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Abstract. Ensuring the consistent composition of context-dependent
behavior is a major challenge in context-aware systems. Developers have
to manually identify and validate existing interactions between behav-
ioral adaptations, which is far from trivial. This paper presents a run-time
model for the consistency management of context-dependent behavior,
called context Petri nets. Context Petri nets provide a concrete represen-
tation of the execution context of a system, in which it is possible to rep-
resent the interactions due to dynamic and concurrent context changes.
In addition, our model allows the definition of dependency relations be-
tween contexts, which are internally managed to avoid inconsistencies.
We have successfully integrated context Petri nets with Subjective-C, a
context-oriented programming language. We show how our model can
be cleanly combined with the abstractions of the language to define and
manage context-dependent behavior.

1 Introduction

Current sensing technology allows computing devices to be highly aware of their
execution environment. To leverage the full potential of these sensing capacities,
software systems should properly represent the sensed context and dynamically
adapt their behavior accordingly. To develop such systems, the Context-Oriented
Programming (COP) paradigm has emerged [4], which enables the definition
and composition of context-dependent behavioral adaptations. However, con-
sistently composing behavioral adaptations is still challenging. Developers need
to manually ensure that insertion and withdrawal of adaptations preserve the
expected behavior of the system. Different approaches have been proposed to
prevent inconsistencies by defining dependency relations between contexts and
? This work has been supported by the ICT Impulse Programme of the Brussels
Institute for Research and Innovation.



their associated behavioral adaptations [6,8]. These dependencies constrain con-
text interaction by conditioning the deployment of behavioral adaptations at a
high abstraction level, which is well-suited to developers. Nevertheless, devel-
opers still have to manually check consistency of such interactions, which is far
from trivial.

We claim that inconsistencies in the composition of context-dependent be-
havioral adaptations arise mainly by the multiple and dynamic nature of the
system’s context (an heterogenous collection of data which can vary dynami-
cally over time, and from one location to another). Without the appropriate
support to represent such context and to deal with their dependencies and dy-
namic changes, it is often difficult to ensure that the behavioral adaptations
associated to them do not interfere with each other. We then propose a Petri net-
based execution model for context-oriented programming, called context Petri
nets (CoPN), which enable a consistent representation and management of the
context of a system. In our model, context changes are modeled as dynamic con-
text activations and deactivations. Dependency relations between contexts are
expressed by connecting activation/deactivation actions of different contexts. In
addition, context Petri nets provide a concrete view of the system’s state at
every point in time, easing consistency management. Every activation/deactiva-
tion that generates an inconsistent state is immediately retracted to the state
before its execution.

The reminder of the paper is organized as follows. Section 2 gives a brief
background on COP, putting forward the requirements to provide consistent
composition of behavioral adaptations. Section 3 presents the foundations of
our context Petri nets model, and Section 4 explains how this model fulfills the
composition requirements. Section 5 and 6 assess the approach, its relation to
existing work, and possibilities for future work. Section 7 concludes the paper.

2 Requirements for Consistent Composition of
Context-Dependent Behavior

Context-Oriented Programming (COP) allows software systems to adapt their
behavior dynamically according to changes detected in their execution envi-
ronment [4]. The core characterization of COP systems from which we start
comprises the following concepts:

– Contexts represent particular situations detected during the execution of an
application, with respect to which application behavior can be adapted as
deemed appropriate.

– Context activation takes place whenever the situation for which the context
stands is detected in the execution environment; correspondingly, context
deactivation takes place when the given situation no longer occurs in the
execution environment.

COP allows systems to define behavioral adaptations which are associated
to particular contexts. Therefore, the adaptations are dynamically composed
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with the system’s basic functionality whenever the contexts become active. As
illustration of contexts and context activations, consider the case of a context-
aware mobile phone with Internet connectivity. The phone can gain access to
the Internet by means of three different technologies: WiFi, 3G and Edge. These
contexts are active whenever the respective protocol is available, and inactive
otherwise. The fact that the phone has any connectivity at all is signaled by
the activation of a Connection context. Such activation follows the activation of
WiFi, 3G or Edge. Besides Internet connectivity, the phone also supports video
calls. When Connection is active, video calls become possible, a situation that
is signaled by activating the VideoCall context. Video calls require that there is
enough battery power left —that is, for the HighBattery context to be active.

Although simple, this scenario already shows two peculiarities of contexts
and context activation:
Dynamicity The activation state of contexts changes unannounced over time
as different situations are detected in the execution environment.
Multiplicity Multiple contexts can be active at the same time, including the
case that a same context can be activated more than once.
As an example of dynamicity, the WiFi context can be active intermittently
as the user roams around in the city and wireless networks are found and left
behind. As for multiplicity, the Connection context can be activated as much
as three times, depending on whether WiFi, 3G or Edge are available.3

The dynamicity and multiplicity of context activation can compromise the
behavioral consistency of COP systems. For instance, inconsistencies can arise
if adapted behavior is withdrawn from the system while it is executing [10] —a
consequence of dynamicity. Inconsistencies can also arise when the adaptations
of an active context contradict the adaptations of another active context —a con-
sequence of multiplicity. Hence, to ensure consistent composition of behavioral
adaptations, a COP system should provide support to cope with dynamicity and
multiplicity. This means that the following requirements should be fulfilled:
R.1 Dynamic Context Activation and Deactivation Provide a consistent
representation of the system’s context. This implies that dynamic context changes
should be clearly reflected in the system as they are detected in the system’s ex-
ecution environment.
R.2 Consistent Interaction Between Multiple Contexts Ensure that pro-
grams are always in a consistent state, even after a context activation or deac-
tivation. In case of multiple activations of different contexts, the model should
prevent contexts that interfere with each other to be active at the same time.
R.3 Multiple Activations of the Same Context Allow that a context is ac-
tivated as many times as different instances of the situation represented by the
context actually occur in the execution environment.

At present, we observe that no single COP approach appropriately sup-
port these three requirements. Most COP languages [4,8,9,14] define dedicated
constructs for context activation and deactivation. However, only few of them

3 The concept of multiple context activation is analogous to that of multisets in math-
ematics, in which an element can appear more than once in the multiset.
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provide means to specify constraints between contexts. Subjective-C [8] de-
fines language abstractions to specify dependency relations which are inter-
nally represented and managed using a dependency graph. ContextL [6] and
EventCJ [14] allow defining context interactions programmatically by means
of transition functions. The main problem with these approaches is that they
require that developers manually verify the consistency of the context depen-
dencies. This means that they need to check every possible interaction between
context (de)activations. Furthermore, these approaches do not provide a struc-
tured way to compose context dependencies. As a result of this, developers have
to manually encode the composition which is cumbersome, error-prone and typ-
ically leads to programs that are difficult to understand and maintain.

Concerning the multiple context activations, ContextL, EventCJ, and other
COP languages that follow similar design decisions allow contexts to be activated
only once. Subjective-C and Ambience [9], on the other hand, allow contexts to
be activated as many times as necessary.

We now proceed to explain our proposal to address these requirements using
a formal tool from the realm of concurrent systems modeling.

3 Context Petri Nets

To ensure the consistent composition of behavioral adaptations, we introduce
a run-time model for COP called context Petri nets (CoPN).4 CoPN (read co-
pen) is a Petri net-based formalism based on three variants of Petri nets: reactive
Petri nets [7], static priorities [1], and inhibitor arcs [2]. Petri nets have been used
extensively to describe the information control flow of non-deterministic, concur-
rent systems. This makes such a formalism suitable to cope with the dynamicity
and multiplicity of context in software systems. In this section, we explain how
to use CoPN to model contexts, dependencies between contexts, and the compo-
sition between such dependencies. We then discuss how the execution semantics
of our model ensures that contexts can be always consistently activated.

3.1 Structure of CoPNs

The CoPN model follows the definition of reactive Petri nets with inhibitor arcs
and static priorities shown in Table 1. The components of a CoPN are defined
by the tuple P =< P, T, f, f◦, ρ,m0 > (1), where P is a finite set of places, T
is a finite set of transitions, f is the flow function defining regular arcs between
places and transitions, f◦ is the flow function defining inhibitor arcs between
places and transitions, ρ is a function defining priorities of transitions, and m0

is the initial marking function assigning tokens to places. This description of
CoPNs follows from their formal definition [3].

4 CoPNs are fully implemented as a run-time model for the Subjective-C [8] language.
The implementation is available for download at http://released.info.ucl.ac.
be/Tools/Context-PetriNets.
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(1) P =< P, T, f, f◦, ρ,m0 > (5) f : (P × T ) ∪ (T × P ) −→ Z+

(2) P ∩ T = φ (6) f◦ : P × T −→ {0, 1}
(3) P = Pc ∪ Pt (7) ρ : T −→ Z+

(4) T = Te ∪ Ti ∪ Tc (8) m0 : P −→ Z+

Table 1: Context Petri nets components definition.

Places and transitions are disjoint sets (2). The set of places is divided into
two disjoint sets: Pc of context places, and Pt of temporary places (3). The set
of transitions is divided into three disjoints sets: Te of external transitions, Ti of
internal transitions and Tc of internal cleaning transitions (4). There cannot be
arcs between two places or two transitions. Each arc defines how many tokens
flow from, or to places (5). There can be maximum one inhibitor arc between a
place and a transition (6). Transitions are given a firing order priority. Higher
priority transitions fire before lower priority ones (7). Enabled transitions of the
same priority fire randomly. Finally, tokens are assigned to places by means of
the (initial) marking function (8).

An explanation of the mapping between Petri nets and COP concepts follows.
As illustration, Fig. 1 shows how the VideoCall context from the example in
Section 2 can be defined as a CoPN.

Pr.V

req(V)

0

act(V)

2
V

req(¬V)

0
Pr.¬V

deac(V)

2 ¬V

cl(¬V)

1

Fig. 1: CoPN representation of the VideoCall (V) context.

Places in CoPNs are used to capture the state of contexts. A context is defined
in terms of four places defining the context’s life cycle. A context place, Pc, (solid-
line circle labeled VideoCall in Fig. 1) is used to represent the actual context
and its activation state. The other three temporary places, Pt, (dashed circles
in Fig. 1) are used to represent intermediate states of the context: preparing
for activation (Pr.VideoCall), preparing for deactivation (Pr.¬VideoCall), and
flagged as already deactivated (¬VideoCall).
Temporary places help to maintain consistency constraints when manipulating
the activation state of contexts. Activation and deactivation of a context does
not occur immediately, but needs to be requested first and processed carefully,
since the request may be denied if it violates constraints imposed by other con-
texts. The flag temporary place (¬VideoCall in Fig. 1) is used to ensure that a
context is effectively deactivated once for every deactivation request (otherwise,
the context would be emptied of all its tokens after just a single deactivation).
Transitions in CoPNs represent changes in the activation state of contexts.
Transitions are divided in two categories: external and internal. External transi-
tions (white squares in Fig. 1) are used to request a context activation or deac-
tivation in response to a change detected in the execution environment. Internal
transitions (black squares in Fig. 1) forward the requests to other dependent
contexts, and trigger the actual activation or deactivation of contexts. Finally, a
particular kind of internal transition internal cleaning transitions (gray square
in Fig. 1) is used to clean the deactivation flag place.
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Transition priorities are shown as small numbers under each transition in Fig. 1.
External transitions are white transitions of priority 0. Internal transitions are
black transitions of priority 2. Internal cleaning transitions are gray transitions
of priority 1. Transition priorities are unequivocally identified by the transition
color, hence priorities will be omitted in future.
Tokens represent the activation state of a context, depending on the place they
occupy. In Fig. 1 the VideoCall context is active if its context place (labeled
VideoCall) is marked, preparing for activation if place Pr.VideoCall is marked,
preparing for deactivation if place Pr.¬VideoCall is marked, and already deac-
tivated if place ¬VideoCall is marked.
Arcs encode the possible ways in which tokens can flow from one place to
another, mediated by transitions. Hence, arcs help encoding the way context
activations and deactivations depend on each other. Regular arcs, noted as arrow-
headed edges ( ), permit to verify the presence of tokens in a place, thanks to
the f flow function. Inhibitor arcs, depicted as circle-ended edges ((), permit
to verify the absence of tokens in a place, by means of the f◦ flow function.
Inhibitors are used for example to express that a context cannot be activated if
another context is active.

3.2 Dynamics of CoPNs

CoPNs make it possible to represent and track the changes that occur in the
system’s execution environment. CoPNs can thereby be used as run-time repre-
sentation of context. The following descriptions define the way context state is
encoded in a CoPN, and how it evolves according to the constraints encoded in
the structure of such CoPN.

– A transition t is enabled if its input places pi from regular arcs contain at
least f(pi, t) tokens, its input places p◦ from inhibitor arcs are empty, and
no other transition t′ with higher priority, ρ(t′) > ρ(t), is enabled.

– Transition firing modifies the state of the Petri net by removing as many
as f(pi, t) tokens from its input places pi, and adding as many as f(t, pout)
tokens to its output places pout.

– External transitions are fired with the regular may fire semantics of Petri
nets. That is, if a transition is enabled it may fire. In our model external
transitions are fired as consequence of a change in the execution environment.

– Internal transitions are fired with a must fire semantics. That is, if an in-
ternal transition is enabled it must fire. Internal transitions are used to
coordinate activation and deactivation among different contexts, according
to the dependency relations established between them. Section 3.3 describes
such dependencies.

CoPN model is used to ensure consistency of context activations, we define
a CoPN to be in a consistent state if no temporary place is marked after all
enabled internal transitions have fired.
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3.3 Dependency Relations Between CoPNs

CoPN allows multiple activations of different contexts. To avoid conflicts in the
adaptations of the different active contexts, our model enables the definition of
dependency relations between contexts. We have taken as starting point the four
dependency relations defined in Subjective-C [8], and modeled them in CoPN:
exclusion, weak inclusion, strong inclusion and requirement. Each dependency
relation defines how the activation state of a context influences that of another
context. In CoPNs, this is achieved by connecting internal transitions of one
context to the (temporary) places of another one, via an arc. Each arc expresses
a rule describing the interaction between contexts. New dependency relations
could be defined by describing such rules.

Exclusion. An exclusion dependency prevents two contexts from being active
at the same time. However, both contexts may be simultaneously inactive. For
example, the interaction between the LowBattery (L) and HighBattery (H) con-
texts of the mobile phone is defined by the CoPN shown in Fig. 2. These contexts
clearly should not be active at the same time. If one of the contexts is active,
the activation of the other is prevented by the corresponding inhibitor arc.

Pr.L

req(L) act(L)

act(H)

L

req(¬L)

Pr.¬L

deac(L)

¬L

cl(¬L)

Pr.H

req(H)

H

req(¬H)

Pr.¬H

deac(H)

¬H

cl(¬H)
Fig. 2: Exclusion between Low Battery (L) and HighBattery (H).

Firing a request for activating the L context, req(L), under the initial marking
m0(H)=1 yields the markingm1, wherem1(H) =1 andm1(Pr.L)=1. At this point,
none of the internal transitions is enabled. In particular, act(L) is not enabled
because of the inhibitor arc (H, act(L)). An inconsistent state has been reached
since one of the temporary places, Pr.L, is marked. In this case, all of the the
actions are reverted to the initial marking state. The request for the activation is
denied, and the user is informed about the reason for the refusing the activation.

Weak Inclusion A weak inclusion represents a situation in which the activation
(deactivation) of a context should automatically trigger the activation (deacti-
vation) of another context. Note that the latter context can be activated or
deactivated independently of (without effect on) the former. This interaction is
shown in Fig. 3, using as example the case of the Connectivity and VideoCall
contexts: activation of Connectivity automatically triggers the activation of
VideoCall, meaning that video calls are normally available whenever the phone
is connected to the Internet). The double arc in Fig. 3 is a visual shortcut that
stands for two different arcs going in opposite directions.
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Pr.C

req(C) act(C)

deac(C)

C

req(¬C)

Pr.¬C

deac(C)

¬C

cl(¬C)

Pr.Vreq(V) act(V) V req(¬V) Pr.¬V deac(V) ¬V cl(¬V)
Fig. 3: Weak inclusion from Connectivity (C) to VideoCall (V).

Strong Inclusion A strong inclusion represents a dependency in which, simi-
larly to a weak inclusion, activation or deactivation of a context triggers that of
the related context. Additionally, deactivation of the latter context triggers back
the deactivation of the former. These interactions are encoded by the CoPN
shown in Fig. 4; as in weak inclusion, the double arc stands for two different
arcs going in opposite directions. The CoPN encodes an interaction such that
activation of WiFi results in the activation of Connectivity; reciprocally, if for
some reason Connectivity is deactivated, then WiFi will also be deactivated.

Pr.W

req(W) act(W)

deac(C)

W

req(¬W)

Pr.¬W

deac(W)

¬W

cl(¬W)

deac(W)

Pr.Creq(C) act(C) C req(¬C) Pr.¬C deac(C)

¬C

cl(¬C)

deac(C)

Fig. 4: Strong inclusion from WiFi (W) to Connectivity (C).

Requirement A requirement represents the situation in which activation of
a context is possible only if another context is already active. This restriction
implies that when the latter context is no longer active the former context must
be deactivated. The CoPN corresponding to this interaction is shown in Fig. 5:
VideoCall can be activated only if HighBattery is already active.

Thus far, contexts and dependency relations have been discussed as isolated
CoPNs in the system. We now explain how different CoPNs can be composed to
form a unified CoPN that the system can use as run-time model of the execution
environment as a whole.
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Pr.H

req(H) act(H)

deac(V)

H req(¬H) Pr.¬H

deac(H) ¬H cl(¬H)

deac(H)

Pr.V

req(V) act(V) V req(¬V) Pr.¬V

deac(V)

¬V cl(¬V)

Fig. 5: Requirement of HighBattery (H) by VideoCall (V).

3.4 Composing Context Dependency Relations

This section provides an intuitive description of the steps needed to compose
CoPNs.5 A context only interacts with other contexts directly related to it. This
provides modularity to the composition mechanism, because when composing,
Petri net elements (arcs) are added only between the contexts being composed.

To preserve the semantics of dependency relations, CoPN composition ex-
tends the place combination technique of Petri nets [19]. As mentioned in the
previous section, each dependency relation is comprised of a set of rules. Such
rules must be verified to hold in the composed CoPN, after combining corre-
sponding places and transitions. The verification process may add additional
arcs when needed, to satisfy the rules.

Snippet 1 shows pseudo-code describing the composition of CoPNs. We ex-
plain the composition by means of an example of two dependency relations
R1(C1, C) and R2(C2, C) between contexts C1, C2 and C. For simplicity, we as-
sume that the two relations are to be composed into an empty CoPN P. The first
step in the composition is to combine the C context common to both relations.
This is done by taking the union of all corresponding elements associated to each
context –that is, elements with the same label; inputs and outputs are collapsed
into one (lines 3–6). Second, for all existing dependency relations in the CoPN
each rule is checked to ensure that it is satisfied. Additional arcs might be added
for transitions that match a rule but do not satisfy it (lines 7–10).

1 add C1 to P
2 add C2 to P
3 loop for e1 such that e1 ∈ PC ∪ TC in R1

4 e2 such that e2 ∈ PC ∪ TC in R2

5 add e1 to P
6 i f e1 6= e2 then add e2 to P
7 loop for R dependency r e l a t i o n in P
8 c con s t r a i n ru l e in R
9 t t r a n s i t i o n in P

10 i f t does not s a t i s f y c then add new arc(t, c) to P

Snippet 1: CoPN composition algorithm.

5 A full formal description of composition in CoPNs falls outside the scope of this
paper, but it is available as technical report [3].
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3.5 Programming Support for Context Petri Nets

The CoPN model can become complex as the system grows. However, developers
interact with it through a language abstraction layer that hides such complexity.
This section presents the context-oriented constructs of Subjective-C, and how
these map to the underlying CoPN model.

Context declaration ::= @context( context-name [,bound ] )
Context activation ::= @activate( context-name )
Context deactivation ::= @deactivate( context-name )
Dependency relations declaration ::=

[ addExclusionBetween: context-name and: context-name ]
[ addWeakInclusionFrom: context-name to: context-name ]
[ addStrongInclusionFrom: context-name to: context-name ]
[ addRequirementTo: context-name of: context-name ]

Fig. 6: Subjective-C method syntax to interact with CoPNs.
Fig. 6 shows the language constructs available in Subjective-C for the creation

and manipulation of contexts, and hence CoPNs. A context declaration automat-
ically generates a context structure as that of Fig. 1. The maximum number of
times a context can be activated can be bounded by a positive integer. Context
activation and deactivation fire the corresponding external transitions in the
underlying CoPN, for example req(VideoCall) and req(¬VideoCall) in Fig. 1.
Finally, a dependency relation declaration specifies the different dependency re-
lations between two contexts, as described in Section 3.3.

For illustration, Snippet 2 shows definitions for LowBattery and HighBattery
contexts. Lines 1 and 2 generate a CoPN as that of Fig. 1 for each context.
The exclusion dependency defined between the two contexts in line 3 yields the
CoPN shown in Fig. 2. Line 4 is the activation of the LowBattery context which
(when successful) installs the behavior adaptations associated to it. Due to the
LowBattery context being active, activation of the HighBattery context in Line
5 is denied and the cause of the denial is given to the user.

1 SCContext *lb = @context(LowBattery);
2 SCContext *hb = @context(HighBattery);
3 [addExclusionBetween: lb and: hb];
4 @activate(LowBattery);
5 @activate(HighBattery);

Snippet 2: Example of exclusion dependency declaration.

4 Consistent Composition of Context-Dependent
Behavior in CoPN

Having explained the core of the CoPN model in Section 3, we now turn to the
question of how the model satisfies the requirements for consistent composition
of context-dependent behavior put forward in Section 2.
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4.1 Dynamic Context Activation and Deactivation (R.1)

CoPN provides a concrete representation of the system’s context. The dynamic
activation and deactivation of a context uses the definition of consistent state
for a CoPN given in Section 3.2, which is ensured by the following process:

– Before external transitions are fired, the set of current active contexts is
saved as the current marking of the system.

– If an inconsistency exists after firing all enabled internal transitions (that is,
if a temporary place is still marked), all modifications made since the exter-
nal transition firing are reverted. This is done by reinstating the previously
saved current marking.

– In case an inconsistency exists, a message is prompt to the user with the
reason preventing the activation or deactivation to take place.

– If the system reaches a consistent state, the current marking is updated to
the marking found in the CoPN. A trace of all fired internal transitions is
given to the user.

As an example, consider the discovery of a Wifi network connection in the
mobile phone. The initial marking m0 of the CoPN representing the Wifi con-
text ism0(Wifi)=0 which is a consistent state. When a Wifi network connection
is discovered, this generates an @activate(Wifi) message. The transition to re-
quest the context activation is fired, req(Wifi), adding a token to the temporary
place Pr.Wifi. This changes the initial marking m0 to a new marking m1, where
m1(Pr.Wifi) =1. Such a marking enables the internal transition act(Wifi) which
now must fire according to the internal transition semantics described in Sec-
tion 3.2. The firing moves the token from Pr.Wifi to Wifi yielding a markingm2

where m2(Wifi)=1. At this point none of the internal transitions is enabled, and
none of the temporary places are marked. Therefore, the CoPN is in a consistent
state. The case of context deactivation is similar to the context activation one.

4.2 Consistent Interactions Between Multiple Contexts (R.2)

The CoPN model ensures the consistent state of a system in presence of multiple
active contexts by means of dependency relations and dynamic context activa-
tions. As explained in Section 3.3, CoPN currently supports the 4 dependency
relations defined in Subjective-C. Dependency relations encode interactions be-
tween contexts. Such interactions define sequences of activations and deactiva-
tions that leave the system in a consistent state.

The activation or deactivation of a context is constrained by the existing
dependency relations. For example, in the case of the requirement dependency
relation of Fig. 5, the VideoCall context is only activated when the HighBattery
context is already active. Were this not be the case, the activation of VideoCall
would leave the system in an inconsistent state, and is therefore retracted.

4.3 Multiple Activations of the Same Context (R.3)

In CoPN, contexts can be activated multiple times. To support this behavior,
CoPNs rely on the fact that a place can hold many tokens at once. Each token
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represents an activation of the context. As such, the context (and thus the adap-
tations associated to this context) will remain available for as long as there are
tokens in the context place. Fig. 7 shows an example where three internet pro-
tocols are available (e.g., Edge, Wifi, 3G) for the mobile phone. This condition
is represented in the Connectivity context by three tokens.

Pr.C

req(C) act(C)

C

req(¬C)

Pr.¬C

deac(C)

¬C

cl(¬C)

Fig. 7: Context Connectivity (C) is active three times.

Unlike existing COP approaches, CoPN allows developers to declare the acti-
vation of a context as multiple or single. For example, the generic Connectivity
context can be activated multiple times, whereas a specific protocol like 3G should
be activated at most once. This extends existing COP approaches, which sup-
port either single-activation contexts (e.g. ContextL [4]), or multiple-activation
contexts (e.g. Subjective-C), but not both.

5 Related Work

This section reviews related work by going through different context sensing ap-
proaches which provide a concrete representation of context, and by considering
alternative modeling approaches that could be used for context-aware systems.

5.1 Context Representation

The Context Toolkit [20] and WildCat [5] frameworks provide abstractions for
the representation of context information. Context information coming from sen-
sors is represented by context objects. Gathered information can be contradic-
tory or inconsistent. It is up to the system/developer to manually manage such
inconsistencies.

CORTEX [21] is a middleware architecture that exploits the sentient object
paradigm: so-called sentient objects receive events as input (from other sentient
objects or sensors), process the events by means of an inference engine and
generate further events as output. The sentient object model of CORTEX is
intended for pro-active context-aware systems that autonomously invoke some
action in response to relevant context changes. In contrast, our model deals with
reactive systems. That is, upon a context change, the most appropriate context
representation is activated.

These framework approaches provide useful modularization features to man-
age context information. However, they have little support for the dynamic acti-
vation of behavioral adaptations, and managing conflicts between them, making
them ill-suited in face of the requirements presented in Section 2.
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5.2 Alternative Approaches

CoPN serves both as a formal and run-time model of context. We now consider
other approaches that could be used for the same purpose.

State Diagrams Automata [12] and statecharts [15] are used to describe system
behavior based on its possible states, and the set of actions to be taken at each
state. Automata and statecharts are normally used to verify system properties,
such as program termination. Among the properties provided by these diagrams,
composition is the most prominent. However, the system focuses only on one
state at a time, this means that every state needs to associate all possible actions
in the system. In the context of COP, where context activations represent the
actions in the system, every state has to be connected to all such actions, making
the model cluttered and complex. Additionally, both automata and statecharts
formalisms would need to be extended to allow the interaction between contexts
and multiple activations of a context.

Process Algebra, Coalgebra and Modal Logics Process algebra [11] is used
to model concurrent processes, providing high-level abstractions for operations
between processes such as parallel composition, communication, replication, and
synchronization. Modal logics [17] have been used to represent necessity and
possibility conditions about system properties. Modal logics are mostly used to
express temporal conditions, but they also can be used to express conditions
like program termination. Coalgebras [13] have been used to express dynamic
behavior of systems. Typically, coalgebras specify state-based systems, where
the state is considered as a black box and dynamic behavior is reasoned upon in
terms of invariance and bisimilarity.

These formal methods could be used to model and reason about context-
aware systems. However, concrete models based on these formalisms would need
to be extended to match the requirements of Section 2, as we have done with
the Petri net extensions used in CoPNs.

6 Future Work

Although the CoPN model can help in tackling some of the challenges for the
consistent composition of behavioral adaptations, a number of challenging issues
need to be further explored.

First, conflicts between external, internal and cleaning transitions are avoided
by the separation of each class by their transition priorities. The question still
remains, however, if within internal transitions conflicts exist. That is, if firing
of a transition disables a previously enabled one, leading to different markings.
Although, these type of conflicts are expected from the non-deterministic choice
of transitions with the same priority, it should be proven that regardless of the
firing order of transitions the same marking is always reached.

Second, CoPN provides consistency of dynamic behavior adaptations. How-
ever, the discussion presented in this work focuses on the management of in-
teraction between contexts. How to identify such interactions, remains an open
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question. Standard Petri net analysis techniques allow to reason about a system’s
behavior [16]. Such techniques could be used to identify interaction between con-
texts. The properties that could be used in the context of COP systems comprise
(a) reachability, to identify if it is possible to have a particular configuration (i.e.
marking) of active contexts, (b) liveness, to verify if a context can ever be acti-
vated or not, and (c) persistency, to spot isolated contexts in the Petri net. This
analysis techniques can give upfront information about errors and redundan-
cies in the system. Currently the CoPN model contains inhibitor arcs and is (in
principle) unbounded, which makes these properties undecidable. However, the
addition of bounds to contexts, and removal of inhibitor arcs when possible [18],
could enable the analysis of such properties. We are currently studying which
properties can be successfully verified for CoPN.

7 Conclusions

Ensuring consistent behavior adaptation of software systems is a challenging
task. Inconsistencies in the composition of context-dependent behavior rise from
interactions when such behavior is incompatible or contradictory. We identify
three main requirements to support behavioral adaptations: dynamic context
activation and deactivation, consistent interaction between multiple contexts,
and multiple activations of the same context. As a way to address these require-
ments, this paper presents the context Petri nets (CoPN) model which builds on
the dynamic activation and deactivation of contexts provided by context-oriented
programming (COP) languages. CoPN uses different Petri net extensions to pro-
vide a precise and live representation of context, dependency relations between
contexts, and their composition. The CoPN model makes explicit the different
states in the activation life cycle of a context to cope with the reactive nature
of COP systems, and to ensure that activations and deactivations are consis-
tent. Consistent activation and deactivation of contexts is ensured by dynami-
cally checking context dependency relations. If an inconsistency is encountered,
CoPNs allows to rollback the faulty operation to the last registered consistent
state. Afterwards, the user is informed of the cause of the error.

For the advantages provided in the management and assurance of consistent
dynamic adaptations, context Petri nets are a convenient run-time representation
of contexts, their activation and interaction in COP systems.
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