Graphical Schema Editing for Star Dog OWL/RDF
Databases usng OWLGrEd/S

Karlis Cerang Guntis Barzdins Renars Liepirts, Julija Ovcinnikovg,
Sergejs RikacovsArturs Sprogis

Institute of Mathematics and Computer Science, ehsity of Latvia
{Karlis.Cerans, Guntis.Barzdins, Renars.Liepingdija@vcinnikova,
Sergejs.Rikacovs, Arturs.Sprogis}@Iumii.lv

Abstract. The developers of StarDog OWL/RDF DBMS have pioeé& new
use of OWL as a schema language for RDF databd$és.is achieved by
adding integrity constraints (IC), also expressad QWL syntax, to the
traditional “open-world” OWL axioms. The new databgparadigm requires a
suitable visual schema editor. We propose hereoddwel approach for integ-
rated visual UML-style editing of extended OWL+l@tologies: (i) introduce
the notion of ontology splitter that can be useaamjunction with any OWL
editor, and (ii) offer a custom graphical notatfon axiom level annotations on
the basis of compact UML-style OWL ontology edi@WLGrEd.

Keywords. OWL, integrity constraints, STARDOG, OWL/RDF databs,
graphical database schema editor, OWLGrEd, UMLsotkagrams

1 Introduction

Web ontology language OWL [1,2,3] follows “open Wbassumption” (OWA) se-
mantics that implies every statement whose trutioisknown to baindefinedrather
than false in the contrasting “closed world assumption” (CWgemantics (cf [4]).
While OWA semantics is appropriate for many trawtitl OWL uses, in the recent
years there have been also efforts to introdudediity constraints” (see e.qg. [5,6,7])
over OWL ontology models through CWA semantics. Titegrity constraint (IC)
assertions may appear natural in e.g. informatigsiesn specifications, where, for
example, a missing phone number for a person xnthdeassertion that every person
has a phone number would be naturally interpreteal @ata error rather than inferring
existence of some unknown phone number for x.

The IC specification in [6,7], implemented in S$tag [8] OWL/RDF database,
reuse the OWL syntax itself also for IC thus matlezing the idea of using “the full
expressivity of OWL and OWL 2 ... as a schema laggufor RDF2. This opens a
possibility for a wide range of applications of fgxded) OWL in information base
structure (schema) specification. This, howevesesan issue of suitable graphical

" Partially supported by European Union via EuropBagional Development Fund project
2011/0009/2DP/2.1.1.1.0/10/APIA/VIAA/112.

™ Partially supported by Latvian 2010.-2013. NatidRasearch Program Nr.2 project Nr.5.

1 cf. http://clarkparsia.com/pellet/icv/

notation for extended OWL notation rendering andiregl as it is common e.g. for
MOF-style model repository schemas in the form ®MlU[9,10] class diagrams, or
for relational databases.

There are a number of approaches and tools in@dudiML/OWL profile [11],
ODM [12], Top Braid Composer [13] and OWLGrEd [14] implementing (some
variant/extension of) UML class diagram notation \dsual notation for OWL
ontologies, however, none of these have been étkplictended for visual manage-
ment of extended OWL+IC ontologies. Note that ahthe said OWL ontology edi-
tors can be used to graphically edit the OWA (=fmoOWL") part of the extended
ontology, leaving the IC specification to be doryesbme other means.

Our aim here is to offer extended ontology editod &ramework that are able to
cope with both OWA-axioms and IC within a singldatmnal space (single ontology
or UML-style class diagram). The OWA vs. IC ontofageparation then is left to an
ontology post-processing step to be performed byestontology splitter” that can be
defined as a procedure receiving as an input any-@wWology (as a syntactic unit)
and producing as the output its “partitioning” i@WA and IC parts.

For many practical use cases it might be sufficintsuch ontology splitting
procedure to rely just on the structure of inputotogy axioms. An example splitter
could, e.g. send all cardinality restrictions itib@ IC-part of the ontology, while all
subClassOf(A,Baxioms with named andB could go into the OWA-part. Another
“splitter” could send all ontology into its OWA gateaving the IC-part empty.

We note that even the basic functionality of any IO@ditor (including all said
UML/OWL editors and e.g. Protégé [16]), in combioatwith such ontology splitter
would be sufficient for extended OWA+IC ontologytlaaring in these use cases.

The full generality of ontology splitters is easibyptained by allowing them to
resort not only to axiom structure, but also tootogy entity and axiom annotations.
For instance, a splitter may send to the OWA-paty chosesubPropertyOf(:p,:q)
axioms, whereq is annotated byAnnotationAssertion(a:isinferred :q “true”for a
suitable annotation propergyisinferred

The use of such “general” ontology splitter regsjr however, availability of
suitable entity and axiom annotation notation witthe editor, that is a non-trivial
task for UML-style OWL ontology editors. Althouglhere are generic means for
entity annotation in OWLGrEd, we offer and describere its extended version
OWLGTrEd/S supporting a custom notation for entityd axiom annotations that is
suitable for extended OWA+IC ontology specification

From the methodological viewpoint we note thatahéology splitter to be applied
to the resulting OWA+IC ontology should be viewesdbelonging to theemanticof
the editor used in the ontology authoring. Thereld¢de a number of concrete well
established ontology splitters suitable for differ@pplication areas and modeling
tasks based on OWA+IC ontologies that could beiegph appropriate situations.
We briefly sketch here some principles of ontolagjitter construction for semantic
database schema definition and offer one posséididate splitter definition.

In the following sections we briefly review the UMityle OWL ontology editor
OWLGrEd, comment on the integrity constraints aokdesna semantics of extended
ontologies and then move to ontology splitter aMiL@rEd/S notation description.

2 Visual Ontology Modeling with OWLGrEd

OWLGrEd(http://owlgred.lumii.lv/) provides a complete ghagal notation for OWL

2, based on UML class diagrams. We visualize OWdss#s as UML classes, data
properties as class attributes, object propersessaociation roles, individuals as ob-
jects, cardinality restrictions on property domeiass as UML cardinalities, etc. We
enrich the UML class diagrams with the new extemsiotations, e.g. (cf. [14,15]):

« fields in classes faequivalent classsuperclasanddisjoint class
expressions written in Manchester OWL syntax [17];

« fields in associations and attributes éguivalentdisjoint andsuper
properties and fields for property characteristig, functional transitive etc.;

e anonymous classes containieguivalent class expressibat no name (we
show graphically only those anonymous classestbad to have graphic represen-
tation in order to be able to describe other omgploconcepts in the diagram);

 connectors (as lines) for visualizing binaligjoint, equivalent etc. axioms;

 boxes with connectors for n-adjsjoint, equivalent etc. axioms;

« connectors (lines) for visualizing object propergtrictionssome only,
exactly as well as cardinality restrictions.

Figure 1 contains example mini-University ontologlipwn in OWLGrEd notation
[14,15]. We note also that the OWLGrEd editor dffemtology interoperability
(import/export) functionality with Protégé 4.1. oldgy editor [16].

Thing{owl} {disjoint}
name:string{func} -
v —— "All personfﬁﬁjodi';g teachers AcademicProgram
__<<Comment>> = and studenté" programName:string{<name} belongsTo 1
"All persons, - —| key = personID
including teachers personName:string{<name} enrolled|{>takes o _
and students” personID:string[0..1] belongsTo} includes,
i; \ relate: Course
Professor <<disioi courseName:string
isjoint>>.
<salarysome | Seelaner_ {—Student jsTakenBy takes {<relates} 1..1Q{<name}
integer [>10000] {disjoint} passed {<takes}
Assistant]
" Teacher s TaughtBy teaches {<relates} j<>takes§
salary:integer i
MandatoryCourse
5 A <isTaught by only (Professor or
AcademicStaff #= PermanentTeachingStaff teaches some [1.* (Permagnemyl'eac):w?ngSIaff o
=Teacher <teaches some MandatoryCourse .
salarysome integer [> 8000]))

Fig.1. Mini-University ontology in OWLGrE

3 Integrity Constraintsin Semantic Database Schemas

Regarding mini-University ontology of Figure 1 aslatabase schema would lead to
certain un-intended consequences due to OWL stdridpen-world” semantics, e.g.:
- if an assistanK has registered, by an error, as takitas¢d a course, the sys-
tem infers thaX is a student since only students are allowedk® &acourse;
- existence of a student with no taken courses dpdaioes not rise an error;
- if a course belongs to two academic programs (witthames specified yet),
these would be inferred to be the same academgrgumg

- if a studentX takesa courseY belonging to lfelongsTp academic progrard/

that is other thal, whereX is enrolled X is inferred to b&nrolledalso inW:

- if a professor has a recorded salary of 9500, ystem would infer that there

is also another salary for the professor that19600.

The integrity constraints (IC) [5,6,7] are nowad@gsnmonly invoked to handle
these situations and the StarDog database envirdni@esupports the approach of
[6]. Following [6], we let an extended ontology bepair <K,C>, whereK is an
ontology (interpreted according to OWA) ar@l is IC specification (interpreted
according to CWA ovekK), both expressed in OWL syntax. In [6] a constrainC is
said to besatisfiedby K, written K|=ca, if and only if all minimal equality (ME)
models [6]? of K satisfya (one can informally say that has to be satisfied on all
“intersections” of non-contradictory ME-models) atied extended ontologyK,C>
to bevalid if and only if K|=ca for all aeC. We extend this definition to catlK,C>
consistentf and only ifK is consistent (i.e. it has a model) ai¢C> is valid.

Our interest here is to offer graphical editors @tmtabase schemas, defined as
extended ontologies. Regardird,C> as a database schema means that there is
some data expected to be “filled in” to it, andtttee actual consistency checking and
constraint validation tasks are to be performed #K+DK,C+DC> situation for a
data ontologyDK (typically consisting of A-Box axioms) and somegpibly empty)
data-level constraint sddC. We say that the extended data ontole@®K,DC>
conforms tathe schema ontologyK,C> whenever the combined extended ontology
<K+DK,C+DC> is consistent. The schema-semantics of the extermiology
<K,C> can then be defined as the set ok&K,DC> conforming to<K,C>.

Note that within the “schema-semantics” <dk,C> the “satisfaction by all ME-
models” (= by ME-model “intersections”) for the ctraint validity is considered for
any K+DK, whereDK is arbitrary “data ontology”, thus covering a largart ofK
models satisfying as the representative ME-model “intersectionssigitableDK.

4 Ontology Splitters

An ontology splitter is a function that, given oloigy (a set of OWL 2.0 axiomsy,
produces two sets of axion@®(X) and C(X), whose union has the same logical
meaning, aX (i.e. O(X)+C(X) with both O(X) and C(X) viewed in OWA-sense is
valid on a modeM if and only if X is valid). In the context of separating IC-part ou
of the ontology, the application of such an ontglsglitter would allow producing an
extended ontologyO(X),C(X)> with O(X) interpreted in OWA-sense and(X)
interpreted in CWA-sense from the ontologyA simple ontology splitter would just
partition the ontology axiom set into two subsémwever, there may be cases when
an axiom re-factoring is needed (e.g.EguivalentClasseaxiom may be split into
two SubClassO&xioms). We note that for different applicatioreas and different
system modeling paradigms there might be diffemenblogy splitters applied (e.g.
there can be a “trivial” ontology splitter havi@X)=X andC(X)=4, or there can be
a splitter doing some ontology axiom differentiaio

2 In essence, a ME-model has no unnecessary egaalgtween named individuals.

An ontology splitter can be defined in terms oesithat determine for each source
ontology X axiom A the action to be taken: (i) moveinto C(X), (i) move A into
O(X), or (iii) re-factorA into parts to be further processed by the ontokygifter (i.e.
moved intoC(X), O(X) or re-factored further).

The action taken by the splitter on axidnecan be determined on the basis of:

- axiomA structure (e.g. by pattern matching over sd\rsyntactical presenta-

tion, we use here OWL Functional Syntax [2] (OFS)),

- annotation assertions (or other axiomsXian entities involved i\,

- axiomA annotations (with pre-defined annotation propsréied values).

We summarize the possible re-factoring actionstfanslating an axiom into the
set of its parts in Figure 2 using an intuitivetpat matching notation over OFS,
where the variable placeholder, such as X?, stiordarbitrary OFS term and X1? ..
Xn? notation is used to denote a list of OFS terffese rules do not change the
OWA-semantics of the ontology, as required by thelogy splitter definition.

. EquivalentClasses(X? Y?) -> {SubClassOf(X? Y?), SubClassOf(Y? X?)}

. EquivalentClasses(X1? .. Xn?) -> {EquivalentClasses(Xi? Xj?) | 1<i<j<n}

. DisjointClasses(X1? .. Xn?) -> {DisjointClasses(Xi? Xj?) | 1<i<j<n}

. Samelndividual(X1? .. Xn?) -> {Samelndividual(Xi? Xj?) | 1<i<j<n}

. Differentindividuals(X1? .. Xn?) -> {Differentindividuals(Xi? Xj?) | 1<i<j<n}

SubClassOf(X? ObjectintersectionOf(Y1? .. Yn?)) ->{ SubClassOf(X? Yi?) | 1<i<n}

. SubClassOf(X? ObjectExactCardinality(Y? Z? W?))->{ SubClassOf(X? ObjectMinCardinality(Y? Z? W?)),
SubClassOf(X? ObjectMaxCardinality(Y? Z? W?))}

h. SubClassOf(X? DataExactCardinality(Y? Z? W?)) -> { SubClassOf(X? DataMinCardinality(Y? Z? W?)),
SubClassOf(X? DataMaxCardinality(Y? Z? W?))}

i. DisjointUnion(X? Y1?..Yn?)->{DisjointClasses(Y1?..Yn?),EquivalentClasses(ObjectUnionOf(Y1? .. Yn?) X?)}

j. EquivalentObjectProperties(X1? .. Xn?) -> {EquivalentObjectProperties(Xi? Xj?) | 1<i<j<n}

k. EquivalentObjectProperties(X? Y?) -> {SubObjectPropertyOf(X? Y?), SubObjectPropertyOf(Y? X?)}

|. EquivalentDataProperties(X1? .. Xn?) -> {EquivalentDataProperties(Xi? Xj?) | 1<i<j<n}

m.EquivalentDataProperties(X? Y?) -> {SubDataPropertyOf(X? Y?), SubDataPropertyOf(Y? X?)}

n. ClassAssertion(ObjectintersectionOf(X1?..Xn?) Y?)->{ClassAssertion(ObjectintersectionOf(Xi? Y?)| 1<i<n}

p

m S0 Q0O T W

J-

o. f(ObjectComplementOf(ObjectComplementOf(Y?))) -> {f(Y?))} for any context f
. f(ObjectComplementOf(ObjectUnionOf(X1? .. Xn?))) -> {f(ObjectintersectionOf(X1? .. Xn?))} for any f

Fig.2. Ontology axiom re-factoring rules

Figure 3 contains an example “database-style” ogtplsplitter in an intuitive rule
notation, where for each axiom X the first succeeding rule is applied (the
isAsserted(A?) predicate is fulfilled by the existence of axiomatchingA? in X).
Note that the lastWA(_) line of the example ontology splitter would sefidagioms
not matching any of the stated OWA-patterns intol®-part of the ontology).

1. refactorRules(a, b, ¢, f, i, j, k, |, m, n).

2. OWA(SubClassOf(X? Y?) :- isEntity(X?) or ?X-:-ObjectOneOf() , isEntity(Y?) or Y? -:- DataHasValue()).
3. OWA(DisjointClasses(X?, Y?) :- isEntity(X?) or X?-:-ObjectOneOf(), isEntity(Y?) or Y?-:-ObjectOneOf()).
4. OWA(SubObjectPropertyOf(_ X?) :- isAsserted(AnnotationAssertion(X? owlgred_s:isInferred "True"))).
5. OWA(SubDataPropertyOf(_ X?) :- isAsserted(AnnotationAssertion(X? owlgred_s:isInferred "True"))).
6. OWA(InverseObjectProperties()). 12. OWA(Samelndividuals()).

7. OWA(SymmetricObjectProperty()). 13. OWA(DifferentIndividuals()).

8. OWA(TransitiveObjectProperty()). 14. OWA(ObjectPropertyAssertion()).

9. OWA(AsymmetricObjectProperty()). 15. OWA(DataPropertyAssertion()).

10. OWA(IrreflexiveObjectProperty()). 16. OWA(DataTypeDefinition()).

11. OWA(ClassAssertion(X? _) :- isEntity(X?)). 17. CWA().

Fig.3. An example “database-style” ontology splitter

The example “database-style” ontology splitter wfufe 3 restricts the reasoner from
inferring the existence of new individuals in theolwledge base or un-stated co-
incidence of two differently named individuals. Vii@dlow here also principle of
minimal model determinisifexistence of a single “smallest” ME-model in gense
of [6]) for schema+data ontologies (for this reasbe disjunctiveSubClassOfin
superclass position) andlassAssertioraxioms are excluded from the OWA part of
the ontology). The example ontology splitter is malited for use together with
Stardog OWL/RDF data store with OWL2 RL or OWL 2 [8] reasoning enabled.
We note that the axiom-level annotations have eenbnecessary in the example
ontology splitter and that there are only two rulesorting to entity-level annotations;
simpler ontology splitters marking all sub-propeassertions either as OWA or IC
might also be perfectly sensible for database-styte of extended ontologies (the use
of sub-property assertions in different sensespigaithe used database modeling
discipline; a similar situation is also with propedomain/range assertions used either
for open-world classification, or for closed-woddnstraint checking).

Thing{owl} i {() disjoint}
namel/i/:(c) string{(c) func}
5 - AcademicProgram
erson ©) programName:string{<(i) name} |~ ——

<<Comment>> D "All persons, including teachers and © prog o{<0) } elongsTo (c)1
"All persons, | _ _|students”
including teachers personName:string{<name} enrolled|{>(c) takes o belongsTo}
and students"” personID:string[0..1] "j ©)1

i
Professor L ----—-_ =< disjoin> | _ Student :

<(c) salarysome
integer [>10000] {G) disjoint}

Assistant

teaches i
isTaughtB: {<(i) relates} |passed {<>(i) teaches}
Teacher <>takes} <(c) takes} |(c)1..(c)10

<<(i) equivalem>;ﬁ- —————— salaryinteger relates/ié Course jncludes
T

courseName:string{<name}

AcademicStaff PermanentTeachingStaff L
=(i) Teacher : <teaches some MandatoryCourse i MandatoryCourse
<isTaught by only (Professor or
c L teaches some [1.*]| (PermanentTeachingStaff and salary some
integer [> 8000]))

Fig.4. Mini-University ontology, with some axiom level QMICWA-specifications

5 Graphical Interfacefor Entity and Axiom Annotations

Section 4 provides a conceptual base for integratdgdnded OWA+IC ontology
management within single ontology space or UMLestlhass diagram.

The OWLGTrEd editor [14,15] provides a “standard’tatmn for entity-level
annotation (such as comments to ®ersonclass in Figure 1 and Figure 4). A
convenient custom graphical notation fsmferredannotations (and any other that
may be needed for ontology splitters) can be intced into OWLGrEd along the
lines of [19, 20]: we may denote the existencewlgred_s:isInferrecannotation for
a data or object property by dif-suffix added to the property name, as for object
propertyrelatesand data propertyamein Figure 4.

Figure 4 illustrates also a further OWLGrEd notatend editor extension, called
OWLGrEd/S (http://owlgred.lumii.lv/s), with spedaifi axiom-level notation for
marking concrete axioms as belonging to the OWAIQ@rpart of the extended
ontology. The notation allows attaching the marl’ ‘(standing for “inference”,
meaning axiom inclusion in OWA-part of the ontoldpgyr ‘(c)’ (standing for
“constraint”, meaning axiom inclusion in the IC pao the visual representations of
ontology axioms. We offer explicit means for bothrking an axiom to be OWA, or
IC, since this axiom-level mark-up can be used anjeunction with other rules in
ontology splitter that may be setting different faldt” actions for the axiom not
having an explicit “semantics markup” attachedttorhe explicit (i)/(c) marking is
not possible, however, on axiom “part” levels, asiay become possible in ontology
splitter via axiom re-factoring. We note also thrathe case, if an axiom is reflected
in several parts of the diagram, the (i)/(c) magkof any single place of the axiom
representation suffices to have the entire axiomkethas OWA/IC, respectively.

The conceptual tool chain for working with OWLGrBdéditor involves defining
or referencing an ontology splitter, then editihg bntology in the editor, possibly
assigning the individual axiom markers. Furtheitwa ontologies, saypen.owland
ic.owl are exported from the editor and can be useddand8¢y database environment
as ontology and integrity constraints files. Cutiewe are working with an alternati-
ve implementation with an independent ontologytspli where the ontology is crea-
ted in OWLGrEd or OWLGrEd/S, exported to Protégg][Bnd then split afterwards.

6 Conclusions

The introduction of high-level integrity constrar6] for RDF/OWL databases may
well enhance the use of RDF/OWL technology in refdrmation base development.
A suitable visual database schema management emémtt, like the one offered in
this paper, is a critical companion to the new basa technology to ensure its wide-
spread use. A key observation presented in thismaghat any existing OWL editor,
including the UML-style OWL editors, can be largelged “as is” also for extended
OWL+IC knowledge base schema editing by introdu@ingntology post-processing
step for splitting the ontology into its OWA and [garts. This adds a new way of
OWL+IC ontology management by existing OWL editois,compared to the
approaches studied in [7].

We believe that the UML-style compact OWL editor QBfEd, whose one of the
main strengths is use of textual OWL Manchestent®yfil7] notation in combina-
tion with its UML-style graphics, and its custontisa OWLGrEd/S for more conve-
nient management of specific entity-level and axiewel annotations may be well
suited for visual UML-style schema editing of exded OWL+IC knowledge bases.

The introduced ontology splitter notion providescah base for further discussions
on natural semantics variants for joint OWA+IC asiem specification within a
single ontology schema. It allows also the “powserg” of ontology editors to define
ontology splitters fitting their specification puges.

The creation of the OWLGrEd/S editor has been piesstdo to an open-
architecture, model-based and highly customizaléLGrEd implementation based

on TDA platform [21] and the tool definition metasdel [22]. The same architecture
allows also expert users of OWLGrEd/S to tailor #ppearance and to some extent
the functionality of the editor to the user’s sfiecheeds. As a possible future work
we consider including the support in OWLGrEd and IGBEd/S tools for custom
integrity constraints specified in some extendedlOWitation, or SPARQL [23].

References

1. Smith, M. K.; Welty, C.; and McGuiness, D.: OWleb Ontology Language Guide, 2004

2. Motik, B; Patel-Schneider P.F; Parsia B.: OWLW&b Ontology Language Structural
Specification and Functional-Style Syntax, 2009

3. Motik, B.; Patel-Schneider, P. F.; and GrauCB.OWL 2 Web Ontology Language Direct
Semantics, 2009

4. Mazzocchi, S.: Closed World vs. Open World: tR@st Semantic Web Battle,
http://lwww.betaversion.org/~stefano/linotype/nevi$/9

5. Motik, B.; Horrocks, |.; and Sattler, U. Bridgirthe Gap between OWL and Relational
Databases. In Proc. of WWW 2007, 807-816, 2007.

6. Tao, J.; Sirin, E.; Bao J; McGuinness, D.: ¢mity Constraints in OWL. In Proc. of AAAI
2010, 2010.

7. Sirin, E; Smith, M; Vallace, E: Opening, Closilgorlds — On Integrity Constraints. In
Proc. of OWLED 2008, 2008.

8. Stardog, http://stardog.com/

9. Unified Modeling Language: Infrastructure, versi2.1. OMG Specification ptc/06-04-03,
http://www.omg.org/docs/ptc/06-04-03.pdf

10. Unified Modeling Language: Superstructure, iegr®.1. OMG Specification ptc/06-04-02,
http://www.omg.org/docs/ptc/06-04-02.pdf

11. Brockmans, S., Volz, R., Eberhart, A., LofflEr, Visual Modeling of OWL DL Ontologies
Using UML, Proc. of ISWC 2004, LNCS 3298, pp. 198322004.

12.0DM UML profile for OWL, http://www.omg.org/sp&aDM/1.0/PDF/

13.TopBraid Composer, http://www.topquadrant.comdpicts/TB_Composer.html.

14.Barzdins, J.; Barzdins, G.; Cerans, K.; LiepiRs Sprogis, A.: OWLGrEd: a UML Style
Graphical Notation and Editor for OWL 2. In Pro€E @NLED 2010, 2010.

15. Barzdins, J.; Cerans, K.; Liepins, R.; Sprogis UML Style Graphical Notation and Editor
for OWL 2. In Proc. of BIR'2010, LNBIP, Springer 20, vol. 64, p. 102-113, 2010.

16.Protégé 4, http://protege.stanford.edu/

17.0WL 2 Manchester Syntax, http://www.w3.org/TRI2&manchester-syntax/

18. Motik, B.; Grau, B. C.; Horrocks, I.; Wu, Z.pkoue, A.; Lutz, C.: OWL 2 Web Ontology
Language Profiles, 2009

19. Barzdins, J.; Cerans, K.; Liepins, R.; Sprodis, Advanced ontology visualization with
OWLGTrEd. In Proc. of OWLED 2011, 2011.

20. Cerans, K.; Liepins, R.; Sprogis, A.; Ovcinnigp J.; Barzdins G.: Domain-Specific
Ontology Visualization with OWLGrEd. In Proc. of B&'2012, 2012.

21. Barzdins J., Rencis E., and Kozlovics S. Then$formation-Driven Architecture, Proc. of
8th OOPSLA Workshop on Domain-Specific ModelingsNaille, USA, pp.60-63, 2008.
22. Barzdins, J.; Cerans, K.; Kozlovics, S.; Ldceliepins, R.; Rencis, E.; Sprogis, A; Zarins,

A.: An MDE-based Graphical Tool Building Framewohk.Scientific Papers, University of
Latvia, Vol 756, ISSN 1407-2157, pp. 121-138, 2010.
23. SPARQL Query Language for RDF, http://www.w8/@R/rdf-spargl-query/, 2008.

