
A Pair of OWL 2 RL Reasoners

Martin J. O’Connor, Amar Das

Stanford Center for Biomedical Informatics Research
 Stanford, CA 94305, U.S.A. martin.oconnor@stanford.edu

OWL 2 RL is an expressive OWL profile designed to be amenable to
implementation using conventional rule-based technologies. The profile
specification provides a direct pathway to develop OWL reasoners using off-
the-shelf rule engines. In this paper, we describe our experiences developing
two OWL 2 RL reasoners using the popular Jess and Drools rule systems. A
useful feature of these implementations is that they support the SWRL rule
language and the SQWRL query language. We describe an initial validation of
the system carried out using a large set of biomedical ontologies from the
BioPortal ontology repository. Free, open source implementations of these
reasoners have been released for the Protégé ontology development
environment. The implementations demonstrate that powerful OWL 2 RL-
based reasoners can be developed relatively quickly, though significant
performance enhancements remain to be carried out in the current
implementations.

1 Introduction

The OWL 2 W3C Recommendation includes several language profiles [1]. These
profiles are restricted subsets of OWL that trade some expressivity to provide more
desirable computational guarantees. Primarily, these profiles restrict the types of
OWL constructs that can be used in an ontology or place syntactic restrictions on how
those constructs can be used. Three profiles are provided: OWL 2 EL, which is
designed for ontologies that contain a large number of classes or properties; OWL 2
QL, which is aimed primarily at query answering; and OWL 2 RL, which is aimed at
applications that require quite a bit of the expressivity provided by OWL 2 DL but
also require scalable reasoning. Many real world ontologies do not use the full set of
features provides by OWL 2 DL and often fall into one or more of these profiles.

A notable feature of OWL 2 RL is that the profile is designed to be implementable
using standard rule-based systems. The specification document contains a set of first
order implication rules that can be used to implement such an OWL 2 RL reasoner.
The rules are described in terms of first order implications and can be applied to sets
of RDF triples. In the specification, each rule is given a unique name. For example, a
rule called eq-sym that describes the symmetric property of the owl:sameAs axiom
expressed using ternary predicate T is written:

T(?x, owl:sameAs, ?y) → T(?y, owl:sameAs, ?x)

mailto:martin.oconnor@stanford.edu

Approximately 80 rules are described in the specification. An attractive feature of
the OWL 2 RL profile is that reasoning is polynomial with respect to the size of the
ontology.

Since its release, a small number of OWL 2 RL reasoners have been developed.
Once of the earliest is DLEJena [2]. This system used the Jena rule system in
combination with the Pellet reasoner to separately generate ABox and TBox
entailments using a subset of OWL 2 RL rules. A more recent implementation
describes the development of a highly scalable OWL 2 RL reasoner that can be
applied to RDF-based data inside the Oracle database system [3]. A specification of
OWL 2 RL rules using the RIF specification has also been developed [4].

To date, however, implementations exist either in prototype form or are inside
proprietary commercial systems. The availability of free, open source OWL 2 RL
reasoners that are integrated with existing ontology development environments could
be of immense benefit. In particular, this profile can be of great use to ontology
authors who need more expressivity than RDF but who do not require the full power
of OWL 2 DL. Interoperability with the widely-used Semantic Web Rule Language
(SWRL) [5] and querying support is also desirable. In this paper, we describe such a
system. The implementation provides a pair of reasoners using the Jess [6] and Drools
[7] rule engines, both of which are provided as plugins to the Protégé ontology
development tool [8]. Both reasoners interoperate with SWRL and also provide OWL
querying via the SQWRL query language [9].

2 Implementation

In the OWL 2 RL specification, rules operate on an RDF triple-based serialization of
an OWL ontology. Taken together, the full set of rules provides a partial
axiomatization of the OWL 2 RDF-based semantics. In our implementation we
decided not to support the full RDF-based semantics but instead to concentrate on a
practical subset conforming to the direct semantics. Thus, instead of supporting
arbitrary RDF graphs, our rules are effectively applied to a restricted subset of a graph
conforming to these direct semantics.

Ontology and OWL 2 RL Rule Representation

In the specification documents, rules are subdivided into eight functional groups, each
specified in a numbered table. For example, the group specified in table 7 contains
rules relating to the semantics of the schema vocabulary. An example rule from this
table describing the transitivity of subclass axioms is expressed as:

T(?c1, rdfs:subClassOf, ?c2) ^ T(?c2, rdfs:subClassOf, ?c3)

→ T(?c1, rdfs:subClassOf, ?c3)

Each OWL 2 RL rule in the specification is short and relatively comprehensible

and is designed to be mapped directly to a target rule language. Since each rule
effectively operates on triples, a standard approach would be to develop a

representation of a triple-based data structure in the target rule system to represent the
input OWL ontology. The OWL 2 RL rules could then be directly translated to the
native rule language to operate against that data structure. Since we decided to use
direct semantics, we can raise the abstraction level and instead represent the input
OWL ontology using an axiom-based data structure. That is, we take each OWL
axiom type and develop a native rule engine representation of that axiom; we then
take each OWL 2 RL rule and express it in terms of those axioms.

This approach proved particularly attractive using the Java-based Drools rule
system because Drools allows rules to operate directly on Java objects. Thus, for
example, an OWL subclass axiom can be represented as a Java class SCA with two
fields, sub and sup, representing the classes in the relationship. The Drools rule
representing the scm-sco OWL 2 RL rule can then be written:

rule scm_sco
when SCA($c1:sub, $c2:sup) SCA(sub==$c2, $c3:sup)
then SCA sca=new SCA($c1, $c3); inferrer.infer(sca);
end

Here, inferrer refers to a Java object that accumulates inferred OWL axioms and
asserts them into working memory. As can be seen, the translation from the OWL 2
RL specification rule is relatively direct. In principle, this approach could be applied
directly to Java objects representing OWL axioms supplied by existing OWL APIs,
though a more targeted, lightweight intermediate representation is usually desirable.
The approach is particularly useful for dealing with OWL 2 RL rules that use OWL
class expressions, which have verbose RDF serializations. For example the scvm-
svf1 OWL 2 RL rule that uses owl:someValueFrom class expressions, represented
here using the Java class OSVFCE, can be written:

rule scm_svf1
when OSVFCE($c1:ceid, $p:p, $y1:v) OSVFCE($c2:ceid, p==$p, $y2:v)
SCA(sub==$y1, sup==$y2)
then SCA sca=new SCA($c1, $c2); inferrer.infer(sca);
end

Writing rules at this level has multiple benefits beyond ease of axiom mapping and

rule comprehension. In Drools, the types of the axiom elements are type checked at
run time. Also, this representation provides opportunities to optimize at axiom level
rather than at the triple level.

A similar approach can also be used with the Java-based Jess rule system, though
syntactically the Jess rule language is based on Lisp so the resulting rules are less Java
like. For example, the above subclass rule is written in Jess as follows:

(defrule scm-sco

(sca (sub ?c1) (super ?c2)) (sca (sub ?c2) (super ?c3))
=> (sca (sub ?c1) (super ?c3)) (inferSCA ?c1 ?c3))

Here, inferCAA is a user-defined function to process inferred subclass axioms.
In the case of both Jess and Drools, the named OWL 2 RL rules in the specification

dealing with OWL concepts are directly translatable to rules that operate on OWL
axioms.

The profile also specifies unnamed list processing rules that deal with collections
of objects. These collections are represented as RDF lists. These rules could be
represented using a set of recursive rules that traverse these list structures at run time.
However, this approach could be computationally expensive. A common alternative
approach is to treat these rules as templates and preprocess the input ontology and
generate instantiations of these template rules for the lists in the input ontology [4].
Our implementation adopts the latter approach.

An additional difficulty is dealing with datatype rules. Rules dealing with equality
and inequality of data values can use the data value handling mechanisms of the
underlying rule engine for simple datatypes. However, the type hierarchies of the
supported datatypes must also be considered in the rules. Also, the OWL 2 RL rules
specify type checking of datatype values. The implementations currently do not fully
support these rules and deal only with direct datatype equality and inequality tests.

Controlling the OWL 2 RL Reasoners in Protégé-OWL

The Jess- and Drools-based OWL 2 RL reasoners are included in the 3.5 alpha release
of Protégé-OWL. Currently, these reasoners act as engines for the SWRL rule
language and the SQWRL query language, though they can also be used with OWL
ontologies that do not contain rules or queries.

Figure 1. Screen shot of the Protégé-OWL SWRLTab with the OWL 2 RL control

panel selected.

We developed a set of graphical interfaces for controlling these reasoners. These
interfaces are accessible with the Protégé-OWL SWRLTab [10,11]. Figure 1 shows
this interface as displayed in the SWRLTab’s SQWRL query plugin. The interface
permits control of the OWL 2 RL inference process by allowing the selective enabling
and disabling of the rules or tables of rules. This interface also provides a control tab
to indicate if rule tables are active or inactive.

The interface also contains sub tabs for controlling individual OWL 2 RL rules
(Figure 2). These sub tabs list these rule names, indicate their support status, and
allow supported rules to be enabled or disabled. A check next to each rule indicates
whether that rule is enabled or disabled. Grayed-out rules are either permanently
enabled or currently unsupported and cannot be toggled. Support is also provided for
saving the OWL 2 RL rule settings for a particular ontology. These settings are saved
as annotation properties in that ontology and are reused if the ontology is later
opened. Control of OWL 2 RL rule activation is also provided via a Java API.

Figure 2. Screen shot of OWL 2 RL control sub tab for controlling individual rules

from table 9 of the OWL 2 RL specification.

3 Testing and Evaluation

We performed initial evaluation and testing of our two reasoners using ontologies
from the BioPortal ontology repository [12]. Of the 305 ontologies currently in the
repository, we found 87 that were within the OWL 2 RL profile. We excluded three of
these ontologies from the evaluation because we had difficulties processing them due
to ontology import resolution issues, leaving a test suite of 84 ontologies. We
processed these ontologies using both the Jess- and Drools-based reasoners and
generated materialized ontologies from each of them. We repeated this process with
the HermiT reasoner [13]. In each case we recorded the time taken to generate the
materialized views. We excluded file load and saving times from this total. We
verified that the three reasoners produced identical entailed ontologies.

Both the Jess and Drools implementations performed similarly. Execution times
ranging from the hundreds of milliseconds for the smallest ontologies, which
contained a few dozen OWL axioms, to 30 seconds for the largest, which contained
50 thousand asserted axioms. The Drools implementation was marginally faster in
most cases, but in all cases the reasoning times of the two implementations were
within 20% of each other. This result is not surprising given that a similar Rete-based
algorithm is used by both rule systems and the almost identical ontology and OWL 2
RL rule modeling strategies used. Not surprisingly, the HermiT reasoner significantly
outperformed our pair of reasoners. It was typically 5 to 6 times faster. For some well-
known ontologies it was over ten times faster, perhaps reflecting a training effect.
Since our implementations adopt a fairly direct translation of the rules in the
specification and do not yet attempt some obvious optimizations, it is likely that this
gap can be reduced somewhat.

It is important to note that the ontologies used in the test were heavily TBox biased
and contained few OWL individuals. Naïve implementations of OWL 2 RL reasoners
are known to perform poorly on ontologies with large ABoxes [14]. Hence,
significant optimizations remain to be performed. Fortunately, a variety of very
effective optimizations have been described in the literature [3, 15], some of which
we are currently implementing. We are also in the process of evaluating our system
using a set of publicly available OWL 2 RL conformance tests [16].

4 Discussion

We have described the development of a pair of OWL 2 RL reasoners using the Jess
and Drools rules engines. The implementations are integrated into the Protégé-OWL’s
and are open source and free, though the use of Jess does require a license for non
U.S. government or non academic use. The Drools rule system is both open source
and free. Both OWL 2 RL reasoners are configurable via graphical and API based
interfaces. They are available in the current 3.5 alpha release of Protégé-OWL. We
are planning an OWLAPI-compliant release for Protégé 4.2 in the next few weeks.
The implementations support the SWRL rule language and offer query support via the
SQWRL query language. The extensive set of SWRL built-in libraries provided by
the Protégé-OWL SWRLTab can also be used with these reasoners.

As described, the current implementations need further compliance testing and
significant optimizations. The implementations are also currently limited in that they
deal with in-memory ontology only, which restricts the size of ontologies that they
can be applied to. However, they have been show to perform reasonably well on a
variety of real world biomedical ontologies. Of particular note is the percentage of
OWL 2 RL compliant ontologies in the BioPortal repository. Of the 304 ontologies in
the current repository, 89 fit within the OWL 2 RL profile. It is not clear than any
were specifically designed to fit within this profile, indicating that perhaps more could
fit within it with possibly minor effort. We intend to investigate the remaining
ontologies to see how many could be amenable to these modifications and thus fit
with the profile.

Acknowledgements

We would like to thank Mark Proctor of Red Hat, Inc., the developer of Drools, for
his assistance in the development of the Drools implementation of the OWL 2 RL
reasoner. We would also like to thank Matthew Horridge for providing the set of
OWL 2 RL compliant BioPortal ontologies for analysis and for his help in setting up
the tests. This research was supported in part by the N.L.M. under grants LM007885
and LM009607.

References

[1] Motik, B. Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A, Lutz, C. OWL 2
Web Ontology Language Profiles, W3C Recommendation. www.w3.org/TR/owl2-
profiles, 2009.
[2] Meditskos, G. and Bassiliades, N. DLEJena: A Practical Forward-Chaining OWL
2 RL Reasoner Combining Jena and Pellet. Journal of Web Semantics, 8(1), 2010.
[3] Kolovski, V, Wu, Z., Eadon, G. Optimizing Enterprise-scale OWL 2 RL
Reasoning in a Relational Database System. 9th International Semantic Web
Conference, Shanghai, China, 2010.
[4] Reynolds, D. OWL 2 RL in RIF, W3C Working Group Note. www.w3.org/TR/rif-
owl-rl/, 2010.
[5] Horrocks, I., Patel-Schneider P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C,
www.w3.org/Submission/SWRL/, 2004.
[6] Friedman, E. Jess in Action: Rule-based Systems in Java. Manning Publications
Co., Greenwich, CT, 2003.
[7] Drools: www.jboss.org/drools. Last Accessed May, 2012.
[8] Knublauch, H., Fergerson, R., Noy, N., Musen, M. The Protégé OWL Plugin: An
Open Development Environment for Semantic Web Applications. 3rd International
Semantic Web Conference, Horoshima, Japan, 2004.
[9] O’Connor, Das, A. SQWRL: a Query Language for OWL. OWL: Experiences
and Directions, 6th International Workshop, Chantilly, VA, 2009.

http://www.w3.org/TR/owl2-profiles
http://www.w3.org/TR/owl2-profiles
http://www.w3.org/TR/rif-owl-rl/
http://www.w3.org/TR/rif-owl-rl/
http://www.w3.org/Submission/SWRL/
http://www.jboss.org/drools

[10] O'Connor, M.J., Nyulas, C.I., Shankar, R.D., Das, A.K., Musen, M.A. The
SWRLAPI: A Development Environment for Working with SWRL Rules. OWL:
Experiences and Directions, 5th International Workshop, Karlsruhe, Germany, 2008.
[11] O'Connor, M.J., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W, and
Musen, M. Supporting Rule System Interoperability on the Semantic Web with
SWRL. 4th International Semantic Web Conference, Galway, Ireland, 2005.
[12] BioPortal: bioportal.bioontology.org. Last Accessed May, 2012.
[13] Glimm, B., Horrocks, I, Motik, B, Stoilos, G. Optimising Ontology
Classification. 9th International Semantic Web Conference, Shanghai, China, 2010.
[14] Hogan, A. and Decker, A. On the Ostensibly Silent 'W' in OWL 2 RL. 3rd
International Conference of Web Reasoning and Rule Systems, Chantilly, VA, 2009.
[15] Bishop, B, Bojanov, S. Implementing OWL 2 RL and OWL 2 QL Rule-sets for
OWLIM. OWL: Experiences and Directions, 8th International Workshop, San
Francisco, CA, 2011.
[16] OWL 2 Web Ontology Language: Conformance and Test Cases. W3C,
www.w3.org/TR/owl2-test/, 2008.

http://biportal.bioontology.org/
http://www.w3.org/TR/owl2-test/

	Ontology and OWL 2 RL Rule Representation
	Controlling the OWL 2 RL Reasoners in Protégé-OWL

