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Abstract. A semantic annotation of business processes with concepts from on-
tology has become necessity in service provisioning. There have been few work
on semantically labeling business processes in terms of ontology that formalizes
business process structure, business domains etc. However, dynamic behavior of a
process cannot be captured by such means as ontology languages are not suitable
for specifying behavioral semantics. In this work, we propose a method for label-
ing and specifying business processes by using hybrid programs as the knowledge
representation formalism. The formalism of hybrid programs integrates normal
programs (using the parlance of logic programming) with ontology specified in
OWL-DL (semantic web standard).
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1 Introduction

A semantic annotation of business processes with concepts from ontology has become
necessity in services industry. This work mainly involve two aspects, adding seman-
tics to specify the meaning of the entities of a business process and adding semantics
to specify the dynamic behavior of a process. We consider both these issues while we
try to formalize business processes. While OWL-DL seems to the perfect choice for
semantically annotating process diagrams [8, 9], rule-based formalisms are needed to
capture dynamic behavior of processes. OWL-DL belongs to the family of Descrip-
tion Logic (DL) languages which offer well-understood computational and attractive
decidable properties, that could be useful in settling inferences about different con-
cepts/classes of processes. Moreover, the languages in OWL family use open world
assumption under which the inability to prove a statement A does not imply that its
negation ¬A has to be concluded. Such a property is desirable on processes as lot of
times available domain knowledge may be incomplete and certain assertions cannot be
inferred without more information. However, ontology based languages fall short when
it comes to expressing dynamic behavior of the processes. When we want to express
properties related to control flow of the process (which is typical in the specification
of functional requirements) we need to use rule based frameworks for modeling such
behavior. Further we wish to exploit the feature of non-monotonic reasoning (thereby
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forcing the closed world assumption on control flow behavior) available with such log-
ics. For these reasons, we adopt the framework of hybrid programs proposed in [5, 6]
which integrate OWL-DL ontology with first-order normal logic programs, to label and
specify business processes.
Related work There are some ongoing research work on applying semantic web for-
malisms for annotating business processes using semantic web formalisms. Business
processes have been tagged with semantic labels as a part of knowledge base with a
view to formalize business process structure, business domains, and a set of criteria
describing correct semantic marking in [8]. In another work [9], the authors propose
semantic web language OWL to formalize business process diagrams, and automati-
cally verify sets of constraints on them, that deal with knowledge about the domain
and process structure. The authors in [10], attempt to analyze requirements for model-
ing and querying process models and present a pattern-oriented approach for process
modeling and information retrieval. These semantic annotation techniques of business
processes lead to the possibility of semantic validation, i.e., whether the tasks in busi-
ness processes are consistent with respect to each other in the underlying framework of
semantic annotation. Such issues are investigated in [20], where the authors introduce a
formalism for business processes, which combines concepts from work flow with that
from AI. A rule-based method for modeling processes and workflows has been pro-
posed in [14], where the authors introduce an extended Event-Condition-Action (ECA)
notation for refining business rules, and perform a consistent decomposition of business
processes. Cicekli and Cicekli have used event calculus, a kind of logic programming
formalism for specification and execution of workflows in [3]. They express control
flow graph of a work flow specification as a set of logical formulas. We have been in-
spired by this work, but we decide to use a combination of logic programs and OWL-DL
formulas for extracting knowledge out of business processes.

2 A Motivating Example

In this section we consider an example of a bidding process (see Figure 1) which we
shall later use for formulating the knowledge base. The process diagram called Business
Process Diagram (BPD), is drawn using notations similar to Business Process Modeling
Notation (BPMN). In this process the bidder starts by reading the description of the
item followed by contacting the seller for item. Then both the activities viz. studying
seller’s credit information and reading seller’s feedback are carried out in parallel. These
activities lead to decision on bidding. If it is decided to bid then the bidder buys the
item, and the bidder verify bidder’s credentials and close the auction. The realization
of this bidding can be achieved by few experts, who may wish choose requirements
(constraints) on the process itself. These requirements may include different aspects of
the process, as follows;

– Contacting seller is always preceded by reading item description.
– In the bidding process there must be roles of a bidder and a seller.
– The seller will close the auction.
– Aborting auction can put an end to the bidding process.

All these constraints are examples of descriptive properties of the annotated process.
Naturally, a requirement analyst who is using this process for bidding an item would like
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to extract relevant information about these processes. Hence it makes sense to extract a
knowledge base out of such processes so that we could use the reasoning capability of
the underlying formalism to support semantic requirements of the application in mind.

Fig. 1. An example of a bidding process

3 Logical preliminaries

In this section we discuss briefly some basics related to OWL-DL and hybrid rules.
A primer on OWL-DL W3C Web Ontology Working Group has proposed a se-
mantic markup language called OWL (Web Ontology Language) [2]. OWL is devel-
oped as a vocabulary extension of RDF (the Resource Description Framework [13]).
It shares many common features with Description Logic (DL) [19, 1]. While the syn-
tax of OWL corresponds to that of RDF the semantics of OWL are extensions of the
semantics of DL. OWL comes with three different fragments - OWL Lite, OWL-DL
and OWL Full, they differ in terms of syntax and expressibility. For our work, we re-
strict ourselves to OWL-DL. OWL-DL is a syntactic variant of the fragment of DL, viz.
SHOIN (D) [12, 18]. SHOIN (D) supports reasoning with datatypes, such as strings,
integers through datatype roles/properties.
Hybrid programs The syntax of hybrid programs [5, 6] is defined using that of com-
ponent programming language, e.g., languages of normal logic programs [17] and lan-
guage of OWL-DL. The alphabets of the predicate symbols of underlying logic program
and OWL-DL-based logic languages are assumed to be disjoint, although they can have
common variables and constants (names). A normal logic program [17] is extended
with with ontological constraints to form a hybrid program. A declarative semantics of
a hybrid program can be provided by extending the well-founded semantics of normal
programs [6].

4 Semantic annotation of business process using ontology

The Business Process Management Initiative (BPMI) has come out with a standard
Business Process Modeling Notation (BPMN) for capturing pictorial representation of



4

business processes. BPMN defines a Business Process Diagram (BPD) which is based
on flowchart related ideas, and provides a graphical notation for business process mod-
eling using objects like nodes, edges etc. We adopt a similar business process diagram
based on a standard definition of business processes which consist of nodes like, events,
activities, gateways and control flow relation linking two nodes. A node can be a task
(also called an activity), an event, a fork (AND-split), a choice (XOR-split), a syn-
chronizer (AND-join), a merge (XOR-join) gateway etc. In a BPD, there are start
events denoting the beginning of a process, and end events denoting the end of a pro-
cess. We do not take into consideration message passing, timer events etc in our model.
Two processes can be located respectively within separate pools (labeled with process
names), called swim-lanes or roles, which represent two participants (e.g., business en-
tities or business roles). Examples of such business process models are processing of
purchase orders over the Internet, processing of insurance claims, tour planning and
requisition in a company etc. A business process is well-formed if it has exactly one
start node with no incoming edges and one outgoing edge from it, there is only one
incoming edge to a task and exactly one outgoing edge to a task, each fork and choice
has exactly one incoming edge and at least two outgoing edges, each synchronizer and
merge has at least two incoming edges and exactly one outgoing edge, every node is on
a path from the start node to some end node, and there exists at least one task in be-
tween two gateways (this is to avoid triviality). Unless otherwise mentioned, from now
on without loss of generality, we shall consider only well-formed business processes.

In order to semantically annotate the BPDs and the associated domain, and to sup-
port automated reasoning on them we use the formalism proposed in [8, 9] to cap-
ture all the relevant information about the processes in the form of logical knowledge
bases, which we shall call Business Process Knowledge Base (BPKB). The BPKB is
implemented using W3C semantic web standard OWL (Web Ontology Language) [2].
As usual, the knowledge base can be separated into two parts: TBox which represents
knowledge about the terminology, i.e., the processes and classes, and ABox which con-
tains knowledge about the individuals. A BPKB consists of the following components:

The Business Process ontology (BPO) The BPMN ontology, called BPMNO, is a for-
malization of the structure of a BPD as defined in [8, 9]. This ontology introduces
the core elements of the process like, objects (event, activity, gateways) and se-
quence flows as concepts. It also includes a set of axioms about those concepts.
In our case, we consider a subset of taxonomy of the graphical elements of busi-
ness processes. For example, ProcOnto is a basic concept which is included in
Thing. The sub elements of ProcOnto are the following concepts: Agent, Activ-
ity, Event, Document, Process etc. These elements have sub-elements which are
not shown in the figure. For example, Activities can have sub-Activities, Processes
can have sub-processes as sub-elements. We identify some structural patterns with
processes: sequential, AND-gateways, XOR-gateways etc. These patterns provide
links between activities. They are modeled as object properties/roles on activities.
We assume that in business processes an activity is assigned to only an agent, and
an agent can perform only one activity at one point of time. This is captured by
a object property called, qualified. There is also a role relDocument which con-
nects an activity to a document associated with it in the diagram (if shown in the



5

diagram). We emphasize that BPO formalizes the structural part of business pro-
cesses, in particular, it specifies the basic elements and how they are connected.

Business Domain ontology (BDO) BDO captures the domain on which the particular
process diagram is conceived. It provides precise semantics to the terms used to
annotate the particular business process. The TBox axioms would include role hier-
archies for agents, business documents, processes etc that are relevant to the process
under consideration. Moreover, axioms in ABox would relate proper classes/concepts
used in the process through object properties like, qualified etc. The BDO can take
the form of an existing business domain ontology (e.g., RosettaNet or similar stan-
dard business ontology), or a customization of an existing ontology, or a description
of the domain for a particular purpose.

Business Process instances ontology (BPIO) The BPD instances contain the descrip-
tion of the corresponding instances of the business process, its domain and ontol-
ogy. Every concept for instance, Agent, Process, Activity is given a representa-
tion as an individual of the concept. The structure of the process (the connection
between different elements) is represented as instantiations of the respective roles.
Further, some of the instance axioms are generated by instantiating the appropriate
ABox axioms for the business process and domain ontology.

A BPKB can be modeled using any knowledge representation language like OWL-DL
which has a complete decision procedure. Using logical reasoning over BPKB one can
implement query answering service on BPD instances. The queries can involve either
domain ontology, process ontology or both, for example, list the number of activities,
or, find all the activities that can be performed by the agent Bidder for the process shown
in Figure 1.

5 Business process specification

The ontology created from business processes cannot model the dynamic behavior (the
control flow relation) of process diagrams as ontology languages are not suited to spec-
ify behavioral semantics. This kind of control flow related behavior can be better mod-
eled by using formalisms like event calculus, logic programs etc. Specification of such
a process behavior involves capturing relevant aspects of its constituent activities, the
relationships among activities and their execution requirements.

For specifying process details3, we associate predicates with important concepts
about activities found in processes. We assume that there is an agent (may be, process
flow manager) that coordinates the execution of the activities according to the specifica-
tion of process flow. The initiation and termination of activities are triggered by events.
For example the main event is the starting of an activity A denoted as start(A), and
the secondary event is end(A) which marks the completion of an activity. We introduce
the predicate duration(A, Y ) to denote that an activity A takes Y unit of time to get
completed. We maintain a history of main events, denoted as history(H) which define

3 We adopt the following notation: upper case letter denotes variables while lower case letter
constants
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a prefix of a complete scenario. It can be captured by the following rules.

history([ ]).

history(HH)← history(H), ( step(Happens,H), [Happens|H] = HH
; steps(List,H), append(List,H,HH) ).

Predicate step describes extending a history; step(Happens,H) means that a his-
tory H can be extended by an item Happens. Similarly, steps(L,H) describes extend-
ing H by a list of items. We borrow few axioms from event calculus [15] to suit our
purpose. These axioms are related to notions of events, properties and periods of time
for which the properties would hold. It is assumed that events initiate and/or terminate
periods of time in which a property holds. These axioms reflect that with the occurrence
of events, new properties hold in the new state of the world, and properties terminate
when they are no longer true from the previous state. The main axiom is called persis-
tence axiom. It states that a property P holds under certain conditions at time T .

holds at(P, T,H)← initiates(E,P ), happens3(E, T1, H), T1 < T,

not terminated between(P, T1, T,H).

terminated between(P, T1, T2, H)← terminates(E,P ), happens3(E, TT,H),

T1 ≤ TT, TT ≤ T2. Ax0

The first predicate holds at(P, T,H) denotes that the property P holds at time T in
history H . The predicate initiates(E,P ) represents the fact that the event E initiates a
period of time during which the property P holds. We assume happens3(E, T,H)
to denote the fact that event E happens at time T in history H . In the last rule
terminated between(P, T1, T2, H) represents that the property P ceases to hold at
some time between T1 and T2 in history H due to an event which terminates it. The
predicate terminates(E,P ) says that event E puts an end to a period during which P
was true. Note the border conditions: if event E initiates P at time T1 then P starts to
be true after T1; P not yet true at T1, but, if event E terminates P at TT then P does
not hold already at TT .

In a history, we use a term happens(E, T ) to record the fact that event E happens
at time T . These rules query a history.

happens3(start(A), T,H)← member(happens(start(A), T ), H).

happens3(end(A), T2, H)← happens3(start(A), T1, H), duration(A, Y ), T2 = T1+Y.

It is possible to identify a process flow with a few transition patterns such as, sequential,
parallel, conditional, iteration etc. which are self-explanatory. Each of these patterns
can be suitably captured using appropriate rules.

Let us now try to specify sequential activities. Suppose the activity A can start
unconditionally, whenever activity A0 finishes (see Figure 2). Note that we are using a
prefix of dl to denote the atoms taken from process ontology. This is captured as:

step(happens(start(A), T ), H)← dl(sequential(A0, A)),

happens3(end(A0), T,H), not happens3(start(A), T,H).
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Fig. 2. Sequential Activity

In this rule (and similar ones) not happens3(start(A), T,H) prevents inserting an
event start(A) to the history twice.

For concurrent activities, some activities may be executed concurrently in a pro-
cess flow. In particular, activities after an AND-split are scheduled to be executed in par-
allel. Figure 3(a) shows an AND-split. Activities A1, A2, . . . , An can start only when
the activity A completes its execution, and the former activities occur concurrently. We
have used predicate and split(A,L) to denote that activity A is split into a list L of
activities, Ai, 1 ≤ i ≤ n. This can be captured as follows:

steps(EventList,H)← happens3(end(A), T,H), dl(and split(A,L)), L = [A1|H],

not happens3(start(A1), T,H), start list(L, T,EventList).

The following rules create the list of start events.

start list([ ], T, []).

start list([Ai|L], T, [happens(start(Ai), T )|List])← start list(L, T, List)

In an AND-join (see Figure 3(b)) the activity A can start when all the preceding ac-

Fig. 3. (a) AND-split and (b) AND-join

tivities A1, . . . , An finish. These activities may not be completed concurrently, thus
we have to find the ending time of all the activities. The activity A will start at the
time of the last ending activity among A1 . . . and An. The predicate and join(L,A)
indicates that the activities in the list L are merged into the activity A. The predicate
endtime(L, T,H) says the activities in L end at T in history H .

step(happens(start(A), T ), H)← dl(and join(L,A)), endtime(L, T,H),

not happens3(start(A), T,H).

endtime([A], T,H)← happens3(end(A), T,H).

endtime([A|L], T,H)← happens3(end(A), TA, H), endtime(L, TL, H), T = max(TA, TL).
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In case of conditional activities some of the activities get enabled depending on certain
conditions, otherwise they are not executed. The important point to notice here is that
only one of the conditions should hold at the time of decision, so that only one path is
taken. In an XOR-split (see Figure 4(a)), when activity A finishes, one of the activities

Fig. 4. (a) XOR-split and (b) XOR-join

Ai, i ∈ {1, . . . , n} can begin its execution depending on whether the condition asso-
ciated with that particular activity is satisfied. As we assume the exclusiveness of the
conditions we do not deal with it in the rules. This can be specified as follows:

step(happens(start(Ai), T ), H)← dl(xor split(A,L)), happens3(end(A), T,H),

member(Ai, L), dl(pair(Ai, Cond)), holds at(Cond, T,H),

not happens3(start(Ai), T,H)

Here, predicate xor split(A,L) denotes that the activity A gets split into a set of activ-
ities A1, . . . , An in the list L. The dl(pair(Ai, Cond)) has the obvious meaning that
activity Ai is associated with the condition Cond in this gateway.

In a gateway consisting of an XOR-join (Figure 4(b)), when one of incoming ac-
tivities to the join is completed, the outgoing activity can start. The incoming activities
need not have to be synchronized. As only one of the path is followed, the completion
of one of the incoming activities is sufficient to trigger the beginning of the merged
activity. We capture the fact that only the path coming from Ai is active, and leads to
the activity A, by the following rule:

step(happens(start(A), T ), H)← dl(xor join(L,A)), happens3(end(Ai), T,H),

member(Ai, L), not happens3(start(A), T,H).

In the above, xor join(L,A) indicates that the list L of activities get merged into the
activity A. If this rule holds, Ai will be the completed predecessor activity with T as its
ending time.

In this framework, iteration of activities can be also handled. At times, it is required
to repeat a set of activities occurring in a loop. This loop may be executed a certain
number of times depending on the exit condition, see Figure 5. The activities between
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A2 and An can be arranged as any of the transition types, and at the exit the iteration
condition is checked. Iteration block can be implemented in a similar block as XOR
gateways. Note that an activity can occur more than once inside a loop, but the time
stamps would distinguish each occurrence.

Fig. 5. Iteration of activities

For each activity as that starts at the initial time point 0 an axiom
happens3(start(as), 0, H) holds. There is some initial conditions/fluents marking
the beginning of the process, initiates(start(as), initiation). This will imply that
holds at(initiation, 0) will hold using axioms Ax0.

Completion of some of the tasks will mark the end of the process, which can be
indicated by initiates(end(Al), closure) and so on, where closure is a fluent. By
the flow of events, one may arrive at happens3(end(Al), T,H). Using persistence
axioms it is true that holds at(closure, T,H). We check the history to be complete by
the following rule,
complete history(H)← history(H), holds at(closure, T,H).

6 A Case study: Bidding process

Let us consider a case study of Auction bidding process (see Figure 1) to illustrate our
technique for abstracting a hybrid program out of it. First, we build the corresponding
ontology in OWL-DL, and as stated before we do the construction in different phases
such as creating business process ontology, domain ontology, business process instances
etc. BPO (see Listing 1) will consist of the main class Thing and its sub-class Pro-
cOnto. The sub-concepts of ProcOnto are Agent, Event and Activity. The patterns in
the process are modeled as roles between activities. Some sample axioms are given in
Listing 1. Domain ontology reflects the domain on which the Bidding process is mod-
eled. In particular, it depicts the role hierarchies and roles with proper classes, see some
sample axioms in Listing 2. While developing ontology for the process instances all the
concepts are provided with suitable instantiations, which facilitates querying later on.
The link between the objects of the ontology are also instantiated through using proper
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Listing 1 Bidding Process Ontology
ProcOnto v Thing
Agent v ProcOnto
Activity v ProcOnto
Event v ProcOnto
Domain(qualified) = Agent, Range(qualified) = Activity
Domain(pair) = Activity, Range(pair) = “Condition”
Domain(sequential) = Activity, Range(sequential) = Activity
Domain(and split) = Activity, Range(and split) = ListofActivities
Domain(and join) = ListofActivities, Range(and split) = Activity

Listing 2 Bidding Process Domain Ontology
Bidder v Agent
Seller v Agent
ReadItem v Activity
ContactSeller vActivity
StudySeller v Activity
ReadSeller v Activity
Agent ≡ ReadItemtContactSellert · · · tCloseAuction
ReadItem u ContactSeller v ⊥
ContactSeller u StudySeller v ⊥

roles, see Listing 3 for some sample instances. Finally the hybrid rules are given in List-
ing 4. We admit that there is no specific built-in support for expressing lists, sequences,
or ordering in OWL. However, there are many aspects in these formalisms that can
be used to model many aspects of sequences (sacrificing the preciseness). In [7] two
design patterns are discusses for modeling ordering using OWL-DL constructs. We in-
dicate that such modeling techniques can be adopted for expressing lists in our case
too.

7 Discussions

We have provided a methodology for designing a general framework to generate a
knowledge base out of activity diagrams with roles by using a combination of OWL
and rules. There are other works which combine OWL with rules, e.g., Krisnadhi et
al. [16] and Heymans et al. [11]. The tutorial [4] contains some overview/comparisons
between such approaches.
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