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ABSTRACT

To meet the storage needs of current cloud applications,
new data management systems were developed. Design de-
cisions were made by analyzing the applications workloads
and technical environment. It was realized that traditional
Relational Database Management Systems (RDBMSs) with
their centralized architecture, strong consistency, and rela-
tional model do not fit the elasticity and scalability require-
ments of the cloud. Different architectures with a variety
of data partitioning schemes and replica placement strate-
gies were developed. As for the data model, the key-value
pairs with its variations were adopted for cloud storage. The
contribution of this paper is to provide a comprehensible
overview of key-characteristics of current solutions and out-
line the problems they do and do not address. This paper
should serve as an entry point for orientation of future re-
search regarding new applications in cloud computing and
advanced requirements for data management.

1. INTRODUCTION

Data management used within the cloud or offered as a
service from the cloud is an important current research field.
However, there are only few publications that provide a sur-
vey and compare the different approaches. The contribution
of this paper is to provide a starting point for researchers and
developers who want to work on cloud data management.
Cloud computing is a new technology that provides resources
as an elastic pool of services in a pay-as-you-go model [5].
Whether it is storage space, computational power, or soft-
ware, customers can get it over the internet from one of the
cloud service providers. Big players in the market, such as
Google [8], Amazon [13], Yahoo! [9], and Hadoop [7], defined
the assumptions for cloud storage systems based on analyz-
ing the technical environment and applications workload.
First, a data management system will work on a cluster of
storage nodes where components failure is the normal situ-
ation rather than the exception. Thus, fault tolerance and
recovery must be built in. The system must be portable
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Figure 1: RDBMS as a service

across heterogeneous hardware and software platforms. It
will store tera bytes of data, thus parameters of 1/O opera-
tions and block sizes must be adapted to large sizes. Based
on these assumptions the requirements for a cloud DBMS
are: elasticity, scalability, fault tolerance and self manage-
ability [11]. The rest of the paper is organized as follows.
First, we provide an overview of the architecture and the
family tree of the cloud storage systems. Then, we discuss
how different systems deal with the trade-off in the Con-
sistency, Availability, Partition tolerance (CAP) theorem.
After that, we discuss different schemes used for data parti-
tioning and replication. Then, we provide a list of the cloud
data models.

2. ARCHITECTURE OVERVIEW

There are two main approaches to provide data manage-
ment systems for the cloud. In the first approach, each
customer gets an own instance of a Database Management
System (DBMS), which runs on virtual machines of the ser-
vice provider [10] as illustrated in Figure 1. The DBMS
supports full ACID requirements with the disadvantage of
loosing scalability. If an application requires more comput-
ing or storage resources than the maximum allocated for an
instance, the customer must implement partitioning on the
application level using a different database instance for each
partition [1]. Another solution is on demand assignment of
resources to instances. Amazon RDS is an example of rela-
tional database services, that supports MySQL, Oracle, and
SQL Server.

In the second approach, data management is not provided
as a conventional DBMS on a virtualized platform, but as
a combination of interconnected systems and services that
can be combined according to application needs. Figure 2
illustrates this architecture. The essential part is the dis-
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Figure 2: Cloud data management architecture

tributed storage system. It is usually internally used by the
cloud services provider and not provided as a public service.
It is responsible for providing availability, scalability, fault
tolerance, and performance for data access. Systems in this
layer are divided in three categories:

e Distributed File Systems (DFS), such as Google’s File
System (GFS).

e Cloud based file services, such as Amazon’s Simple
Storage Service (S3).

e Peer to peer file systems, such as Amazon’s Dynamo.

The second layer consists of structured data systems and
provides simple data models such as key-value pairs, which
we discuss in Section 6. These systems support various APIs
for data access, such as SOAP and HTTP. Examples of sys-
tems in this layer are Google’s Bigtable, Cassandra, and
SimpleDB. The third layer includes distributed processing
systems, which are responsible for more complex data pro-
cessing, e.g, analytical processing, mass data transforma-
tion, or DBMS-style operations like joins and aggregations.
MapReduce [12] is the main processing paradigm used in
this layer.

The final layer includes query languages. SQL is not sup-
ported. However, developers try to mimic SQL syntax for
simplicity. Most query languages of cloud data management
systems support access to one domain, key space, or table,
i.e., do not support joins [4, 2]. Other functionalities, such
as controlling privileges and user groups, schema creation,
and meta data access are supported. Examples of query
languages for cloud data are HiveQL, JAQL, and CQL. The
previous components complement each other and work to-
gether to provide different sets of functionalities. One im-
portant design decision that was made for most cloud data
query languages is not supporting joins or aggregations. In-
stead, the MapReduce framework is used to perform these
operations to take advantage of parallel processing on differ-
ent nodes within a cluster. Google pioneered this by provid-
ing a MapReduce framework that inspired other systems.

For more insight into connections and dependencies be-
tween these systems and components, we provide a family
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Figure 3: Family tree of cloud data management
systems

tree of cloud storage systems as illustrated in Figure 3. We
use a solid arrow to illustrate that a system uses another one
such as Hive using HDFS. We use a dotted arrow to illus-
trate that a system uses some aspects of another system like
the data model or the processing paradigm. An example of
this is Cassandra using the data model of Bigtable. In this
family tree, we cover a range of commercial systems, open
source projects, and academic research as well. We start
on the left side with distributed storage systems GFS and
HDFS. Then, we have the structured storage systems with
APIT support such as Bigtable. Furthermore, there are sys-
tems that support a simple QL such as SimpleDB. Next, we
have structured storage systems with support of MapReduce
and simple QL such as Cassandra and HBase. Finally, we
have systems with sophisticated QL and MapReduce sup-
port such as Hive and HadoopDB. We compare and classify
these systems based on other criteria in the coming sections.
An overview is presented in Figure 4.

3. CONSISTENCY, AVAILABILITY, PARTI-
TION TOLERANCE (CAP) THEOREM

Tightly related to key features of cloud data management
systems are discussions on the CAP theorem [14]. It states
that consistency, availability, and partition tolerance are sys-
tematic requirements for designing and deploying applica-
tions for distributed environments. In the cloud data man-
agement context these requirements are:

e Consistency: includes all modifications on data that
must be visible to all clients once they are committed.
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At any given point in time, all clients can read the
same data.

e Availability: means that all operations on data, whether
read or write, must end with a response within a spec-
ified time.

e Partition tolerance: means that even in the case of
components’ failures, operations on the database must
continue.

The CAP theorem also states that developers must make
trade-off decisions between the three conflicting requirements
to achieve high scalability. For example, if we want a data
storage system that is both strongly consistent and partition
tolerant, the system has to make sure that write operations
return a success message only if data has been committed
to all nodes, which is not always possible because of net-
work or node failures. This means that its availability will
be sacrificed.

In the cloud, there are basically four approaches for DBMSs
in dealing with CAP:

Atomicity, Consistency, Isolation, Durability (ACID):

With ACID, users have the same consistent view of
data before and after transactions. A transaction is
atomic, i.e., when one part fails, the whole transaction
fails and the state of data is left unchanged. Once a
transaction is committed, it is protected against crashes
and errors. Data is locked while being modified by
a transaction. When another transaction tries to ac-
cess locked data, it has to wait until data is unlocked.
Systems that support ACID are used by applications
that require strong consistency and can tolerate its af-
fects on the scalability of the application as already
discussed in Section 2.

Basically Available, Soft-state, Eventual consistency

(BASE):
The system does not guarantee that all users see the
same version of a data item, but guarantees that all
of them get a response from the systems even if it
means getting a stale version. Soft-state refers refers
to the fact, that the current status of a managed ob-
ject can be ambiguous, e.g. because there are several
temporarily inconsistent replicas of it stored. Even-
tually consistent means that updates will propagate
through all replicas of a data item in a distributed
system, but this takes time. Eventually, all replicas
are updated. BASE is used by applications that can
tolerate weaker consistency to have higher availability.
Examples of systems supporting BASE are SimpleDB
and CouchDB.

Strongly Consistent, Loosely Available (SCLA): This
approach provides stronger consistency than BASE.
The scalability of systems supporting SCLA in the
cloud is higher compared to those supporting ACID.
It is used by systems that choose higher consistency
and sacrifice availability to a small extent. Examples
of systems supporting SCLA are HBase and Bigtable.

Tunable consistency: In this approach, consistency is con-
figurable. For each read and write request, the user de-
cides the level of consistency in balance with the level
of availability. This means that the system can work in
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Figure 5: Classification of cloud data management
systems based on CAP

high consistency or high availability and other degrees
in between. An example of a system supporting tun-
able consistency is Cassandra [15] where the user de-
termines the number of replicas that the system should
update/read. Another example is PNUTS [9], which
provides per record time-line consistency. The user de-
termines the version number to query at several points
in the consistency time-line. In Figure 5, we classify
different cloud data management systems based on the
consistency model they provide.

4. PARTITIONING TECHNIQUES

Partitioning, also known as sharding, is used by cloud
data management systems to achieve scalability. There is a
variety of partitioning schemes used by different systems on
different levels. Some systems partition data on the file level
while others horizontally partition the key space or table.
Examples of systems partitioning data on the file level are
the DFSs such as GFS and HDFS which partition each file
into fixed sized chunks of data. The second class of systems
which partition tables or key space uses one of the following
partitioning schemes [18, 6] :

List Partitioning A partition is assigned a list of discrete
values. If the key of the inserted tuple has one of these
values, the specified partition is selected . An example
of a system using list as the partitioning scheme is
Hive [20].

Range Partitioning The range of values belonging to one
key is divided into intervals. Each partition is assigned
one interval. A partition is selected if the key value of
the inserted tuple is inside a certain range. An example
of a system using range partitioning is HBase.

Hash Partitioning The output of a hash function is as-
signed to different partitions. The hash function is



applied on key values to determine the partition. This
scheme is used when data does not lend itself to list
and range partitioning. An example of a system using
hash as the partitioning scheme is PNUTS.

There are some systems that use a composite partitioning
scheme. An example is Dynamo, which uses a composite of
hash and list schemes (consistent hashing). Some systems
allow partitioning data several times using different parti-
tioning schemes each time. An example is Hive, where each
table is partitioned based on column values. Then, each par-
tition can be hash partitioned into buckets, which are stored
in HDFS.

One important design consideration to make is whether
to choose an order-preserving partitioning technique or not.
Order preserving partitioning has an advantage of better
performance when it comes to range queries. Examples of
systems using order preserving partitioning techniques are
Bigtable and Cassandra. Since most partitioning methods
depend on random position assignment of storage nodes,
the need for load balancing to avoid non uniform distribu-
tion of data and workloads is raised. Dynamo [13] focuses on
achieving a uniform distribution of keys among nodes assum-
ing that the distribution of data access is not very skewed,
whereas Cassandra [17] provides a load balancer that an-
alyzes load information to lighten the burden on heavily
loaded nodes.

5. REPLICATION TECHNIQUES

Replication is used by data management systems in the
cloud to achieve high availability. Replication means storing
replicas of data on more than one storage node and probably
more than one data center. The replica placement strategy
affects the efficiency of the system [15]. In the following we
describe the replication strategies used by cloud systems:

Rack Aware Strategy: Also known as the Old Network
Topology Strategy. It places replicas in more than one
data center on different racks within each data center.

Data Center Aware Strategy: Also known as the New
Network Topology Strategy. In this strategy, clients
specify in their applications how replicas are placed
across different data centers.

Rack Unaware Strategy: Also known asthe Simple Strat-

egy. It places replicas within one data center using a
method that does not configure replica placement on
certain racks.

Replication improves system robustness against node fail-
ures. When a node fails, the system can transparently read
data from other replicas. Another gain of replication is in-
creasing read performance using a load balancer that directs
requests to a data center close to the user. Replication has a
disadvantage when it comes to updating data. The system
has to update all replicas. This leads to very important de-
sign considerations that impact availability and consistency
of data. The first one is to decide whether to make repli-
cas available during updates or wait until data is consistent
across all of them. Most systems in the cloud choose avail-
ability over consistency. The second design consideration is
to decide when to perform replica conflicts resolution, i.e.,
during writes or reads. If conflict resolution is done during
write operations, writes could be rejected if the system can

not reach all replicas or a specified number of them within
a specific time. Example of that is the WRITE ALL opera-
tion in Cassandra, where the write fails if the system could
not reach all replicas of data. However, some systems in the
cloud choose to be always writeable and push conflict res-
olution to read operations. An example of that is Dynamo
which is used by many Amazon services like the shopping
cart service where customer updates should not be rejected.

6. DATA MODEL

Just as different requirements compared to conventional
DBMS-based applications led to the previously described
different architectures and implementation details, they also
led to different data models typically being used in cloud
data management. The main data models used by cloud
systems are:

Key-value pairs It is the most common data model for
cloud storage. It has three subcategories:

e Row oriented: Data is organized as containers
of rows that represent objects with different at-
tributes. Access control lists are applied on the
object (row) or container (set of rows) level [19].
An example is SimpleDB.

e Document Oriented: Data is organized as a col-
lection of self described JSON documents. Docu-
ment is the primarily unit of data which is iden-
tified by a unique ID. Documents are the unit
for access control [16]. Example of a cloud data
management system with document oriented data
model is CouchDB.

e Wide column: In this model, attributes are grouped
together to form a column family. Column family
information can be used for query optimization.
Some systems perform access control and both
disk and memory accounting at the column fam-
ily level [8, 17, 3]. An example of that is Bigtable.
Systems of wide column data model should not be
mistaken with column oriented DB systems. The
former deals with data as column families on the
conceptual level only. The latter is more on the
physical level and stores data by column rather
than by row.

Relational Model (RM) The most common data model
for traditional DBMS is less often used in the cloud.
Nevertheless, Amazon’s RDS supports this data model
and PNUTS a simplified version of it.

7. SUMMARY AND CONCLUSION

The cloud with its elasticity and pay-as-you-go model is
an attractive choice for outsourcing data management ap-
plications. Cloud service providers, such as Amazon and
Microsoft, provide relational DBMSs instances on virtual
machines. However, the cloud technical environment, work-
loads, and elasticity requirements lead to the development
of new breed of storage systems. These systems range from
highly scalable and available distributed storage systems
with simple interfaces for data access to fully equipped DBMSs
that support sophisticated interfaces, data models, and query
languages.



Cloud data management systems faced with the CAP the-
orem trade-off provide different levels of consistency ranging
from eventual consistency to strict consistency. Some sys-
tems allow users to determine the level of consistency for
each data input/output request by determining the number
of replicas to work with or the version number of the data
item. List, range, hash, and composite partitioning schemes
are used to partition data to achieve scalability. With par-
titioning comes the need for load balancing with two ba-
sic methods: uniform distribution of data and workloads,
and analyzing load information. With data partitioned and
distributed over many nodes, taking into consideration the
possibility of node and network failures, comes the need for
replication to achieve availability. Replication is done on
the partition level using rack aware, data center aware, and
rack unaware placement strategies. Cloud data management
systems support relational data model, and key-value pairs
data model. The key-value pairs is widely used with differ-
ent variations: document oriented, wide column, and row
oriented.

As outlined throughout this paper, several typical proper-
ties of traditional DBMS, such as advanced query languages,
transaction processing, and complex data models, are mostly
not supported by cloud data management systems. Some
of them, because they are simply not required for current
cloud applications. Others, because their implementation
would lead to losing some of the important advantages, e.g.,
scalability and availability, of current cloud data manage-
ment approaches. On the one hand, providing features of
conventional DBMS appears to lead toward worthwhile re-
search directions and is currently addressed in ongoing re-
search. On the other hand, advanced requirements, which
are completely different may arise from future cloud appli-
cations, e.g., interactive entertainment, on-line role playing
games, and virtual realities, have interesting characteristics
of continuous, collaborative, and interactive access patterns,
sometimes under real-time constraints. In a similar way,
new ways of human-computer interaction in real-world en-
vironments addressed, for instance, in ubiquitous comput-
ing and augmented reality are often very data-intensive and
sometimes require expensive processing, which could be sup-
ported by cloud paradigms. Nevertheless, neither traditional
DBMS nor cloud data management can currently sufficiently
support those applications.
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