
Towards Modeling Locations as Poly-Hierarchies

Hagen Höpfner and Maximilian Schirmer
Bauhaus-Universität Weimar

Media Department / Mobile Media Group
Bauhausstraße 11, 99423 Weimar, Germany

hoepfner@acm.org, maximilian.schirmer@uni-weimar.de

Keywords
Location, Location Modeling, Poly-Hierarchies, Enclave Problem,
Multiple Belonging

ABSTRACT
Location models are formal descriptions of locations (i. e., named
sets of geographical positions) as well as of semantic relationships
among locations. There exist various location models that vary in
the considered location information, their level of detail, the kind
of modelled relations and the used formal representation. In fact,
more complex location models cover more aspects required for im-
plementing location-aware or location-dependent systems, but also
require more complex algorithms. As each application domain re-
quires only a limited set of features, limiting a model to those fea-
tures helps to improve system performance. In this paper, we dis-
cuss a novel location model called location poly-hierarchies that
models the belonging of one location to one ore more other loca-
tions. Furthermore, we present an approach for creating location
poly-hierarchies from a given set of locations.

1. INTRODUCTION AND MOTIVATION
In February 2004, the authors of [5] stated: “The widespread de-

ployment of sensing technologies will make location-aware appli-
cations part of every day life.” Nowadays, location-awareness has
become a key feature in a broad range of mobile information sys-
tems. Navigation systems, social network apps, tourist information
systems, event information systems, shop finders and many more
heavily rely on position data of their users. Consequently, almost
all modern smartphones supply positioning techniques. However,
a position determination, e.g, by the use of the Global Positioning
System (GPS), enables a smartphone to calculate coordinates and
accuracy, only. As, from the perspective of the user, a seman-
tic location is more understandable than coordinate information,
location-aware or location-based systems map position information
to semantically meaningful locations. For example, the GPS coor-
dinates 50.972 797 and 11.329 18 are precise but likely not mean-
ingful for humans. They belong to the building which is placed in

24th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 29.05.2012 - 01.06.2012, Lübbenau, Germany.
Copyright is held by the author/owner(s).

the Bauhausstraße 11 in Weimar, Germany and the assumption be-
ing that such information is usually more meaningful to the user.
Hence, we should use a service that maps positions to locations.
However, location-based applications differ in their required preci-
sion [10]. While the name of the city in which a user and/or a de-
vice is currently located might be appropriate for handling location-
aware data processing in an event information system, a navigation
system demands for exact coordinates, or street names at least.

The aforementioned example also illustrates another issue that is
common for locations. In many cases, semantic locations form hi-
erarchical structures. For example, in a hierarchical location model,
earth is divided into continents, continents into countries, coun-
tries into states, states into cities, cities into streets and streets into
street numbers, and so on. However, modelling locations as mono-
hierarchies oversimplifies the reality and does not support multiple
belongings. While, e. g., Weimar is part of Germany, Germany of
Europe, etc., Istanbul is part of Turkey, but also of Europe and Asia.
Please note, we focus on geographic belongs-to-relationships (sub-
set and overlap) rather than on geopolitical ones. Location hierar-
chies benefit from the fact that determining low-level location in-
formation determines upper levels, too. Location poly-hierarchies
cure the mentioned model incompleteness while keeping the bene-
fit of a “fast” lookup of the correct path within the poly-hierarchy
(cf., [11]). The research question addressed in this paper is:

How can one algorithmically create location poly-hierarchies
from a given set of locations?

The remainder of this paper is structured as follows: Section 2
surveys related work. Section 3 introduces the concept of loca-
tion poly-hierarchies. Section 4 presents our approach for creating
them. Section 5 discusses implementation aspects. Section 6 sum-
marises the paper and gives an outlook on future research.

2. RELATED WORK
There has been a lot of active research on suitable models and

representations for location data in the field of location models.
Location models are a core component of location-based applica-
tions. They represent not only location information, but also spatial
(or even spatio-temporal [7]) relationships in the data, help to ex-
press relative locations, proximity, and allow users to determine
containment of locations or connectedness of relationships.

The authors of [13] present in great detail the broad variety of lo-
cation models that has been developed in recent years of active re-
search. A key factor for distinguishing and characterising location
models is their way of representing spatial relationships. Accord-
ing to [1], they can be categorised into set-based, hierarchical, and
graph-based models. Hybrid models that combine several aspects
exist as well. Figure 1 presents an overview of the three main lo-



cation model concepts. In the illustrated examples, the set-based
approach is the least expressive one, as it only models the fact
that there are two distinct locations within a set of locations, and
a set of coordinates is assigned to each location. The hierarchical
model adds containment information, and the graph-based model
adds connectedness and distance in the form of edge weights.

Location A

(1,2)

Location B

(2,3)

(a)

World

(1,3)(1,2) (2,4)(2,3)

Location A

(1,2)

Location B

(2,3)(1,3) (2,4)

Location c

(1,2)

(b)

Location A

(1,2)

Location B

(2,4)

Location C

Location D

(1,3)

(2,3)

Location E

(2,5)

100

50 25

25

10

60

(c)

Figure 1: Examples for set-based (a), hierarchical (b), and
graph-based (c) location models. The edge weights in the
graph-based model represent distance information.

Hierarchical location models as a special case of set-based mod-
els represent containment relationships between different levels of
the model and are widely used as basis for location-based applica-
tions [6, 2, 4]. Hierarchical models cannot represent distance infor-
mation or directly encode proximity, but they have great advantages
in traversal and for containment queries. They are also very close to
the common human understanding of locations. As already stated
in Section 1, the widely acknowledged segmentation of locations
into administrative regions (country, state, city, street, and so on) is
also a hierarchical model that heavily relies on containment infor-
mation. On a city level, a lot of implicit information can be derived
through the top-level relationship to a state or country (e.g., admin-
istrative language, local cuisine, prevalent religions).

3. LOCATION POLY-HIERARCHIES
The authors of [12] define the term “location” as follows: “Lo-

cation of an object or a person is its geographical position on the
earth with respect to a reference point.” From our point of view,
this definition is too restrictive, because geographic positions are
points within a reference system. In contrast to a point, a location
has a spatial extent. Another definition is given in [3]: “Geographic
location is the text description of an area in a special confine on the
earth’s surface.”. From a more theoretical point of view, an area is
a set of geographical positions. So, we use a set-oriented definition:
A location is a named set of geographical positions on earth with
respect to a reference point.

For example, in a two-dimensional coordinate system1, the loca-
tion of a building, lets say a train station (ts), is given as set Lts =
{(x1, y1), . . . , (xn, yn)}, where each position (point) (xi, yi), 1 ≤
i ≤ n belongs to the train station building’s area. We discuss the
calculation of the point set in Section 5.1. Consequently, we can
characterise the location of an object or a person as a relationship
between sets. A person, lets say Tanja, is located at the train station
if LTanja ⊂ Lts holds. Recent positioning technologies like GPS
1For simplification purposes, we use two-dimensional coordinates
in this paper. However, the formalism can easily be adapted to three
dimensions.

return only single points. However, we can interpret Tanja’s current
GPS coordinate as a set of positions of cardinality 1. As discussed
in Section 1 it is a common understanding that locations have a hi-
erarchic nature. The train station is located within a city, the city is
located in a state, the state within a country, and so on. Using this
subset-based location interpretation, LTanja ⊂ Lts ⊂ LWeimar ⊂
LThuringia ⊂ LGermany ⊂ LEurope ⊂ LEarth represents the loca-
tion of Tanja as path in a location mono-hierarchy.

However, there exist various real-world issues that require a poly-
hierarchical representation of locations. For example, Istanbul as
the capital of Turkey, belongs to the continents Europe and Asia.
Hence, LIstanbul 6⊂ LEurope and LIstanbul 6⊂ LAsia hold. The
same issue holds for Russia, which is located in Europe and in
Asia, too. Another problem results from enclaves. Kaliningrad,
e.g., is part of Russia, but this information is insufficient to decide
whether Kaliningrad is part of Europe or part of Asia. The solution
for these problems is the use of set overlaps in combination with
containment relationships that form a location poly-hierarchy.

earth	
  	
  

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

(a)

earth	
  	
  

Europe	
   Asia	
  

Russia	
  

Kaliningrad	
  

(b)

Figure 2: Examples for the Poly-hierarchical nature of loca-
tions: Istanbul (a), and Kaliningrad (b).

Figure 2 illustrates the simplified poly-hierarchies for Istanbul
and Kaliningrad. From the definition of poly-hierarchies, we know
that they can be represented by a directed acyclic graph LPH =
(V,E). Each node v ∈ V is a location and each directed edge e =
(v1, v2) with v1, v2 ∈ V represents that the child node v2 belongs
(semantically) to the parent node v1. Each location poly-hierarchy
has an unique root node vr ∈ V with ¬∃vx ∈ V |(vx, vr), because
the entire coordinate system is closed in case of locations (all con-
siderable positions are elements of the set of all positions on earth).
Finally, for each leaf node vl ∈ V that must not have any child
node ¬∃vx ∈ V |(vl, vx) holds.

From an implementation point of view, each node in the poly-
hierarchy graph has the structure (n, P,C) where n is the name of
the location Ln, P is a set of edges to the parent nodes and C is
a set of edges to child nodes. The root node r = (earth, P, C) is
the only node in LPH for which P = ∅ ∧ C 6= ∅ must hold. For
leaf nodes P 6= ∅ ∧ C = ∅, and for inner nodes P 6= ∅ ∧ C 6= ∅
hold. For the concept described in the remainder of this paper, it
is required to know the level of each node within this graph. The
level level(m) of a node m is defined as the number of nodes on
the longest direct path from r to m, plus one. As illustrated in
Figure 2(b), level(Russia) = 2 and level(Kaliningrad) = 3.

In a location mono-hierarchy each edge between a parent node
and a child node represents the fact that all points of the location
that corresponds to the child node are also elements of the location
that corresponds to the parent node. However, as discussed before,



it is not sufficient to use subset relationships only. The semantics
of edges in the poly-hierarchical graph representation is as follows.
Given a (child) node c = (nc, Pc, Cc) the following relations hold:

• For each parent node p ∈ V referenced in Pc having level(p)
with ¬∃p′ ∈ Pc|p′ 6= p ∧ level(p) = level(p′) the edge
(p, c) ∈ E represents the subset relationship Lnc ⊂ Lnp .

• For each (parent) node p ∈ V referenced in Pc having level(p)
with ∃p′ ∈ Pc|p′ 6= p ∧ level(p) = level(p′) the edge
(p, c) ∈ E represents the overlapping relationship Lnc ∩
Lnp 6= ∅.

In other words this means that per hierarchy level each edge be-
tween a single parent node and the child node means an subset rela-
tionship. If a child node has more than only one parent node in the
same level, then those links represent an overlap relationship. Fur-
thermore, we know that the in the latter case, due to the directed
nature of the edges, the child node must be a subset of the union
of the respective parent nodes (i. e., the conjunction of the overlap
relationships per level holds).

earth	
  
level=0	
  	
  

Europe	
  
level=1	
  

Asia	
  
level=1	
  

Turkey	
  
level=2	
  

Istanbul	
  
level=3	
  

(a)

earth	
  
level=0	
  	
  

Europe	
  
level=1	
  

Asia	
  
level=1	
  

Russia	
  
level=2	
  

Kaliningrad	
  
level=3	
  

(b)

Figure 3: Examples for the semantics of edges in LPH , solid
lines represent subset relationships and dashed lines overlaps.

Figure 3 illustrates the link semantics for the Istanbul and the
Kaliningrad examples. As one can see in Subfigure 3(a), LIstanbul ⊂
LTurkey as Turkey is the only parent node of Istanbul at level two.
Since Istanbul has two parent nodes on level one (i. e., Europe and
Asia), these links represent the overlaps LIstanbul ∩ LEurope 6= ∅ and
LIstanbul ∩LAsia 6= ∅. The facts that (in addition) LTurkey ∩LEurope 6=
∅∧LTurkey∩LAsia 6= ∅ holds, also implies LIstanbul ⊂ LEurope∩LAsia.
We could use this “transitive” conclusion in a similar way for the
Kaliningrad example, too. However, as show in Subfigure 3(b) it
would reduce the expressivity of this LPH . Kaliningrad is only
part of Europe but not of Asia. Hence, the Europe node is the only
parent node of the Kaliningrad node at level one.

4. LPH CREATION
As discussed in Section 3 one could create an LPH using over-

lap relationships only. We already pointed out that, in order to be
as expressive as possible, an LPH must use as many subset rela-
tionships as possible. Algorithm 1 creates the LPH from a given
set L = {L1, . . . , Lk} of locations. For illustration purposes, we
assume that names of locations are unique. However, one could
also use location IDs instead of the names to guarantee uniqueness.

Our algorithm uses four main steps. In the first step (lines 7-24),
it creates two subgraphs, one (V ⊂, E⊂) containing all subset re-

Algorithm 1 Creating a location poly-hierarchy from a location set

Input: L = {L1, . . . , Lk} // location set

Output: LPH = (V,E) // location poly-hierarchy

01 def naive_lph_create(L):
02 V ⊂ = ∅ // init of the node set for subset relations
03 V ∩ = ∅ // init of the node set for overlap relations
04 E⊂ = ∅ // init the edge set for subset relations
05 E∩ = ∅ // init the edge set for overlap relations
06 LV = ∅ // init set of already analysed locations
— STEP 1: FINDING OVERLAP AND SUBSET RELATIONSHIPS —
07 for each Lname1 ∈ L do
08 for each Lname2 ∈ L − {Lname1} − LV do
09 if Lname2 ⊂ Lname1 then
10 V ⊂ = V ⊂ ∪ {name1, name2}
11 E⊂ = E⊂ ∪ {(name1, name2)}
12 fi
13 elif Lname1 ⊂ Lname2 then
14 V ⊂ = V ⊂ ∪ {name1, name2}
15 E⊂ = E⊂ ∪ {(name2, name1)}
16 fi
17 elif Lname2 ∩ Lname1 6= ∅ then
18 V ∩ = V ∩ ∪ {name1, name2}
19 E∩ = E∩ ∪ {(name2, name1)}
20 E∩ = E∩ ∪ {(name1, name2)}
21 fi
22 done
23 LV = LV ∪ {Lname1}
24 done
25 if E⊂ == ∅ then return(FALSE) fi // no root node found
— STEP 2: CLEANING UP E∩ (REMOVING LOOPS) —
26 for each name1 ∈ V ∩ do
27 Lt = ∅; Et = ∅ // temporary location and edge sets
28 for each e ∈ V ∩ do
29 if e == (name1, x) then
30 Lt = Lt ∪ {Lx}; Et = Et ∪ {(name1, x)}
31 fi
32 done
33 if Lname1 ⊂ Lt then E∩ = E∩ − Et fi
34 done
— STEP 3: CLEANING UP E⊂ (TRANSITIVITY) —
35 for each name1 ∈ V ⊂ do
36 if ∃x, y ∈ V ⊂ ↔ {(x, name1), (y, x)} ∩ E⊂ 6= ∅ then
37 V t = {z|z 6= x ∧ (z, name1) ∈ V ⊂}
38 E⊂ = E⊂ −

⋃
z∈V t{(z, name1)}

39 fi
40 V t = {x|(x, name1) ∈ E⊂} // all parents of name1
41 for each x ∈ V t do
42 V c = {y|(x, y) ∈ E⊂ ∧ y ∈ V t − {name1}}
43 if Lname1 ⊂

⋃
c∈V c Lc then

44 E⊂ = E⊂ − {(x, name1)}
45 fi
46 done
47 done
— STEP 4: MERGING E∩ WITH E⊂ AND V ∩ WITH V ⊂ —
48 V = V ∩ ∪ V ⊂; E = E∩ ∪ E⊂

49 return(V , E)



lationships and one (V ∩, E∩) for all (additional) overlap relation-
ships. Figure 4 illustrates these subgraphs for the Istanbul and the
Kaliningrad examples. Obviously, step 1 might generate redundant
edges (cf., Figure 4(c)) earth→Russia→Kaliningrad and
earth→Kaliningrad) or (later on) unnecessary edges (cf., Fig-
ure 4(a) earth→Turkey). Furthermore, it generates loops in the
overlap subgraph as overlap relations have a symmetric nature (cf.,
Figure 4(b) and Figure 4(d)). We illustrated those needless edges
using dotted arrows.

earth	
  	
  

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

(a) V ⊂, E⊂

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

(b) V ∩, E∩

earth	
  

Europe	
   Asia	
  

Russia	
  

Kaliningrad	
  

(c) V ⊂, E⊂

Europe	
   Asia	
  

Russia	
  

(d) V ∩, E∩

Figure 4: Intermediate graph(s) after step 1; (a,b) Istanbul,
(c,d) Kaliningrad.

Step 2 (lines 26-34) of the algorithm cleans up the overlap sub-
graph, i. e., it breaks the loops. Therefore, each node of this sub-
graph is analysed (cf. Figure 5). If the location represented by a
node is a subset of the union of all its direct child nodes, then we
remove the outgoing edges.

checking	
  Europe	
   checking	
  Asia	
   checking	
  Russia	
  

Europe	
   Asia	
  

Russia	
  

Europe	
   Asia	
  

Russia	
  

Europe	
   Asia	
  

Russia	
  

Figure 5: Step 2 for the Kaliningrad example; bold arrows
highlight the edges analysed for currently handled node that
is marked gray.

Figure 6 illustrates step 2 for the Istanbul example. After check-
ing the nodes for Europe and Asia, the node for Turkey is checked.
So far, it has the child nodes Europe and Asia. As all points of
Turkey belong to Europe or Asia, both must not be represented
by child nodes of the Turkey node. So, these edges are removed.

The same procedure removes the edges Istanbul→Europe and
Istanbul→Asia.

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

a4er	
  
checking	
  (1)	
  Europe,	
  (2)	
  Asia	
  

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

a4er	
  
checking	
  (3)	
  Turkey	
  

a4er	
  
checking	
  (4)	
  Istanbul	
  

Figure 6: Step 2 for the Istanbul example.

Step 3 (lines 35-47) cleans up the subset subgraph using the tran-
sitivity property of subset relationships. In contrast to many graph
optimisation approaches, we do not aim for reducing the number of
edges in general, but for finding the minimal number of edges nec-
essary for representing correct semantics (cf. Section 3). For the
first optimisation (lines 36-39), we first calculate for each node the
set of parent nodes having parent nodes themselves. Afterwards,
we remove all direct edges from grandparents nodes as they can
be reached through the parents. In our examples, this removes
the edges earth→Istanbul and earth→Kaliningrad. A
second optimisation (lines 40-46) checks whether a node is con-
tained in the union of its sibling locations. If this is the case,
we can remove the edge from the parent node (in our examples
earth→Turkey and earth→Russia), even if this fragments
the subgraph (cf. Figure 7).

earth	
  	
  

Europe	
   Asia	
  

Turkey	
  

Istanbul	
  

(a) Istanbul

earth	
  

Europe	
   Asia	
  

Russia	
  

Kaliningrad	
  

(b) Kaliningrad

Figure 7: Intermediate graphs (V ⊂, E⊂) after step 3.

Joining the subset subgraph(s) with the overlap subgraph, as it is
done in the final step 4 (line 48), results in a connected LPH . The
fragmentation, that might have happened in step 2, is cured as the
removed edges resulted from an overlap relationship between the
involved nodes. For our examples, Algorithm 1 therefore creates
the location poly-hierarchies shown in Figure 3.

Limiting factors
Algorithm 1 requires a complete and closed set of locations. With-
out the location Asia, the Kaliningrad example graph would loose
the LPH properties discussed in Section 3 as removing the Asia
node also removes the edge Asia→Russia. Without this edge,
the relationship Europe→Russiawould be semantically wrongly
interpreted as subset relationship. In fact, Algorithm 1 could be
adapted in order to recognise this case through topologic sorting
as the condition in line 33 would evaluate to false. Consequently,



E∩ would still contain loops after step 2. Furthermore, the algo-
rithm does not support differently named locations with equal sets
of position points (i. e., La ⊆ Lb ∧ Lb ⊆ La holds). Step 1 would
missinterpret this case as overlap relationship. Consequently, step 2
would nondeterministically remove one of the edges. A solution to
this problem would be a cleanup phase that unifies those locations
before starting Algorithm 1.

5. IMPLEMENTATION ASPECTS
As the “towards” in the title of this paper denotes, the presented

results are subject to ongoing research. We were not able to fin-
ish the import of the evaluation database before the deadline. In
fact, importing the OpenStreetMap database containing data about
Europe (http://download.geofabrik.de/osm) using an
slightly adapted version of the osm2postgresql_05rc4.sh
script, which can be downloaded from http://sourceforge.
net/projects/osm2postgresql, is still in progress. So
far it took more than two weeks (PosgreSQL 9.1 [9] with Post-
GIS 1.5.1 [8] running on an iMac Intel Core 2 Duo 3.06GHz, 4GB
1067MHz RAM, OS X 10.7.3). However, there are certain imple-
mentation issues that we find worthwhile to be discussed.

5.1 Point sets of locations
The formal definition of locations and location poly-hierarchies

as discussed in Section 3 is based on set theory. From a theoret-
ical point of view, those sets are infinite. A common approach to
handle this infinity problem is to decrease the precision of set el-
ements through quantisation. However, it would not be useful or
even possible to physically store (materialise) all points of all loca-
tions. Hence, for the implementation of our approach we decided
to use a polygon-based representation of locations, where a set of
polygons describes the boundaries of the locations. In principal, all
points that are inside of one of these polygons belong to the loca-
tion. The OpenStreetMap data model provides an additional multi-
polygon relation (cf., http://wiki.openstreetmap.org/
wiki/Multipolygon_relation) for representing more com-
plex areas. It allows, e. g., for areas within a location that do not
belong to this particular location. Hence, from an implementation
point of view, a location is represented as a database view. The
location name corresponds to the name of the view and the point
set is defined by a database query resulting in the location outline
(multi)polygon.

5.2 Set operations
Interpreting locations as (multi)polygons necessitates a differ-

ent interpretation of the used set operations, too. As discussed in
Section 4, Algorithm 1 has to check subset and set overlap rela-
tionships. Remember, a location La contains another location Lb

if and only if Lb ⊂ La holds. Hence, La must contain all points
(xb, yb) ∈ Lb. For the polygon-based locations, the subset relation
means that the (multi)polygon describing La must cover those of
Lb completely. Similarly, an overlap relation of two locations im-
plies that the boundary (multi)polygons overlap (and vice versa).
Most geographical information system extensions, such as Post-
GIS, provide the corresponding operators (cf. [8]).

6. SUMMARY AND OUTLOOK
We presented a novel approach to model (geographical) relation-

ships among locations. We extended the effective, but not complete
location hierarchy approach in order to support enclaves and over-
lapping locations. We formally introduced the new location poly-
hierarchy model and presented an algorithm for creating a location

poly-hierarchy from a given (closed and complete) set of locations.
We discussed limitations of the algorithm and also pointed out po-
tential solutions to handle them. Finally, we discussed some issues
that need to be considered for the implementation of our strategy.
However, there are many open issues that lead to future research
directions. First of all we plan to evaluate the algorithm with real
world data. We expect that the algorithm works properly, but we
are aware of the huge amount of data that needs to be processed.
Hence, we will have to optimise the algorithm in order to avoid
unnecessary (database) operations. Furthermore, we will research
whether it would be better to explicitly keep the information about
the type of the relationships. This extended graph model would, of
course, ease the interpretability of the final location poly-hierarchy,
but it would also increase the complexity of the model.

7. REFERENCES
[1] C. Becker and F. Dürr. On Location Models for Ubiquitous

Computing. Personal and Ubiquitous Computing,
9(1):20–31, 2005.

[2] M. Beigl, T. Zimmer, and C. Decker. A Location Model for
Communicating and Processing of Context. Personal
Ubiquitous Computing, 6:341–357, Jan. 2002.

[3] Z. Dongqing, L. Zhiping, and Z. Xiguang. Location and its
Semantics in Location-Based Services. Geo-spatial
Information Science, 10(2):145–150, June 2007.

[4] F. Dürr and K. Rothermel. On a Location Model for
Fine-Grained Geocast. In A. K. Dey, A. Schmidt, and J. F.
McCarthy, editors, UbiComp ’03 Proceedings, volume 2864
of LNCS, pages 18–35, Berlin / Heidelberg, 2003. Springer.

[5] M. Hazas, J. Scott, and J. Krumm. Location-Aware
Computing Comes of Age. IEEE Computer, 37(2):95–97,
Feb. 2004.

[6] C. Jiang and P. Steenkiste. A Hybrid Location Model with a
Computable Location Identifier for Ubiquitous Computing.
In G. Borriello and L. E. Holmquist, editors, Ubicomp ’02
Proceedings, volume 2498 of LNCS, pages 246–263,
London, UK, 2002. Springer.

[7] T. Kauppinen, R. Henriksson, R. Sinkkilä, R. Lindroos,
J. Väätäinen, and E. Hyvönen. Ontology-based
Disambiguation of Spatiotemporal Locations. In IRSW ’08
Proceedings. CEUR-WS.org, 2008.

[8] OSGeo Project. PostGIS 1.5.1 Manual.
http://postgis.refractions.net/download/
postgis-1.5.1.pdf.

[9] The PostgreSQL Global Development Group. PostgreSQL
9.1.3 Documentation. http://www.postgresql.org/
docs/9.1/static/index.html.

[10] B. N. Schilit, A. LaMarca, G. Borriello, W. G. Griswold,
D. McDonald, E. Lazowska, A. Balachandran, J. Hong, and
V. Iverson. Challenge: ubiquitous location-aware computing
and the “place lab” initiative. In WMASH ’03 Proceedings,
pages 29–35, New York, NY, USA, 2003. ACM.

[11] M. Schirmer and H. Höpfner. Towards Using Location
Poly-Hierarchies for Energy-Efficient Continuous Location
Determination. In GvD ’12 Proceeding. CEUR-WS.org,
2012. forthcoming.

[12] A. Y. Seydim, M. H. Dunham, and V. Kumar. Location
dependent query processing. In MobiDE ’01 Proceedings,
pages 47–53, New York, NY, USA, 2001. ACM.

[13] J. Ye, L. Coyle, S. Dobson, and P. Nixon. A Unified
Semantics Space Model. In LoCA ’07 Proceedings, LNCS,
pages 103–120, Berlin / Heidelberg, 2007. Springer.

http://download.geofabrik.de/osm
http://sourceforge.net/projects/osm2postgresql
http://sourceforge.net/projects/osm2postgresql
http://wiki.openstreetmap.org/wiki/Multipolygon_relation
http://wiki.openstreetmap.org/wiki/Multipolygon_relation
http://postgis. refractions.net/download/postgis-1.5.1.pdf
http://postgis. refractions.net/download/postgis-1.5.1.pdf
http://www.postgresql.org/docs/9.1/static/index.html
http://www.postgresql.org/docs/9.1/static/index.html

	Introduction and Motivation
	Related Work
	Location Poly-Hierarchies
	LPH Creation
	Implementation Aspects
	Point sets of locations
	Set operations

	Summary and Outlook
	References

