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ABSTRACT
Location awareness is a key feature of mobile information systems.
Typically, location is determined by interpreting a set of measured
positions. Various approaches for position determination do exist.
They vary greatly in their precision, applicability, and energy re-
quirements. As mobile devices are battery-driven, energy is one of
the most limiting factors for the system’s uptime. Locations have
a hierarchical nature and location-based applications differ in their
required precision. In this paper, we present three approaches that
utilise location poly-hierarchies in order to reduce the energy de-
mand of continuous location determination: (1) We analyse the
dependencies among the different hierarchy levels, (2) we incor-
porate an adaptive delay between measurements based on the hier-
archy level and the calculated minimal required time to change, and
(3) we select appropriate positioning techniques for each hierarchy
level. We implemented and evaluated our approaches.

1. INTRODUCTION AND MOTIVATION
Navigation systems, social network apps, tourist information sys-

tems, event information systems, shop finders and many more heav-
ily rely on position data of their users. Consequently, almost all
modern smartphones supply positioning techniques. The most pop-
ular positioning technique is the Global Positioning System (GPS).
However, even devices that do not provide GPS hardware are able
to locate themselves using alternative techniques such as geotagged
Wi-Fi hotspot and cell tower databases (db), wireless signal trian-
gulation/lateration, or geotagging. Although all of them allow lo-
calisation of a mobile device, they vary dramatically in precision,
applicability, hardware requirements, and energy demands. A GPS
request requires a GPS receiver with a much higher energy demand
compared to an on-device database lookup that is based on already
localised cell towers or Wi-Fi hotspots [4]. However, in an outdoor
scenario, GPS is far more precise than the analysis of location in-
formation of connected Wi-Fi hotspots or cell towers [22]. On the

24th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 29.05.2012 - 01.06.2012, Lübbenau, Germany.
Copyright is held by the author/owner(s).

other hand, indoor GPS positioning is almost impossible because of
the occlusion and shielding of satellite signals created by building
structures.

Mobile devices are battery-driven. So, energy is one of the most
limiting factors for their uptime. Additionally, the user acceptance
of location-based or context-aware mobile applications is nega-
tively influenced when the applications heavily strain the mobile
devices’ batteries. Furthermore, location-based applications differ
in their required precision [16]. While the name of the city a user
or a device is currently located in might be appropriate for an event
information system, a navigation system might demand for exact
coordinates or street names at least. A common representation of
locations follows their hierarchical nature. In a hierarchical model,
earth is divided into continents, continents into countries, countries
into states, states into cities, cities into streets and streets into street
numbers, and so on. Consequently, determining low-level location
information in this hierarchy also determines upper levels and con-
tains information that is connected to these levels. In addition to
this, locations only change if the device is moving. While GPS
coordinates might change with each movement, city information is
stable until the device leaves the city. Hence, the system might wait
with the next energy-demanding location determination on the city
level until the device possibly left the city. In this paper, we present
three approaches that utilise location poly-hierarchies for reducing
the energy demand of continuous location determination:

1. We analyse dependencies among different hierarchy levels.

2. We postpone position measurements based on a calculated
minimal time that is required for leaving the current location.

3. We select appropriate positioning techniques for each hierar-
chy level.

Our preliminary experimental results show that there is a strong po-
tential in these techniques to reduce the energy demand compared
to continuous GPS polling.

The remainder of the paper is structured as follows: Section 2
discusses related work. Section 3 introduces the concept of loca-
tion hierarchies. Section 4 presents the three aforementioned ap-
proaches. Section 5 describes the evaluation approach and the re-
sults. Section 6 summarises the paper.

2. RELATED WORK
Our work mainly overlaps with the research fields location mod-

els and energy-aware computing. Location models form the basis
for all high-level operations on location data. Consequently, the
frequent and enduring use of location data in mobile computing
immediately raises the issue of the mobile devices’ limited energy



resources. The field of energy-aware computing presents a variety
of concepts and methods to compensate for these constraints.

2.1 Location Models
Location models as core components of location-based appli-

cations represent location information and spatial (or even spatio-
temporal [15]) relationships in data. They help to express relative
locations, proximity, and allow users to determine containment of
locations or connectedness of relationships.

The authors of [21] present in great detail the broad variety of
location models that have been developed in recent years of active
research. A key factor for distinguishing and characterising loca-
tion models is their way of representing spatial relationships. Ac-
cording to [1], they can be categorised into set-based, hierarchical,
and graph-based models. Hybrid models that combine several as-
pects exist as well. Figure 1 presents an overview of the three main
concepts. In the illustrated examples, the set-based approach is the
least expressive one, as it only models the fact that there are two
distinct locations within a set of locations, and a set of coordinates
is assigned to each location. The hierarchical model adds contain-
ment information, and the graph-based model adds connectedness
as well as distance in the form of edge weights.
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Figure 1: Examples for different popular location models: set-
based (a), hierarchical (b), and graph-based (c). The edge
weights in the graph-based model represent distance informa-
tion.

Hierarchical location models as a special case of set-based mod-
els represent containment relationships between different levels of
the model and are widely used as basis for location-based appli-
cations [14, 2, 6]. They cannot represent distance information or
directly encode proximity, but they have great advantages in traver-
sal and for containment queries. They are very close to the com-
mon human understanding of locations. Almost everyone under-
stands the widely acknowledged segmentation of locations into ad-
ministrative regions (country, state, city, street, etc.). At this, on
a city level, a lot of implicit information can be derived through
the top-level relationship to a state or country (e.g., administrative
language, local cuisine, prevalent religions).

2.2 Energy-aware Computing
Energy-aware computing recognises the need for energy as a

factor in modelling and implementing computing systems in or-
der to manage and reduce their energy demand. This includes both
hardware and software systems. While energy-aware hardware has
been under active research for many years, energy-aware software
is still a novel and underestimated field of research. Hardware solu-
tions such as sleep modes or performance scaling cannot be directly
transferred or adapted to software systems. Energy-aware software

requires dedicated software engineering with new concepts and al-
gorithms [9].

One concept of energy-aware computing is resource substitution
[3]. It is based on the observation that in most cases, alternative
resources exist for a given resource. These alternatives often vary
greatly in their costs (e.g., computing power, storage capacity, or
energy demands), but also in their accuracy, granularity, and fre-
quency of data updates. This directly influences their appropri-
ateness for substitution. In general, resource substitution favours
resources with a lower cost (energy requirements) over expensive
(high-energy) alternatives. In many cases, a high-energy resource
is not necessarily required and can be substituted without measur-
able impact on system performance or user acceptance [19].

The authors of [17] utilise resource substitution in the form of
sensor substitution. In a location-based context, data from a GPS
device is often substituted with triangulation or lateration data from
cell towers or Wi-Fi stations. A comparable concept is sensor trig-
gering, where logical dependencies between different sensors are
used. When low-energy sensors detect changes in the environment,
a detailed update with high-energy sensors is triggered. An exper-
iment described in [17] shows that low-energy accelerometer data
can be used to trigger high-energy GPS sampling. This approach
greatly reduces the energy demand of location determination for
mobile applications that do not require a gap-less reconstruction of
routes. This triggering approach has also been applied in the area of
civil engineering, where it is critical that autonomous sensor nodes
in buildings gather highly detailed data when vibrations occur. In
the “Lucid Dreaming” system [13], a low-energy analogue circuit
is sufficient to watch for these environment changes. It triggers
a high-energy microcontroller-based sensor to gather the required
fine-grained data.

3. TERMS AND DEFINITIONS
According to [18], “location of an object or a person is its geo-

graphical position on the earth with respect to a reference point.”
From our viewpoint, this definition is too restrictive, as geographic
positions are points. In contrast to a point, a location has a spatial
extent. Due to [5], “geographic location is the text description of an
area in a special confine on the earth’s surface.”. However, an area
is a set of geographical positions. So, we use a set-oriented defini-
tion: A location is a named set of geographical positions on earth
with respect to a reference point. In a two-dimensional coordi-
nate system, e.g., the location of a building is given as a set, where
each position (point) belongs to the building’s area. We do not dis-
cuss the calculation of point sets here, but rather refer to techniques
of geographical information systems (GIS) [7]. The location mod-
els presented in Section 2.1 describe relationships among locations.
However, reality requires a more sophisticated location model. Is-
tanbul, as the capital of Turkey, belongs to Europe and Asia. The
same issue holds for Russia, which is located in Europe and in Asia,
too. Another problem results from enclaves: Kaliningrad is part
of Russia, but this information is not sufficient to decide whether
Kaliningrad belongs to Europe or Asia. The solution for these prob-
lems is to use set overlaps instead of containment relationships in
combination with a poly-hierarchical location model [11].

Figure 2 illustrates the simplified poly-hierarchies for Istanbul
and Kaliningrad, represented as directed acyclic graphs. Each node
is a location and each directed edge represents that the child node
belongs (semantically) to the parent node(s). Moreover, the location
poly-hierarchy LPH has a unique root node because the entire co-
ordinate system is closed in case of locations (all considerable po-
sitions are elements of the set of all positions on earth). We do not
discuss the construction of LPH in this paper, but assume that an
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Figure 2: Poly-hierarchical example locations: Istanbul (a),
Kaliningrad (b).

expert defined it in advance. Furthermore, we assume that the level
of a node is defined as the number of nodes on the longest direct
path from root to this node, plus one. As illustrated in Figure 2(b),
level(Russia) = 2 and level(Kaliningrad) = 3.

4. LOCATION DETERMINATION STRATE-
GIES

The research question addressed in this paper is twofold: we
want to continuously determine the location of an object while re-
ducing the energy requirements for positioning, and we want to
offer location information that is appropriate for different applica-
tion scenarios. The two extrema are: GPS polling and not mea-
suring at all. Polling is the most energy-intensive approach and
not measuring is the most imprecise “solution”. We developed
three approaches for calculating appropriate location information
with a minimal amount of energy. The first strategy reflects the
fact that memory-intensive computations require much more en-
ergy than CPU-intensive ones [8] and reduces the number of re-
quired database lookups. The other two strategies aim for reducing
the number of GPS request and lookup operations in order to find
the correct path from a detected node to the root of LPH . This
path correctly describes the different levels of detail for the current
location.

4.1 Level Dependencies
In LPH the point sets’ cardinalities of locations represented

by higher-level nodes are smaller than those of locations repre-
sented by the linked lower-level nodes. The assignment of a lo-
cation to a set of positions uses default GIS techniques. So, a db
stores border polygons, and a db lookup fetches the proper location
values from the db. Hence, one location lookup requires certain
memory-intensive operations. Moreover, in case of continuous lo-
cation determination, queries must be performed for each move-
ment of the requesting object. However, if we know about the
(semantic) dependencies among certain levels within the location
poly-hierarchy, we can reduce the amount of energy-intensive db
lookups by traversing LPH .

Figure 2(b) shows that if an object is located within Kaliningrad,
it is in Russia and Europe and on earth, too. So, only one compar-
ison of location sets is necessary. For the example in Figure 2(a),
this is not as trivial. The requesting object is located in Istanbul and
in Turkey. However, requesting the continent information requires
an additional set comparison as Istanbul belongs to both Europe

and Asia. So, the number of comparisons depends on the structure
of the given poly-hierarchy. Our algorithm calculates the correct
path for a given location while minimising the number of compar-
isons. We assume that the names of the leaf and inner nodes in
LPH are unique and referenced within the GIS db.
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Figure 3: Traversing the location poly-hierarchy in case of Is-
tanbul.
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Figure 4: Traversing the location poly-hierarchy in case of
Kaliningrad.

The algorithm works as follows (cf. Figures 3 and 4): At first, the
proper leaf node is selected using a db query (F. 3(a); F. 4(a)). We
then traverse the LPH bottom-up and mark nodes that belong to
the correct path: The direct (grand)parent node(s) with the lowest
level are analysed. If the current node has only one (grand)parent
node in this level, this node is selected as path anchor (F. 4(b)).
If more than one (grand)parent node exists on the minimal level,
we check them with a db query (F. 3(b)), mark the correct one and
select it as path anchor (F. 3(c)). We continue with the path anchor
until we reach the root node (F. 3(d); F. 4(c)). The last step is to
collect the nodes on the path from root to the leaf node including
all marked inner nodes (F. 3(e); F. 4(d)).

4.2 Postponed Measurements
The postponed measurements strategy predicts the time required

for a person or object to leave the current location. This time de-
pends on the hierarchy level, the geographical model used for this
level and on the movement speed [20].

For simplification purposes, the application specifies the veloc-
ity of the moving object as a movement profile (pedestrians: ≈
6 km h−1, cyclists: ≈ 11 km h−1, car drivers: ≈ 60 km h−1). The
most obvious approach is to take the object’s current position Lc =
(xc, yc) and then calculate the minimal Euclidean distance d to all
locations within the current path in LPH . For each location L on
this path, we have to calculate: min(

√
(xc − xl)2 + (yc − yl)2

|∀(xl, yl) ∈ L). With a simple calculation, we then compute the
time the object would need to leave this location. If, e.g., a pedes-
trian is 5 km away from the city limit, he or she would need at
least 50 minutes ( 5000 m∗3600 s

6000 m = 3000 s) to leave the city. So, we
postpone the next position measurement by 50 minutes if the appli-
cation requires the location at a city level. The Euclidean distance
guarantees the calculation of the shortest distance. Hence, if the
velocity is correct, the calculation always returns a time window
the moving object must be in the current location.



This approach is used for area-like locations where no route in-
formation exists. In case of a map-based location management, we
utilise crossroad data to get more precise predictions (cf. [10]).
Therefore, we maintain a db with all crossroads and calculate the
Euclidian distance between the current position and the closest cross-
road. Of course, the prediction is more exact if we use the en-
tire map information but storing the complete maps would require
much space (e.g., for the German state of Thuringia, we have to
maintain 125,034 crossroads or to store and query 657MB of Open-
StreetMap data).

Besides the postponement calculation for the various levels, we
have to consider the poly-hierarchy as well. Referring back to the
Istanbul-Example: if the moving object is located in Istanbul, it
may take one hour to leave the city, but only 10 minutes to leave
the continent. The solution for this issue is to analyse the LPH in
the following way. Given the LPH , the current location and the
current velocity. First we calculate the correct location path using
the algorithm discussed in Section 4.1. In the next step, we cal-
culate the postponement value for each location in this path using
the appropriate calculation (Euclidian distance, crossroad analysis).
The minimal value determines the time until the next measurement.

4.3 Level Appropriateness
There exist various technologies to measure positions such as

geotagged Wi-Fi hotspot and cell tower databases, wireless sig-
nal triangulation/lateration, or geotagging. They vary in their en-
ergy demand and their precision. While looking at the location
poly-hierarchy one can recognise that locations represented closely
to the root node mostly require less precise location techniques.
Country information can directly be read from the country code
provided by mobile telecommunications operators. The city infor-
mation can be harvested from cell tower information using a simple
db lookup. We have to use the most high-energy GPS only if pre-
cise location information are required. The approach discussed in
the following combines the techniques illustrated in Section 4.1 and
Section 4.2.

Hierarchy level Level Technique
Earth 0 known to be true
Continent 1 Country code + Cell tower ID lookup
Country 2 Country code
State 3 Cell tower ID lookup
City 4 Cell tower triangulation
Street 5 GPS

Table 1: Location determination lookup table.

For the postponed measurements, we adapted the cross-level post-
ponement value in a way that we calculate different postponement
values for each level while alternating the measurement strategy
(cf. Table 1). Let’s say that the object is located in Istanbul, and
that the GPS-based measurement resulted in a postponement value
of 10 minutes for the continent, and a postponement value of 1 hour
for the city. After 10 minutes, we then check the appropriateness
of the continent location using energy-efficient cell tower triangu-
lation and calculate a new postponement value for this level on this
basis. Hence, in best case (we do not leave the continent), we can
wait with the next GPS positioning for 50 more minutes.

A more trivial approach supported by this idea are applications
that do not need exact position information. As mentioned above,
requesting the country information does not need any positioning
as the information is provided by the service provider. Further-
more, less energy-intensive cell ID lookups for determining loca-

tions on the city level might be used in a polling mode. Anyway,
position-based location determination such as cell tower triangula-
tion in combination with a GIS requires too much calculation effort,
if used in a polling manner. However, we will research a combina-
tion of polled and time-triggered updates of location information in
a location poly-hierarchy in the near future.

5. EVALUATION
Our prototype is still work in progress. Therefore, we present a

preliminary evaluation that enabled us to estimate the energy foot-
print of our proposed concept in an exemplary scenario.

5.1 Experimental Setup
The evaluation system was implemented as a mobile application

on the Android 2.3.4 platform. We conducted our tests with the
recently released HTC Sensation smartphone. As shown in Fig-
ure 5(b), the application is mainly a data logger for location and
power management data. In order to gather location data, we im-
plemented a cell tower lateration algorithm, and used the Android
SDK’s methods for obtaining GPS data. The application reads
energy-related data (battery voltage and current) directly from the
device’s power management. It was implemented as an indepen-
dent background logging service that gathers data even when the
device is locked. The experimental setup follows our data-based
energy measurement approach, as described in [12].

(a) (b)

Figure 5: Celludroid evaluation app running on an HTC Sen-
sation smartphone.

All data was stored in an sqlite database that could later on easily
be used for analysis. For convenience, the application also shows
the estimated location on a map (cf. Figure 5(a)) and allows to
explore the properties of nearby cell towers.

The cell tower lateration uses a Google service1 to look the lo-
cation of nearby cell towers up. Because all retrieved cell tower
locations are cached in an sqlite database, subsequent location re-
quests for previously discovered cell towers do not require addi-
tional (high-energy) network communication.
1Unfortunately, access to this service is not publicly documented,
our implementation is based on the general process documented
in this forum article: http://stackoverflow.com/a/
3356956

http://stackoverflow.com/a/3356956
http://stackoverflow.com/a/3356956


Our test run consisted of a sequence of 30-minute city walks, one
for each test condition:

a) baseline,

b) cell tower lateration, and

c) GPS.

In the baseline condition, the display was turned off, Wi-Fi was on,
Bluetooth was off, and no background tasks except our logging ser-
vice were running. During each run, power management data and
cell tower locations were logged every second. GPS was requested
every 5 s. However, the Android SDK cannot guarantee an exact
time between GPS location updates. In fact, our measured time is
slightly higher (7.2 s on average).

From the power management data, we derived electrical power
and electrical energy data. In order to assess the accuracy of the
gathered location data, additional processing was necessary. While
the GPS data already included accuracy information, we computed
accuracy information for the cell tower lateration by comparing the
gathered coordinates to their counterparts from the GPS run. This
enabled us to give an estimate for the upper bound of the error.

5.2 Results and Discussion

Energy
Our results indicate that cell tower triangulation has no significant
impact on the device’s energy demand at all. The baseline con-
dition shows a total of 181.07 J after 10 minutes and 565.5 J after
30 minutes, while the test run with cell tower lateration resulted in a
slightly higher 183.76 J after 10 minutes and 583.28 J after 30 min-
utes. This difference of 1.5% is within the measuring tolerance of
our method. Far more interesting is the difference between baseline
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Figure 6: Comparison of power consumption for GPS (red line,
top) and cell tower lateration (blue line, bottom) during contin-
uous position determination.

and GPS condition. Figure 6 documents the power consumption
progress during cell tower and GPS run. In the GPS run, the device
required 316.07 J after 10 minutes and 1057.8 J after 30 minutes.
Compared to baseline, this is an increase of 74.56% after 10 min-
utes, or 87.06% after 30 minutes (cf. Figure 7). Remember, GPS
data was gathered every 7.2 s on average. In these 7.2 s, our setup
required 4896mJ of energy on average (7.2 s · 680mJ s−1). In the
baseline condition, 7.2 s of idling required 1296mJ of energy on
average (7.2 s·180mJ s−1), which is 26.5% of the amount required
for GPS.

Accuracy
The results regarding accuracy of the position determination tech-
niques are very clear. While the GPS condition results show an
average of 9.2m, cell tower lateration performs drastically worse
at 308.26m (a difference of 3242.55%). Some outliers in the data
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Figure 7: Comparison of accumulated energy demand.

even showed an error of more than 800m. These extreme differ-
ences highlight the fact that the reduced energy requirements of cell
tower lateration condition have an at least equally drastic influence
on accuracy.

5.3 Scenario
The gathered results provide insight into the areas of applica-

tion where sufficient potential exists to reduce the energy require-
ments for continuous location determination. In this subsection, we
sketch a scenario that relies on our three conceptual pillars:

a) using level dependencies,

b) postponed measurements,

c) using appropriate positioning techniques.

This scenario-based evaluation surely cannot serve as a proof for
our proposed concept, but it provides a glimpse on its possible im-
pact. Our scenario application is a mobile tourist information sys-
tem for smartphones. All data is stored on the mobile device and
can be accessed using db queries. The application can access the
following device’s location sensors:

a) SIM card operator’s country code (country information),

b) Cell tower association (state information),

c) Cell tower lateration (city part/street information),

d) GPS (street number information).

In our scenario, a tourist from Japan is on a bus tour through Ger-
many and is currently visiting Thuringia. In Weimar, she decides
to start using the tourist information system.

Using level dependencies
Upon first use, the system requires a single positioning with cell
tower lateration. With the gathered coordinates, the country, state,
and city nodes of the location poly-hierarchy can be determined:
earth→Europe→Germany→Thuringia→Weimar. The system
uses this data to switch to the tour mode for Thuringia.

Using appropriate techniques according to level
In this mode, a continuous perimeter search delivers points of in-
terest, such as restaurant, museums, public places, or theaters. Be-
cause this feature at this point only requires the general information
about the presence of such points of interest (and not a detailed
routing information on how to get there), it is appropriate to rely on
cell tower lateration.



Postponing unnecessary measurements
When the tourist finished exploring the city, she wants to find a nice
place to have lunch. After selecting one of the restaurants from the
perimeter search result list, the tourist information system enters
the navigation mode. In this mode, a database of intersections is
used in combination with a movement profile to estimate important
turning points along a route where it is necessary to activate the
GPS technique.

Estimation of reduced energy requirements
Upon first use, at least one GPS request can be saved. As we
have shown in the previous subsection, each request requires about
4896mJ. The continuous perimeter search for points of interest
took 2 hours in our scenario. During these 2 hours, a continu-
ous GPS polling would have required about 1000 GPS requests
(4896 J). In contrast, the cell tower lateration used by the sys-
tem only required 1296 J. Giving an estimation of the reduction
achieved by the postponed measurements in the navigation mode
(using the intersection database) is very difficult, as it relies on a
multitude of factors (e.g., velocity, distance between intersections).
A conservative lower bound would be to assume that this method
reduces the amount of GPS requests to 50%.

6. SUMMARY, CONCLUSIONS, AND OUT-
LOOK

We addressed two research questions in the area of continuous
location determination: We analysed precision appropriateness and
discussed energy requirements. We utilised the poly-hierarchical
nature of locations to provide different levels of location informa-
tion. We discussed three approaches: We reduced the amount of
location calculations within the location poly-hierarchy, we intro-
duced the concept of postponed measurements, and we discussed
appropriateness issues in location poly-hierarchy levels.

The overall goal behind our research is to realise a location frame-
work that application developers can use to implement location-
aware applications without the need to take care of the high en-
ergy requirements of GPS. We know that various frameworks do
exist and address the same issue. However, our results show the
potential to reduce the required energy further. The paper opens
various research directions that we will follow on: The concept of
location poly-hierarchies requires a detailed and formal definition.
While location hierarchies and ontology-based models are well re-
searched, poly-hierarchies are rather novel. Furthermore, more re-
search needs to be done in the area of calculating the postponement
values, and the combination of polling and postponed updates must
be addressed.
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