, :prep, ?n2),
PropertyValue(?n2, :pobj, ?n3),
PropertyValue(?n2, :lemma, "as") }

The reason why we use SPARQL-DL to perform queries relies, as we have
anticipated, on its intrinsic use of the reasoner: the query above will match all
the forms of a verb and all the types of noun (singular, mass, plural, proper).
Every query contains some additional information such as the name of the repre-
sented <PT, GF> pair, the number of matches over the whole database etc. The
SPARQL-DL implementation we are using relies on the OWL API and covers
all of OWL 2.

The same procedure is applied for all the pairs <PT, GF> present in the
FrameNet database, with every query having as the first bound variable the verb
evoked by the related LU (we cannot show here other examples because of space
limits). In order to derive the queries, we make some hypotheses:

– every SR pair <PT, GF> is independent from the verbs it is used with, which
means that it makes sense to talk of a “general” pair (e.g. PP[by].Dep for
like has the same realization for tell in the sentences I am liked by her and
I was told by him);

– we exclude the cases of null instantiation, where a frame element is not
represented by any word in the sentence (e.g., in the sentence Molly rarely
eats alone the verb eat is used intransitively while it is usually expected to
have an object).

The queries are then built in a semi-automatic manner:

1. the pair <PT, GF> to analyze (e.g. PP[as].Dep) is chosen;
2. a search in FrameNet is performed to find all the examples of sentences

whose SR contains a PP[as].Dep element (and whose related LU is a verb);
3. an example sentence is selected and parsed;
4. the elements tagged with the chosen pair are selected and shown together

with their typed dependencies;
5. a SPARQL-DL query matching such dependencies is written by hand;
6. the obtained query is checked on all the previously found example sentences

to find the number of matches;
7. the procedure is repeated to increase the matches or to extract a query for

a different pair.

We opted out for such approach because of several limitations in the FrameNet
data:

– some sentences cannot be used as examples either because they are misspelt
(thus causing parsing errors) or because the parser provides wrong POS tags
(e.g. a verb in -ing form tagged as an adjective);



– in some sentences a chunk which is tagged with a single FE can be very long,
so it can be matched by several queries related to different FEs;

– it is not always trivial to decide which is the head word in a tagged FE
within a sentence, especially in the case of long chunks;

– FrameNet is not a statistically representative resource.

4 Analysis process

After the preparation process, the steps which are performed to analyze and
semantically parse a sentence are:

1. parsing of the sentence to obtain the POS tags, the dependency graph and
the verbs;

2. conversion of the sentence in a temporary ontology;
3. execution of all the available queries and collection of all the results;
4. extraction of the valence patterns for all the frames related to the verbs;
5. check of the matching valence patterns;
6. tagging of the sentence elements with the found FEs.

The match of a valence pattern is performed by first selecting only the satisfied
queries whose first bound variable (the verb in its base form) is the same one
of the considered LU. Some patterns have multiple FEs with the same syntactic
realization within the same pattern; this is usually not a problem as they also
have the same semantic tag. To help the use and retrieval of the shape of the
valence patterns, we built an ontology of FrameNet syntactic realizations; differ-
ently from other ontologies related to the same domain, our ontology contains
all the syntactic realizations for every frame related to each verb. This makes
it easy and unambigous to derive the possible syntactic realizations for a frame
without the need of having the whole FrameNet database (to which it is anyway
linked by links to the XML files containing the related LUs).

As an example of the use of this procedure we considered the like.v LU. The
verb like is regular, so its base form can be easily retrieved; anyway, as we will
see in the last section, this condition is not restrictive. The queries we are using
are not exhaustive, meaning that they do not cover all the possible syntactic
realizations.

Going back to the previous example, the queries matching the sentence I like
him as a fellow are the ones associated to the pairs AVP.Dep, NP.Ext, NP.Obj
and PP[as].Dep; as there are no other verbs in the sentence, all of them are
selected. The valence patterns which are found to match this set of results are

NP.ObjContent NP.ExtExperiencer PP[as].DepParameter

and

NP.ObjContent NP.ExtExperiencer



In this case the reason of the ambiguity is given by the inclusion of the second
valence pattern in the first one. After finding the matching valence patterns, the
sentence is tagged accordingly; currently we only tag the head words (and the
words following a preposition, in the case of prepositional phrases), so in the
first case we would obtain:

[I]Experiencer like [him]Content [as fellow]Parameter.

We ran this analysis on all the example sentences within the like.v LU, and the
results we obtained show a greater difficulty in retrieving FEs whose syntactic
realization is NP.Obj (noun phrase used as object), NP.Ext (noun phrase used as
external argument) and AVP.Dep (adverb phrase); this is due mostly to the high
variability in syntactic realizations (or, equivalently, to its ambiguous definition),
while in prepositional phrases the prepositions act as anchors. In general, at this
stage of the work, the failure rate in recognizing a FE goes between 10% and
50% (for the most difficult elements). Some more examples of results are:

I quite like nursery rows sometimes.
[I]Experiencer [quite]Degree like [rows]Content [sometimes]Degree

Would you like cheese in your sandwich?
Would [you]Experiencer like [cheese]Content [in sandwich]Content

The average time for the whole analysis on a modern laptop (Intel R© CoreTMi7
2.00 GHz, 4 GB of RAM) is about 0.22 seconds.

We still have not run our analysis on databases other than FrameNet because
there are no ones having comparable annotations; anyway, as an example of the
errors which can be revealed by such approach, the sentence You like this don’t
you? could not be tagged because of the missing comma between this and don’t,
which makes the parser give a wrong output.

5 Summary and future work

In this work we have shown an application of SPARQL-DL query language to
natural language processing, more specifically as a rule engine to use within a
semantic parser. We have shown that the use of such formalism for this task has
several advantages such as the straightforward conversion of a typed dependency
graph in an ontology, the clarity of the queries (which can be written in a stan-
dard way instead of being defined using a custom language) and their generality
(due to the use of a reasoner).

We are currently investigating the use of statistic measures to help in the
disambiguation, that is when more than one pattern match the same sentence;
our approach includes the use of the frequencies of each pattern and the proba-
bility for each FE within a pattern to have a certain position within the pattern
itself. Also, we are adopting a lemmatizer to retrieve the base form of verbs after
they have been found in the analyzed sentence; this lets it possible to deal with
irregular verbs.



As future extensions we plan to add a semantic expansion/disambiguation
module, in order both to cope with synonyms which are not explicitly present
in the FrameNet database and to deal with semantically wrong sentences (e.g.
to put in evidence problems in sentences like I ride a pencil when the pencil is
not a rideable object); several authors use other databases such as WordNet and
VerbNet, while we are planning to use OpenCyc as well. Another extension is
related to a fully automatic generation of the queries to use as matching rules:
there are several problems to be solved, mainly depending on the ambiguity of
the tags which make it difficult to automatically derive the head word of every
FE, and on parsing or typing errors.

References

1. P. Adolphs, F. Xu, H. Li, and H. Uszkoreit. Dependency graphs as a generic
interface between parsers and relation extraction rule learning. In Proceedings of
the 34th Annual German conference on Advances in Artificial Intelligence, KI’11,
pages 50–62, Berlin, Heidelberg, 2011. Springer-Verlag.

2. C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley FrameNet Project. In
Proc. of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th Intl. Conf. on Computational Linguistics - Volume 1, ACL ’98, pages
86–90, Stroudsburg, PA, USA, 1998. Association for Computational Linguistics.

3. R. Basili, D. Croce, D. D. Cao, and C. Giannone. Learning semantic roles for
ontology patterns. In Web Intelligence/IAT Workshops, pages 291–294, 2009.

4. D. Chen, N. Schneider, D. Das, and N. A. Smith. SEMAFOR: Frame argument
resolution with log-linear models. In Proc. of the 5th Intl. Workshop on Semantic
Evaluation, SemEval ’10, pages 264–267, Stroudsburg, PA, USA, 2010. Association
for Computational Linguistics.

5. Y. S. Choi. Tree pattern expression for extracting information from syntactically
parsed text corpora. Data Min. Knowl. Discov., 22:211–231, January 2011.

6. M.-c. De Marneffe, B. Maccartney, and C. D. Manning. Generating typed depen-
dency parses from phrase structure parses. In In LREC 2006, 2006.

7. M.-C. de Marneffe and C. D. Manning. The Stanford typed dependencies repre-
sentation. In Coling 2008: Proceedings of the workshop on Cross-Framework and
Cross-Domain Parser Evaluation, CrossParser ’08, pages 1–8, Stroudsburg, PA,
USA, 2008. Association for Computational Linguistics.

8. K. Erk and S. Padó. SHALMANESER - A Toolchain For Shallow Semantic Pars-
ing. In Proceedings of LREC 2006, 2006.

9. B. Santorini. Part-Of-Speech tagging guidelines for the Penn Treebank project (3rd
revision, 2nd printing). Technical report, Department of Linguistics, University of
Pennsylvania, Philadelphia, PA, USA, 1990.

10. L. Shi and R. Mihalcea. Putting pieces together: combining FrameNet, Verb-
Net and WordNet for robust semantic parsing. In Proceedings of the 6th inter-
national conference on Computational Linguistics and Intelligent Text Processing,
CICLing’05, pages 100–111, Berlin, Heidelberg, 2005. Springer-Verlag.

11. E. Sirin and B. Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In In 3rd
OWL Experiences and Directions Workshop (OWLED-2007), 2007.


