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Abstract. The developers of StarDog OWL/RDF DBMS have pioneered a new 
use of OWL as a schema language for RDF databases. This is achieved by 
adding integrity constraints (IC), also expressed in OWL syntax, to the 
traditional “open-world” OWL axioms. The new database paradigm requires a 
suitable visual schema editor. We propose here a two-level approach for integ-
rated visual UML-style editing of extended OWL+IC ontologies: (i) introduce 
the notion of ontology splitter that can be used in conjunction with any OWL 
editor, and (ii) offer a custom graphical notation for axiom level annotations on 
the basis of compact UML-style OWL ontology editor OWLGrEd. 
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1   Introduction 

Web ontology language OWL [1,2,3] follows “open world assumption” (OWA) se-
mantics that implies every statement whose truth is not known to be undefined rather 
than false in the contrasting “closed world assumption” (CWA) semantics (cf [4]). 
While OWA semantics is appropriate for many traditional OWL uses, in the recent 
years there have been also efforts to introduce “integrity constraints” (see e.g. [5,6,7]) 
over OWL ontology models through CWA semantics. The integrity constraint (IC) 
assertions may appear natural in e.g. information system specifications, where, for 
example, a missing phone number for a person x under the assertion that every person 
has a phone number would be naturally interpreted as a data error rather than inferring 
existence of some unknown phone number for x.  

The IC specification in [6,7], implemented in  Stardog [8] OWL/RDF database, 
reuse the OWL syntax itself also for IC thus materializing the idea of using “the full 
expressivity of OWL and OWL 2 ... as a schema language for RDF”1. This opens a 
possibility for a wide range of applications of (extended) OWL in information base 
structure (schema) specification. This, however, raises an issue of suitable graphical 
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notation for extended OWL notation rendering and editing, as it is common e.g. for 
MOF-style model repository schemas in the form of UML [9,10] class diagrams, or 
for relational databases. 

There are a number of approaches and tools including UML/OWL profile [11], 
ODM [12], Top Braid Composer [13] and OWLGrEd [14,15] implementing (some 
variant/extension of) UML class diagram notation as visual notation for OWL 
ontologies, however, none of these have been explicitly intended for visual manage-
ment of extended OWL+IC ontologies. Note that any of the said OWL ontology edi-
tors can be used to graphically edit the OWA (=“proper OWL”) part of the extended 
ontology, leaving the IC specification to be done by some other means.  

Our aim here is to offer extended ontology editor and framework that are able to 
cope with both OWA-axioms and IC within a single notational space (single ontology 
or UML-style class diagram). The OWA vs. IC ontology separation then is left to an 
ontology post-processing step to be performed by some “ontology splitter” that can be 
defined as a procedure receiving as an input any OWL ontology (as a syntactic unit) 
and producing as the output its “partitioning” into OWA and IC parts.  

For many practical use cases it might be sufficient for such ontology splitting 
procedure to rely just on the structure of input ontology axioms. An example splitter 
could, e.g. send all cardinality restrictions into the IC-part of the ontology, while all 
subClassOf(A,B) axioms with named A and B could go into the OWA-part. Another 
“splitter” could send all ontology into its OWA part, leaving the IC-part empty.  

We note that even the basic functionality of any OWL editor (including all said 
UML/OWL editors and e.g. Protégé [16]), in combination with such ontology splitter 
would be sufficient for extended OWA+IC ontology authoring in these use cases. 

The full generality of ontology splitters is easily obtained by allowing them to 
resort not only to axiom structure, but also to ontology entity and axiom annotations. 
For instance, a splitter may send to the OWA-part only those subPropertyOf(:p,:q) 
axioms, where :q is annotated by AnnotationAssertion(a:isInferred :q “true”) for a 
suitable annotation property a:isInferred. 

 The use of such “general” ontology splitter requires, however, availability of 
suitable entity and axiom annotation notation within the editor, that is a non-trivial 
task for UML-style OWL ontology editors. Although there are generic means for 
entity annotation in OWLGrEd, we offer and describe here its extended version 
OWLGrEd/S supporting a custom notation for entity and axiom annotations that is 
suitable for extended OWA+IC ontology specification. 

From the methodological viewpoint we note that the ontology splitter to be applied 
to the resulting OWA+IC ontology should be viewed as belonging to the semantics of 
the editor used in the ontology authoring. There could be a number of concrete well 
established ontology splitters suitable for different application areas and modeling 
tasks based on OWA+IC ontologies that could be applied in appropriate situations. 
We briefly sketch here some principles of ontology splitter construction for semantic 
database schema definition and offer one possible candidate splitter definition. 

In the following sections we briefly review the UML-style OWL ontology editor 
OWLGrEd, comment on the integrity constraints and schema semantics of extended 
ontologies and then move to ontology splitter and OWLGrEd/S notation description. 
 



2   Visual Ontology Modeling with OWLGrEd 

OWLGrEd (http://owlgred.lumii.lv/) provides a complete graphical notation for OWL 
2, based on UML class diagrams. We visualize OWL classes as UML classes, data 
properties as class attributes, object properties as association roles, individuals as ob-
jects, cardinality restrictions on property domain class as UML cardinalities, etc. We 
enrich the UML class diagrams with the new extension notations, e.g. (cf. [14,15]): 

• fields in classes for equivalent class, superclass and disjoint class 
expressions written in Manchester OWL syntax [17]; 

• fields in associations and attributes for equivalent, disjoint and super 
properties and fields for property characteristics, e.g., functional, transitive, etc.; 

• anonymous classes containing equivalent class expression but no name (we 
show graphically only those anonymous classes that need to have graphic represen-
tation in order to be able to describe other ontology concepts in the diagram); 

• connectors (as lines) for visualizing binary disjoint, equivalent, etc. axioms; 
• boxes with connectors for n-ary disjoint, equivalent, etc. axioms; 
• connectors (lines) for visualizing object property restrictions some, only, 

exactly, as well as cardinality restrictions. 
Figure 1 contains example mini-University ontology, shown in OWLGrEd notation 

[14,15]. We note also that the OWLGrEd editor offers ontology interoperability 
(import/export) functionality with Protégé 4.1. ontology editor [16]. 

AcademicProgram
programName:string{<name}

Course
courseName:string
{<name}

Thing{owl}
name:string{func} Person

"All persons, including teachers 
and students"
key = personID
personName:string{<name}
personID:string[0..1]

Teacher
salary:integer

{disjoint}

AcademicStaff
=Teacher

Professor
<salary some 
integer [>10000]

PermanentTeachingStaff
<teaches some MandatoryCourse

<<equivalent>>

<<Comment>>
"All persons, 
including teachers 
and students"

Assistant
{disjoint}

Student

MandatoryCourse
<isTaught by only (Professor or 
(PermanentTeachingStaff and 
salary some integer [> 8000]))

relates

teaches {<relates} {<>takes}isTaughtBy

<<dis joint>>

teaches some [1..*]

takes {<relates} 1..10isTakenBy

enrolled {>takes o 
belongsTo}

belongsTo 1

includes

passed {<takes}

 
Fig.1. Mini -University ontology in OWLGrEd 

3   Integrity Constraints in Semantic Database Schemas  

Regarding mini-University ontology of Figure 1 as a database schema would lead to 
certain un-intended consequences due to OWL standard “open-world” semantics, e.g.: 

- if an assistant X has registered, by an error, as taking (takes) a course, the sys-
tem infers that X is a student since only students are allowed to take a course; 

- existence of a student with no taken courses specified does not rise an error; 
- if a course belongs to two academic programs (with no names specified yet), 

these would be inferred to be the same academic program; 



- if a student X takes a course Y belonging to (belongsTo) academic program W 
that is other than V, where X is enrolled, X is inferred to be enrolled also in W; 

- if a professor has a recorded salary of 9500, the system would infer that there 
is also another salary for the professor that is > 10000. 

The integrity constraints (IC) [5,6,7] are nowadays commonly invoked to handle 
these situations and the StarDog database environment [8] supports the approach of 
[6]. Following [6], we let an extended ontology be a pair <K,C> , where K is an 
ontology (interpreted according to OWA) and C is IC specification (interpreted 
according to CWA over K), both expressed in OWL syntax. In [6] a constraint α∈C is 
said to be satisfied by K, written K|=ICα, if and only if all minimal equality (ME) 
models [6] 2 of K satisfy α (one can informally say that α has to be satisfied on all 
“intersections” of non-contradictory ME-models) and the extended ontology <K,C>  
to be valid if and only if K|=ICα for all α∈C. We extend this definition to call <K,C>  
consistent if and only if K is consistent (i.e. it has a model) and <K,C>  is valid. 

Our interest here is to offer graphical editors for database schemas, defined as 
extended ontologies. Regarding <K,C>  as a database schema means that there is 
some data expected to be “filled in” to it, and that the actual consistency checking and 
constraint validation tasks are to be performed in a <K+DK,C+DC> situation for a 
data ontology DK (typically consisting of A-Box axioms) and some (possibly empty) 
data-level constraint set DC. We say that the extended data ontology <DK,DC> 
conforms to the schema ontology <K,C>  whenever the combined extended ontology 
<K+DK,C+DC>  is consistent. The schema-semantics of the extended ontology 
<K,C> can then be defined as the set of all <DK,DC> conforming to <K,C>.  

Note that within the “schema-semantics” of <K,C>  the “satisfaction by all ME- 
models” (= by ME-model “intersections”) for the constraint validity is considered for 
any K+DK , where DK is arbitrary “data ontology”, thus covering a large part of K 
models satisfying C as the representative ME-model “intersections” for suitable DK. 

4 Ontology Splitters 

An ontology splitter is a function that, given ontology (a set of OWL 2.0 axioms) X, 
produces two sets of axioms O(X) and C(X), whose union has the same logical 
meaning, as X (i.e. O(X)+C(X) with both O(X) and C(X) viewed in OWA-sense is 
valid on a model M if and only if X is valid). In the context of separating IC-part out 
of the ontology, the application of such an ontology splitter would allow producing an 
extended ontology <O(X),C(X)> with O(X) interpreted in OWA-sense and C(X) 
interpreted in CWA-sense from the ontology X. A simple ontology splitter would just 
partition the ontology axiom set into two subsets, however, there may be cases when 
an axiom re-factoring is needed (e.g. an EquivalentClasses-axiom may be split into 
two SubClassOf-axioms). We note that for different application areas and different 
system modeling paradigms there might be different ontology splitters applied (e.g. 
there can be a “trivial” ontology splitter having O(X)=X and C(X)=∅, or there can be 
a splitter doing some ontology axiom differentiation).  
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An ontology splitter can be defined in terms of rules that determine for each source 
ontology X axiom A the action to be taken: (i) move A into C(X), (ii) move A into 
O(X), or (iii) re-factor A into parts to be further processed by the ontology splitter (i.e. 
moved into C(X), O(X) or re-factored further). 

The action taken by the splitter on axiom A can be determined on the basis of: 
- axiom A structure (e.g. by pattern matching over some A syntactical presenta-

tion, we use here OWL Functional Syntax [2] (OFS)), 
- annotation assertions (or other axioms) in X on entities involved in A, 
- axiom A annotations (with pre-defined annotation properties and values). 
We summarize the possible re-factoring actions for translating an axiom into the 

set of its parts in Figure 2 using an intuitive pattern matching notation over OFS, 
where the variable placeholder, such as X?, stands for arbitrary OFS term and X1? .. 
Xn? notation is used to denote a list of OFS terms. These rules do not change the 
OWA-semantics of the ontology, as required by the ontology splitter definition. 

a. EquivalentClasses(X? Y?) -> {SubClassOf(X? Y?), SubClassOf(Y? X?)} 

b. EquivalentClasses(X1? .. Xn?) -> {EquivalentClasses(Xi? Xj?) | 1≤i<j≤n} 

c. DisjointClasses(X1? .. Xn?) -> {DisjointClasses(Xi? Xj?) | 1≤i<j≤n} 

d. SameIndividual(X1? .. Xn?) -> {SameIndividual(Xi? Xj?) | 1≤i<j≤n} 

e. DifferentIndividuals(X1? .. Xn?) -> {DifferentIndividuals(Xi? Xj?) | 1≤i<j≤n} 

f. SubClassOf(X? ObjectIntersectionOf(Y1? .. Yn?)) ->{ SubClassOf(X? Yi?) | 1≤i≤n} 

g. SubClassOf(X? ObjectExactCardinality(Y? Z? W?))->{ SubClassOf(X? ObjectMinCardinality(Y? Z? W?)),    

                                                                                              SubClassOf(X? ObjectMaxCardinality(Y? Z? W?))} 

h. SubClassOf(X? DataExactCardinality(Y? Z? W?)) -> { SubClassOf(X? DataMinCardinality(Y? Z? W?)),    

                                                                                               SubClassOf(X? DataMaxCardinality(Y? Z? W?))} 

i. DisjointUnion(X? Y1?..Yn?)->{DisjointClasses(Y1?..Yn?),EquivalentClasses(ObjectUnionOf(Y1? .. Yn?) X?)}                                                 

j. EquivalentObjectProperties(X1? .. Xn?) -> {EquivalentObjectProperties(Xi? Xj?) | 1≤i<j≤n} 

k. EquivalentObjectProperties(X? Y?) -> {SubObjectPropertyOf(X? Y?), SubObjectPropertyOf(Y? X?)} 

l. EquivalentDataProperties(X1? .. Xn?) -> {EquivalentDataProperties(Xi? Xj?) | 1≤i<j≤n} 

m. EquivalentDataProperties(X? Y?) -> {SubDataPropertyOf(X? Y?), SubDataPropertyOf(Y? X?)} 

n. ClassAssertion(ObjectIntersectionOf(X1?..Xn?) Y?)->{ClassAssertion(ObjectIntersectionOf(Xi? Y?)|1≤i≤n} 

o. f(ObjectComplementOf(ObjectComplementOf(Y?))) -> {f(Y?))} for any context f 

p. f(ObjectComplementOf(ObjectUnionOf(X1? .. Xn?))) -> {f(ObjectIntersectionOf(X1? .. Xn?))}  for any f 

Fig.2. Ontology axiom re-factoring rules 

Figure 3 contains an example “database-style” ontology splitter in an intuitive rule 
notation, where for each axiom in X the first succeeding rule is applied (the 
isAsserted(A?) predicate is fulfilled by the existence of axiom matching A? in X).  
Note that the last CWA(_) line of the example ontology splitter would send all axioms 
not matching any of the stated OWA-patterns into the IC-part of the ontology). 

1. refactorRules( a, b, c, f, i, j, k, l, m, n). 

2. OWA(SubClassOf(X? Y?) :- isEntity(X?) or ?X-:-ObjectOneOf() , isEntity(Y?) or Y? -:- DataHasValue()). 

3. OWA(DisjointClasses(X?, Y?) :- isEntity(X?) or X?-:-ObjectOneOf(), isEntity(Y?) or Y?-:-ObjectOneOf()).  

4. OWA(SubObjectPropertyOf(_ X?) :- isAsserted(AnnotationAssertion(X? owlgred_s:isInferred "True"))). 

5. OWA(SubDataPropertyOf(_ X?) :- isAsserted(AnnotationAssertion(X? owlgred_s:isInferred "True"))). 

6. OWA(InverseObjectProperties()). 

7. OWA(SymmetricObjectProperty()). 

8. OWA(TransitiveObjectProperty()). 

9. OWA(AsymmetricObjectProperty()). 

10. OWA(IrreflexiveObjectProperty()). 

11. OWA(ClassAssertion(X? _) :- isEntity(X?)). 

12. OWA(SameIndividuals()). 

13. OWA(DifferentIndividuals()). 

14. OWA(ObjectPropertyAssertion()). 

15. OWA(DataPropertyAssertion()). 

16. OWA(DataTypeDefinition()). 

17. CWA(_). 

Fig.3. An example “database-style” ontology splitter 



The example “database-style” ontology splitter of Figure 3 restricts the reasoner from 
inferring the existence of new individuals in the knowledge base or un-stated co-
incidence of two differently named individuals. We follow here also principle of 
minimal model determinism (existence of a single “smallest” ME-model in the sense 
of [6]) for schema+data ontologies (for this reason the disjunctive SubClassOf (in 
superclass position) and ClassAssertion axioms are excluded from the OWA part of 
the ontology). The example ontology splitter is well suited for use together with 
Stardog OWL/RDF data store with OWL2 RL or OWL 2 DL [18] reasoning enabled. 

We note that the axiom-level annotations have not been necessary in the example 
ontology splitter and that there are only two rules resorting to entity-level annotations; 
simpler ontology splitters marking all sub-property assertions either as OWA or IC 
might also be perfectly sensible for database-style use of extended ontologies (the use 
of sub-property assertions in different senses is up to the used database modeling 
discipline; a similar situation is also with property domain/range assertions used either 
for open-world classification, or for closed-world constraint checking). 

PermanentTeachingStaff
<teaches some MandatoryCourse

Assistant

AcademicStaff
=(i) Teacher

<<(i) equivalent>>
Teacher

salary:integer

<<Comment>>
"All persons, 
including teachers 
and students"

Student

{(i) disjoint}

Professor
<(c) salary some 
integer [>10000]

{(i) disjoint}

AcademicProgram
(c) programName:string{<(i) name}Person

"All persons, including teachers and 
students"
personName:string{<name}
personID:string[0..1]

MandatoryCourse
<isTaught by only (Professor or 
(PermanentTeachingStaff and salary some 
integer [> 8000]))

Thing{owl}
name/i/:(c) string{(c) func}

Course
courseName:string{<name}

passed
{<(c) takes}

i

i

<<(i) disjoint>>
i

c teaches some [1..*]

i

i

enrolled
(c)1

{>(c) takes o belongsTo}

belongsTo (c)1

includes

c
teaches
{<(i) relates}
{<>takes}

isTaughtBy

c
takes
{<(i) relates}
{<>(i) teaches}
(c)1..(c)10

isTakenBy

i

relates/i/

 
Fig.4. Mini-University ontology, with some axiom level OWA/CWA-specifications 

 

5 Graphical Interface for Entity and Axiom Annotations 

Section 4 provides a conceptual base for integrated extended OWA+IC ontology 
management within single ontology space or UML-style class diagram.  

The OWLGrEd editor [14,15] provides a “standard” notation for entity-level 
annotation (such as comments to the Person class in Figure 1 and Figure 4). A 
convenient custom graphical notation for isInferred-annotations (and any other that 
may be needed for ontology splitters) can be introduced into OWLGrEd along the 
lines of [19, 20]: we may denote the existence of owlgred_s:isInferred annotation for 
a data or object property by an /i/-suffix added to the property name, as for object 
property relates and data property name in Figure 4. 



Figure 4 illustrates also a further OWLGrEd notation and editor extension, called 
OWLGrEd/S (http://owlgred.lumii.lv/s), with specific axiom-level notation for 
marking concrete axioms as belonging to the OWA or IC part of the extended 
ontology. The notation allows attaching the mark ‘(i)’ (standing for “inference”, 
meaning axiom inclusion in OWA-part of the ontology) or ‘(c)’ (standing for 
“constraint”, meaning axiom inclusion in the IC part) to the visual representations of 
ontology axioms. We offer explicit means for both marking an axiom to be OWA, or 
IC, since this axiom-level mark-up can be used in conjunction with other rules in 
ontology splitter that may be setting different “default” actions for the axiom not 
having an explicit “semantics markup” attached to it. The explicit (i)/(c) marking is 
not possible, however, on axiom “part” levels, as it may become possible in ontology 
splitter via axiom re-factoring. We note also that in the case, if an axiom is reflected 
in several parts of the diagram, the (i)/(c) marking of any single place of the axiom 
representation suffices to have the entire axiom marked as OWA/IC, respectively. 

The conceptual tool chain for working with OWLGrEd/S editor involves defining 
or referencing an ontology splitter, then editing the ontology in the editor, possibly 
assigning the individual axiom markers. Further on two ontologies, say, open.owl and 
ic.owl are exported from the editor and can be used in Stardog database environment 
as ontology and integrity constraints files. Currently we are working with an alternati-
ve implementation with an independent ontology splitter, where the ontology is crea-
ted in OWLGrEd or OWLGrEd/S, exported to Protégé [16], and then split afterwards. 

6   Conclusions 

The introduction of high-level integrity constraints [6] for RDF/OWL databases may 
well enhance the use of RDF/OWL technology in real information base development. 
A suitable visual database schema management environment, like the one offered in 
this paper, is a critical companion to the new database technology to ensure its wide-
spread use. A key observation presented in this paper is that any existing OWL editor, 
including the UML-style OWL editors, can be largely used “as is” also for extended 
OWL+IC knowledge base schema editing by introducing an ontology post-processing 
step for splitting the ontology into its OWA and IC parts. This adds a new way of 
OWL+IC ontology management by existing OWL editors, if compared to the 
approaches studied in [7].  

We believe that the UML-style compact OWL editor OWLGrEd, whose one of the 
main strengths is use of textual OWL Manchester Syntax [17] notation in combina-
tion with its UML-style graphics, and its customization OWLGrEd/S for more conve-
nient management of specific entity-level and axiom-level annotations may be well 
suited for visual UML-style schema editing of extended OWL+IC knowledge bases. 

The introduced ontology splitter notion provides also a base for further discussions 
on natural semantics variants for joint OWA+IC assertion specification within a 
single ontology schema. It allows also the “power users” of ontology editors to define 
ontology splitters fitting their specification purposes.  

The creation of the OWLGrEd/S editor has been possible do to an open-
architecture, model-based and highly customizable OWLGrEd implementation based 



on TDA platform [21] and the tool definition meta-model [22]. The same architecture 
allows also expert users of OWLGrEd/S to tailor the appearance and to some extent 
the functionality of the editor to the user’s specific needs. As a possible future work 
we consider including the support in OWLGrEd and OWLGrEd/S tools for custom 
integrity constraints specified in some extended OWL notation, or SPARQL [23]. 
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