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Abstract. We present a new Petri net simulation environment to enable the pro-
cessing of experimental data to gain usable new insights about biological sys-
tems. Therefore, a powerful mathematical modeling concept – xHPNbio (ex-
tended Hybrid Petri Nets for biological applications) – has been defined which 
is properly adapted to the demands of biological processes. This specification is 
used for the PNlib (Petri Net library), realized by means of the object-oriented 
modeling language Modelica, which can be easily integrated for simulation 
processing in any other network modeling tool, as described in the last part of 
this paper. There, we briefly describe VANESA, a user-friendly biological net-
work-modeling tool that uses the PNlib and the xHPNbio formalism for the 
simulation of biological networks. 
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1 Introduction 

Modern computer techniques and large memory capacities make it possible to pro-
duce an enormous amount of molecular data stored in huge databases. This data is 
indispensable for the scientific progress but does not necessarily lead to insight about 
the functionality of biological systems. To improve the understanding of molecular 
mechanisms, modern techniques focus on network analysis. The question which is 
posed here is, what model formalism is appropriate and which simulator? Numerous 
model formalisms have been proposed for modeling and simulation biological sys-
tems (see e.g. [1]). Generally, a distinction must be made between qualitative and 
quantitative approaches. Qualitative models represent only the fundamental com-
pounds, their interaction mechanisms, and the relationships between them while quan-
titative models describe, in addition, the time-related changes of the components. 
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Furthermore, quantitative model formalisms can be divided into discrete and continu-
ous approaches as well as deterministic and stochastic techniques. 

In the recent years, Petri nets with their various extensions are becoming increas-
ingly popular. They have been proven to be as universal graphical modeling concept 
for representing biological systems in nearly all degrees of abstraction. They support 
the qualitative modeling approach as well as the quantitative one. Furthermore, the 
biological processes can be modeled discretely as well as continuously and, in addi-
tion, discrete and continuous processes can also be combined within a Petri net model 
to so-called hybrid Petri nets first introduced by David and Alla (e.g. [2]). The Petri 
net formalism with all its extensions is so powerful that all other formalisms are in-
cluded. Hence, only one formalism is needed regardless of the approach (qualitative 
vs. quantitative, discrete vs. continuous vs. hybrid, deterministic vs. stochastic) which 
is appropriate for the respective system. The Petri net formalism is easy to understand 
for researchers from different disciplines. It is such an ideal way for intuitive repre-
senting and communicating experimental data and new knowledge of molecular 
mechanisms. Besides, Petri nets allow hierarchical structuring of models and there-
fore offer the possibility of different detailed views for every observer of the model. 

Despite several works and publications with Petri net approaches, there is a serious 
problem relating to the lacking unity of concepts, notations, and terminologies. There-
fore, to show the research community the power of Petri nets, we have analyzed the 
demands for carefully modeling biological systems and specially developed a Petri 
net formalism which is called xHPNbio (extended Hybrid Petri Net for biological 
applications). 

This Petri net concept is the specification of the new simulator based on the object-
oriented modeling language Modelica. A user-friendly graphical model reconstruction 
in addition to a well-prepared visualization of simulation results is achieved by con-
nection the new Petri net simulator to VANESA, a powerful and easy-to-use biologi-
cal modeling tool [3]. This new approach is already in use in the area of dynamic 
system modeling for hypothesis generation and testing of reconstructed database 
and lab-validated biological networks. 

2 Related Works 

Reddy et al. proposed the application of Petri net formalism (introduced by Carl Ad-
am Petri in 1962) for biological network modeling in order to represent and analyze 
metabolic pathways in a qualitative manner [4]. Thereby, places represent biological 
compounds such as metabolites, enzymes, and cofactors which are part of biochemi-
cal reactions. These biochemical reactions are modeled by transitions and their stoi-
chiometry is represented by the arc weights. Besides, the tokens indicate the presence 
of compounds.  

Moreover, Hofestädt and Thelen expanded the approach of Reddy by introducing 
functional Petri nets to enable quantitative modeling of biochemical networks [5]. 
Thereby, the arc weights are functions, which depend on concrete markings of places 
in order to model kinetic effects. 
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Due to the fact that a random behavior of molecular reactions at low concentrations 
has been observed in many experiments, Goss and Peccoud introduced stochastic 
Petri nets [6]. A stochastic transition does not fire instantaneously but rather with a 
time delay following an exponential distribution which may depend on the token 
numbers of the places. 

A reasonable way for modeling concentrations of biological compounds is by plac-
es containing real token numbers instead of integers and transitions which fire as a 
continuous flow specified by an assigned speed. The transformation from the discrete 
to the continuous Petri net concept was first introduced by David and Alla in 1987 
and they replaced the term token by mark because tokens relate mostly to integer 
quantities [7]. 

Furthermore, Alla and David and proposed combing the discrete and the continu-
ous Petri net concept to so-called hybrid Petri nets [8]. A hybrid Petri net contains 
discrete places with integer tokens and discrete transitions with time delays as well as 
continuous places with non-negative real marks and continuous transitions with firing 
speeds .Matsuno et al. used this approach for modeling gene regulatory networks by 
discrete and continuous processes [9]. They improved this approach further by adding 
the properties of functional Petri nets to it so that the arcs as well as the speeds of the 
transitions are functions depending on the marks of the places [10]. In addition, they 
extended the hybrid functional Petri nets by two specific arcs, called test and inhibitor 
arcs [10], to accomplish the modeling of inhibition and activation mechanisms of 
biological reactions. Chen and Hofestädt as well as Doi et al. demonstrated the ap-
plicability of this approach by modeling molecular networks [11, 12]. Moreover, Na-
gasaki et al. extended the hybrid functional Petri nets further by types with which 
various data types can be regarded in order to model more complex biological pro-
cesses which involve various kinds of biological information and data [13]. They 
called this approach hybrid functional Petri nets with extensions (HFPNe). 

Despite these mentioned works and publications, there is a serious problem regard-
ing the lacking unity of concepts, notations, and terminologies. The definition of Petri 
nets is not standardized; every author has his/her own definitions which are partly not 
precise enough, not common, or contradictory. Hence, to show the research communi-
ty the power of Petri nets, they have to be defined precisely together with the corre-
sponding processes, which are essential for the simulation. This has been done in this 
paper; based on the mentioned Petri net concepts, formalism has been developed 
which is able to represent nearly all kinds of biological processes. It is called 
xHPNbio (extended Hybrid Petri Nets for biological applications). 

Two common tools are already available for modeling biological processes with 
the Petri net formalism. The first one is the commercial tool Cell Illustrator and the 
second one is the freely available tool Snoopy. 

The Cell Illustrator is a commercial, widely-used tool available as a Java Web Start 
application that enables to draw, model, elucidate, and simulate complex biological 
processes and systems based on extended hybrid functional Petri nets [14]. Discrete 
and continuous processes can be connected to perform hybrid simulations. The draw-
back of the Cell Illustrator is that the simulation is like a “black box”. There is no 
information about how the Petri nets and the corresponding processes are defined 
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which are necessary for modeling and simulation, e.g. how conflicts in Petri nets are 
resolved, how the hybrid simulation is performed, and which integrators are used. In 
addition, there is no possibility to adapt solver settings in order to achieve reliable 
simulation results. 

Snoopy is a freely available unifying Petri net framework to investigate biomolecu-
lar networks [15]. A Petri net can be modeled time-free (qualitative model) or its be-
havior can be associated with time (quantitative model) such as stochastic, continu-
ous, and hybrid Petri nets; thereby, different models are convertible into each other. It 
is also possible to structure the models hierarchically in order to manage complex 
networks. The drawback of Snoopy is that a continuous Petri net is interpreted as a 
graphical representation of a system of ordinary differential equations. Hence, the 
general Petri net property of non-negative marks cannot be held during simulation. 
Additionally, conflict situations of hybrid Petri nets are trapped not completely and, 
thus, negative markings can occur. Furthermore, places cannot be provided with ca-
pacities and no functions can be assigned to arcs in hybrid Petri nets. 

Hence, these problems led to the development of a new Petri net simulation envi-
ronment specified by the established xHPNbio formalism. The xHPNbio elements are 
modeled object-oriented which allows an easy way to maintain, extend, and modify 
them. Furthermore, the hybrid simulation is performed by an appropriate Modelica-
tool. With this several solver settings can be adapted in order to achieve reliable simu-
lation results. Moreover, the xHPNbio formalism is already integrated in VANESA, 
an easy-to-use biological modeling tool. Using VANESA scientists are able to recon-
struct and simulate biological pathways either by drag-and-drop or by loading net-
works from databases and transforming in the appropriate xHPNbio formalism in one 
software application. 

3 Extended Hybrid Petri Nets for Biological Applications 
(xHPNbio) 

The xHPNbio formalism comprises three different processes, called transitions: dis-
crete, stochastic, and continuous, two different states, called places: discrete and con-
tinuous, and four different arcs: normal, inhibition, test, and read arc. 

Discrete places contain a non-negative integer quantity, called tokens or marks 
while continuous places contain a non-negative real quantity, called marks. These 
marks initiate transitions to fire according to specific conditions. These firings lead 
mostly to changes of the marks in the connected places. 

Discrete transitions are provided with delays and firing conditions and fire first 
when the associated delay is passed and the conditions are fulfilled. These fixed de-
lays can be replaced by exponentially distributed random values, then, the corre-
sponding transition is called stochastic transition. Thereby, the characteristic parame-
ter 𝜆 of the exponential distribution can depend functionally on the markings of sev-
eral places (cp. [16]) and is recalculated at each point in time when the respective 
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transition becomes active or when one or more markings of involved places change1. 
Based on the characteristic parameter, the next putative firing time 
𝜏 = 𝑡𝑖𝑚𝑒 + Exp(𝜆) of the transition can be evaluated and it fires when this point in 
time is reached. 

Both – discrete and stochastic transitions - fire by removing the arc weight from all 
input places and adding the arc weight to all output places. On the contrary, the firing 
of continuous transitions takes places as a continuous flow determined by the firing 
speed which can depend functionally on markings and/or time. Places and transitions 
are connected by “normal” arcs which are weighted by non-negative integer and real 
numbers, respectively. But also functions can be written at the arcs depending on the 
current markings of the places and/or time. 

Places can also be connected to transitions by test, inhibition, and read arcs. Then 
their markings do not change during the firing process. In the case of test and inhibi-
tor arcs, the markings are only read to influence the time of firing while read arcs only 
indicate the usage of the marking in the transition, e.g. for firing conditions or speed 
functions. If a place is connected to a transition by a test arc, the marking of the place 
must be greater than the arc weight to enable firing. If a place is connected to a transi-
tion by an inhibitor arc, the marking of the place must be less than the arc weight to 
enable firing. In both cases the markings of the places are not changed by firing. The 
same place can be connected to the same transition by a test and, in addition, by a 
normal arc as well as by an inhibitor and normal arc. These arcs are called double 
arcs. 

It is important to mention that a discrete transition always fires in a discrete manner 
by removing and adding marks after a delay is passed regardless of whether a discrete 
or a continuous place is connected to it. However, a continuous transition always fires 
in a continuous flow so that a discrete place can only be connected to continuous tran-
sitions if it is input as well as output of the transition with arcs of the same weight. In 
this way, the continuous transition can only be influenced by the discrete place but the 
discrete marking cannot be changed by continuous firing. Hence, the conversion from 
discrete to continuous markings and vice versa is always performed by discrete transi-
tions connected to continuous places. 

A formal definition of an xHPNbio is given below. Therefore, at first the xHPN- 
formalism is introduced which is then expanded to xHPNbio by providing the Petri 
net elements with a biological meaning. 

Definition 1. The tuple (𝑃𝐷,𝑃𝐶,𝑇𝐷,𝑇𝑆,𝑇𝐶,𝐹,𝐺,𝒯, ℐ,ℛ, 𝑓, 𝑐𝑙 , 𝑐𝑢, ℯ,𝓅,𝑑,ℎ, 𝑣, 𝑠,𝑚0 ) 
is a xHPN if 
─ 𝑃𝐷 = �𝑝𝑑1,𝑝𝑑2, … ,𝑝𝑑𝑝𝑑� is a finite set of discrete places, 
─ 𝑃𝐶 = �𝑝𝑐1,𝑝𝑐2, … ,𝑝𝑐𝑝𝑐� is a finite set of continuous places, 
─ 𝑇𝐷 = {𝑡𝑑1, 𝑡𝑑2, … , 𝑡𝑑𝑡𝑑} is a finite set of discrete transitions, 
─ 𝑇𝑆 = {𝑡𝑠1, 𝑡𝑠2, … , 𝑡𝑠𝑡𝑠} is a finite set of stochastic transitions, 
                                                           
1  The involved places may change their markings only in a discrete manner. Continuous 

changes of involved places are not allowed because then the putative firing times have to be 
recalculated the whole time as the continuous change takes place. 
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─ 𝑇𝐶 = {𝑡𝑐1, 𝑡𝑐2, … , 𝑡𝑐𝑡𝑐} is a finite set of continuous transitions, 
─ 𝑃𝐷,𝑃𝐶,𝑇𝐷, TS,  and 𝑇𝐶 are pairwise disjoint, 
─ 𝐹 ⊆ (𝑃𝐷 × 𝑇𝐷 ∪ 𝑃𝐷 × 𝑇𝑆 ∪ 𝑃𝐷 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐷 ∪ 𝑃𝐶 × 𝑇𝑆)  is a 

set of normal arcs from places to transitions, where �𝑝𝑖 → 𝑡𝑗� denotes the arc from 
place 𝑝𝑖 to transition 𝑡𝑗, 

─ 𝐺 ⊆ (𝑇𝐷 × 𝑃𝐷 ∪ 𝑇𝐷 × 𝑃𝐶 ∪ 𝑇𝑆 × 𝑃𝐷 ∪ 𝑇𝑆 × 𝑃𝐶 ∪ 𝑇𝐶 × 𝑃𝐶 ∪ 𝑇𝐶 × 𝑃𝐷)  is set 
of normal arcs from transitions to places, where �𝑡𝑗 → 𝑝𝑖� denotes the arc from 
transition 𝑡𝑗 to place 𝑝𝑖, 

─ 𝒯 ⊆ (𝑃𝐷 × 𝑇𝐷 ∪ 𝑃𝐷 × 𝑇𝑆 ∪ 𝑃𝐷 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐷 ∪ 𝑃𝐶 × 𝑇𝑆)  is a 
set of test arcs, where �𝑝𝑖 → 𝑡𝑗�𝒯 denotes the test arc from 𝑝𝑖 to 𝑡𝑗, 

─ ℐ ⊆ (𝑃𝐷 × 𝑇𝐷 ∪ 𝑃𝐷 × 𝑇𝑆 ∪ 𝑃𝐷 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐷 ∪ 𝑃𝐶 × 𝑇𝑆) is a set 
of inhibitor arcs, where �𝑝𝑖 → 𝑡𝑗�ℐ denotes the inhibitor arc from 𝑝𝑖 to 𝑡𝑗, 

─ ℛ ⊆ (𝑃𝐷 × 𝑇𝐷 ∪ 𝑃𝐷 × 𝑇𝑆 ∪ 𝑃𝐷 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐶 ∪ 𝑃𝐶 × 𝑇𝐷 ∪ 𝑃𝐶 × 𝑇𝑆)  is a 
set of read arcs, where �𝑝𝑖 → 𝑡𝑗�ℛ denotes the read arc from 𝑝𝑖 to 𝑡𝑗, 

─ 𝑓: (𝐹 ∪ 𝐺 ∪ 𝒯 ∪ ℐ, m) → {ℕ0:𝑝𝑖 ∈ 𝑃𝐷,ℝ≥0:𝑝𝑖 ∈ 𝑃𝐶} is an arc weight function 
which assigns every arc connected to a discrete place a non-negative integer and all 
others a non-negative real number depending on a concrete marking 𝑚, where 
𝑓�𝑝𝑖 → 𝑡𝑗� denotes the weight of the arc from place 𝑝𝑖 to transition 𝑡𝑗, 

─ if 𝑝𝑖 ∈ 𝑃𝐷 , 𝑡𝑗 ∈ 𝑇𝐶  then �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹  if and only if �𝑡𝑗 → 𝑝𝑖� ∈ 𝐺  and  
𝑓�𝑝𝑖 → 𝑡𝑗� = 𝑓�𝑡𝑗 → 𝑝𝑖�, 

─ 𝑐𝑙: {𝑃𝐷 → ℕ0,𝑃𝐶 → ℝ≥0} are the minimum capacities of the places, 
─ 𝑐𝑢: {𝑃𝐷 → ℕ0,𝑃𝐶 → ℝ≥0} are the maximum capacities of the places, 
─ ℯ: (𝑃𝐷 ∪ 𝑃𝐶) → {𝑝𝑟𝑖𝑜,𝑝𝑟𝑜𝑏}  are the resolution types of the places for type-1-

conflicts either priority or probability resolution, 
─ 𝓅: (𝐹 ∪ 𝐺) → �ℕ: ℯ(𝑝𝑖) = 𝑝𝑟𝑖𝑜 ∧ 𝑡𝑗 ∈ 𝑇𝐷, (𝐹 ∪ 𝐺) → [0,1]: ℯ(𝑝𝑖) = 𝑝𝑟𝑜𝑏 ∧ 𝑡𝑗 ∈
𝑇𝐷� is an enabling function which assigns every arc connected to a discrete transi-
tion 𝑡𝑗 either a priority or a probability according to the resolution type of the place 
𝑝𝑖, 

─ if ℯ(𝑝𝑖) = 𝑝𝑟𝑖𝑜 then 𝓅(𝑝𝑖 → 𝑡𝑘) ≠ 𝓅(𝑝𝑖 → 𝑡𝑙) ∀𝑡𝑘, 𝑡𝑙 ∈ 𝑇𝐷𝑜𝑢𝑡(𝑝𝑖) and        
𝓅(𝑡𝑘 → 𝑝𝑖) ≠ 𝓅(𝑡𝑙 → 𝑝𝑖)  ∀𝑡𝑘, 𝑡𝑙 ∈ 𝑇𝐷𝑖𝑛(𝑝𝑖), if ℯ(𝑝𝑖) = 𝑝𝑟𝑜𝑏 then 
∑ 𝓅(𝑝𝑖 → 𝑡𝑘)𝑡𝑘∈𝑇𝐷𝑜𝑢𝑡(𝑝𝑖) = 1 and ∑ 𝓅(𝑡𝑘 → 𝑝𝑖)𝑡𝑘∈𝑇𝐷𝑖𝑛(𝑝𝑖) = 1, 

─ 𝑑:𝑇𝐷 → ℝ≥0 is a delay function which assigns every discrete transition a positive, 
real-valued delay, 

─ ℎ: (𝑇𝑆,𝑚) → ℝ≥0 is a hazard function which assigns every stochastic transition a 
positive, real-valued random delay depending on a concrete marking 𝑚, 

─ 𝑣: (𝑇𝐶,𝑚) → ℝ≥0 is a maximum speed function which assigns every continuous 
transition a positive, real-valued maximum speed depending on a concrete marking 
𝑚, 

─ 𝑠: (𝑇𝐷 ∪ 𝑇𝑆 ∪ 𝑇𝐶,𝑚𝑣) → {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}  is a condition function which assigns 
every transition a condition depending on all possible model variables (𝑚𝑣) e.g. 
time, 

─ 𝑚0: {𝑃𝐷 → ℕ0,𝑃𝐶 → ℝ≥0} is the initial marking which must satisfy the condition 
𝑐𝑙(𝑝𝑖) ≤ 𝑚0(𝑝𝑖) ≤ 𝑐𝑢(𝑝𝑖)  ∀ 𝑝𝑖 ∈ (𝑃𝐷 ∪ 𝑃𝐶). 
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Definition 2. An xHPNbio is an xHPN (see Definition 1) with a concrete transfor-
mation of xHPN elements to biological ones. This transformation is summarized in 
the following table by mentioning also some examples of the biological meaning. 

xHPN Biological meaning 

Places 
Biological compounds 
metabolites, enzymes, substances, substrates, products, signals, genes, 
proteins, cells, complexes, activators, inhibitors, repressors, RNA 

Transitions 

Biological processes 
biochemical reactions, metabolic reactions, interactions, regulatory 
reactions, signal transduction reactions, chemical reactions, binding, 
phosphorylation 

Marks Quantities of biological compounds 
molecules, concentrations, cells 

Normal Arcs Connections of biological compounds and processes 

Test arcs 
Activation of biological processes 
transcription process, activation in gene regulation, enzyme activity, 
activation mechanisms 

Inhibitor arcs Inhibition of biological processes 
repression of gene regulation, inhibition mechanisms 

Read arcs Needs for biological processes 
catalysis 

Arc weights Biological coefficients 
stoichiometric coefficients, yield coefficients 

Min/max. 
capacities 

Reasonable biological capacities 
biological knowledge 

Delays Duration of biological processes 
Hazard 

functions 
Random duration of biological processes 
stochastic kinetics 

Maximum 
speeds 

Rate of biological processes 
kinetics effects/laws 

xHPNbio 

Biological systems 
metabolic networks, signal transduction networks, regulatory networks, 
chemical networks, cell cycle, cell communication, diseases, popula-
tion dynamics, flux networks, cultivation processes 

This xHPN formalism has been transformed to the modeling language Modelica 
(see section 4) to enable graphical modeling, hybrid simulation, and animation. The 
execution of a hybrid simulation requires the definition for activating and firing tran-
sitions as well as the resolution of possible conflicts. 

A discrete/stochastic transition 𝑡𝑗 in an xHPN is active if the markings of all input 
places �𝑃𝑖𝑛�𝑡𝑗�� do not fall below the minimum capacities when the arc weights are 
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removed, and the maximum capacities of all output places �𝑃𝑜𝑢𝑡(𝑡𝑗)� may not be 
exceeded when the arc weights are added. Additionally, the input places connected by 
test arcs must have more marks than the arc weights and the places connected by in-
hibitor arcs must have less marks than the arc weights; read arcs do not influence the 
activation of a transition. 

However, the activation process of continuous transitions requires a differentiation 
between connected continuous and discrete places. A continuous transition 𝑡𝑗 is active 
if all continuous input places �𝑃𝐶𝑖𝑛�𝑡𝑗�� have either a marking greater than their min-
imum capacities or they are fed by at least one input transition, i.e. the input speed 𝐼𝑖 
is not zero. Additionally, all continuous output places �𝑃𝐶𝑜𝑢𝑡�𝑡𝑗��  have either a 
marking less than their maximum capacities or they are emptied by at least one output 
transition, i.e. the output speed 𝑂𝑖 is not zero. The connected discrete places have to 
fulfill the same conditions as mentioned above for activating a discrete transition. In 
addition, the markings of input places connected by test arcs have to be greater than 
the arc weights and markings of places connected by inhibitor arcs have to be less 
than the arc weights. 

Definition 3. The tuple (𝑃𝐷,𝑃𝐶,𝑇𝐷,𝑇𝑆,𝑇𝐶,𝐹,𝐺,𝒯, ℐ,ℛ, 𝑓, 𝑐𝑙 , 𝑐𝑢, ℯ,𝓅,𝑑,ℎ, 𝑣, 𝑠,𝑚0 ) 
is an xHPN. A discrete/stochastic transition 𝑡𝑗 ∈ (𝑇𝐷 ∪ 𝑇𝑆) is active if and only if 

∀ 𝑝𝑖 ∈ 𝑃𝑖𝑛�𝑡𝑗� ∶

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗� ≥ 𝑐𝑙(𝑝𝑖) 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�𝒯� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�𝒯 ∈ 𝒯

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�ℐ� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�ℐ ∈ ℐ,

 

and 

∀ 𝑝𝑖 ∈ 𝑃𝑜𝑢𝑡(𝑡𝑖) ∶  𝑚(𝑝𝑖) + 𝑓�𝑡𝑗 → 𝑝𝑖� ≤ 𝑐𝑢(𝑝𝑖) 

and the condition 𝑠𝑗 must be fulfilled. 
A continuous transition 𝑡𝑗 ∈ 𝑇𝐶 is active if and only if 

∀ 𝑝𝑖 ∈ 𝑃𝐶𝑖𝑛�𝑡𝑗�: 

 

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) > 𝑐𝑙(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) ∧ 𝐼𝑖 > 0) 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�𝒯� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�𝒯 ∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∉ 𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�𝒯� ∨ �𝑚(𝑝𝑖) = 𝑓 ��𝑝𝑖 → 𝑡𝑗�𝒯� ∧ 𝐼𝑖 > 0� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�𝒯 ∈ 𝒯 ∧ �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�ℐ� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�ℐ ∈ ℐ,

 

and 
∀ 𝑝𝑖 ∈ 𝑃𝐶𝑜𝑢𝑡�𝑡𝑗� ∶  𝑚(𝑝𝑖) < 𝑐𝑢(𝑝𝑖) ∨ (𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) ∧ 𝑂𝑖 > 0). 

and 
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∀ 𝑝𝑖 ∈ 𝑃𝐷𝑖𝑛�𝑡𝑗� ∶

⎩
⎪
⎨

⎪
⎧𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗� ≥ 𝑐𝑙(𝑝𝑖) 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗� ∈ 𝐹

𝑚(𝑝𝑖) > 𝑓 ��𝑝𝑖 → 𝑡𝑗�𝒯� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�𝒯 ∈ 𝒯

𝑚(𝑝𝑖) < 𝑓 ��𝑝𝑖 → 𝑡𝑗�ℐ� 𝑖𝑓 �𝑝𝑖 → 𝑡𝑗�ℐ ∈ ℐ,

 

and 
∀ 𝑝𝑖 ∈ 𝑃𝐷𝑜𝑢𝑡�𝑡𝑗� ∶  𝑚(𝑝𝑖) + 𝑓�𝑝𝑖 → 𝑡𝑗� ≤ 𝑐𝑢(𝑝𝑖) 

and the condition 𝑠𝑗 must be fulfilled. 
 

An active transition has to be enabled by all input and output places to become 
firable. Thereby, enabled discrete transitions wait until the assigned delay is elapsed 
and stochastic transitions fire first when the putative firing time is reached. However, 
continuous transitions fire immediately when they are enabled. 

Several conflicts can occur when the places have to enable their connected active 
transitions. Possibly, a discrete place or a continuous place connected to discrete tran-
sitions has not enough marks to enable all output transitions simultaneously or cannot 
receive marks from all active input transitions due to the maximum capacity. Then a 
conflict arises that has to be resolved (type-1-conflict). This can be either done by 
providing the transitions with priorities or probabilities. In the first case, a determinis-
tic process decides which place enables which transitions and in the second case the 
enabling is performed at random; thereby transitions assigned with a high probability 
are chosen preferentially. 

Another conflict can occur between a continuous place and two or more continuous 
transitions when the input speed is not sufficient to fire all output transitions with the 
instantaneous speed 𝑣�𝑗 (see equation (1)) (type-2-output-conflict) or when the output 
speed is not sufficient to fire all input transitions with the speed of equation (1) (type-
2-input-conflict). This conflict is solved by sharing the speeds proportional to the 
assigned maximum speeds (see [17]). 

If a conflict occurs between a place and continuous as well as discrete/stochastic 
transitions, the discrete/stochastic transitions take always priority over the continuous 
transitions (type-3-conflict).  

A last conflict can occur when a discrete place has not enough marks to enable all 
connected continuous transitions (type-4-conflict). This is solved by prioritization of 
the involved transitions. 

The firing is then performed in the following way. Discrete transitions fire by re-
moving as much marks as the arc weights from all input places and by adding as 
many marks as the arc weights to all output places. However, the firing process of 
continuous transitions take place as a continuous flow with a maximum speed as-
signed to every transition. The recalculation of a discrete marking is described by an 
algebraic equation while a continuous marking is recalculated by a differential equa-
tion describing the flow of the continuous firing and an algebraic equation represent-
ing the firings of discrete transitions. 
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Definition 4. The tuple (𝑃𝐷,𝑃𝐶,𝑇𝐷,𝑇𝑆,𝑇𝐶,𝐹,𝐺,𝒯, ℐ,ℛ, 𝑓, 𝑐𝑙 , 𝑐𝑢, ℯ,𝓅,𝑑,ℎ, 𝑣, 𝑠,𝑚0 ) 
is an xHPN. The firing process of an active continuous transition 𝑡𝑗 ∈ 𝑇𝐶 is described 
by a negative mark change of all continuous input places which is expressed by the 
differential equation 

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= −𝑓�𝑝𝑖 → 𝑡𝑗� ⋅ 𝑣�𝑗          ∀ 𝑝𝑖 ∈ 𝑃𝐶𝑖𝑛�𝑡𝑗� 

and a positive mark change of all continuous output places which is expressed by the 
differential equation 

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= 𝑓�𝑡𝑗 → 𝑝𝑖� ⋅ 𝑣�𝑗          ∀ 𝑝𝑖 ∈ 𝑃𝐶𝑜𝑢𝑡�𝑡𝑗�, 

where 𝑣�𝑗 is the instantaneous speed of transition 𝑡𝑗 and calculated by the following 
equation if the transition is not involved in a type-2-conflict [2, 17] 

𝑣�𝑗 = min� min
𝑝𝑖∈𝑃𝐼𝑖𝑛�𝑡𝑗�

�
1

𝑓�𝑝𝑖 → 𝑡𝑗�
� 𝑓(𝑡𝑘 → 𝑝𝑖) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐶𝐹𝑖𝑛(𝑝𝑖)

� ,

min
𝑝𝑖∈𝑃𝐼𝑜𝑢𝑡�𝑡𝑗�

�
1

𝑓�𝑡𝑗 → 𝑝𝑖�
� 𝑓(𝑝𝑖 → 𝑡𝑘) ⋅ 𝑣�𝑘

𝑡𝑘∈𝑇𝐶𝐹𝑜𝑢𝑡(𝑝𝑖)

� , 𝑣𝑗� 

(1) 

where 𝑃𝐼𝑖𝑛�𝑡𝑗�  is the set of continuous input places of 𝑡𝑗  with 𝑚(𝑝𝑖) = 𝑐𝑙(𝑝𝑖) , 
𝑃𝐼𝑜𝑢𝑡�𝑡𝑗�  is the set of continuous output places of 𝑡𝑗  with 𝑚(𝑝𝑖) = 𝑐𝑢(𝑝𝑖) , 
𝑇𝐶𝐹𝑖𝑛(𝑝𝑖) ⊆ 𝑇𝐶 is the set of all continuous firing input transitions, 𝑇𝐶𝐹𝑜𝑢𝑡(𝑝𝑖) ⊆ 𝑇𝐶 
is the set of all continuous firing output transitions. If the transition is involved in a 
type-2-conflict, this speed has to be adapted appropriately (see [17]). 
An active discrete transition 𝑡𝑗 ∈ 𝑇𝐷 waits 𝑑𝑗 time units before it fires and a stochas-
tic transition 𝑡𝑗 ∈ 𝑇𝑆  fires when the putative firing time 𝜏𝑗 is reached which is calcu-
lated based on the hazard function ℎ. Both fire by removing the arc weight from all 
input places 

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) − 𝑓�𝑝𝑖 → 𝑡𝑗�  ∀ 𝑝𝑖 ∈ 𝑃𝑖𝑛�𝑡𝑗� 

and by adding the arc weight to all output places 

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + 𝑓�𝑡𝑗 → 𝑝𝑖�  ∀ 𝑝𝑖 ∈ 𝑃𝑜𝑢𝑡�𝑡𝑗�. 

The marking of a discrete place 𝑝𝑖 ∈ 𝑃𝐷 can be recalculated by the following algebra-
ic equation 

𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + � 𝑓�𝑡𝑗 → 𝑝𝑖� 
𝑡𝑗∈𝑇𝐷𝐹𝑖𝑛(𝑝𝑖)

− � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐷𝐹𝑜𝑢𝑡(𝑝𝑖)

, 

whereby 𝑇𝐷𝐹𝑖𝑛(𝑝𝑖) ⊆ (𝑇𝐷 ∪ 𝑇𝑆) is the set of all discrete/stochastic firing input tran-
sitions and 𝑇𝐷𝐹𝑜𝑢𝑡(𝑝𝑖) ⊆ (𝑇𝐷 ∪ 𝑇𝑆) is the set of all discrete/stochastic firing output 
transitions. 
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The continuous mark change of a continuous place 𝑝𝑖 ∈ 𝑃𝐶 is performed with the 
aid of the following differential 

𝑑𝑚(𝑝𝑖)
𝑑𝑡

= � 𝑓�𝑡𝑗 → 𝑝𝑖�
𝑡𝑗∈𝑇𝐶𝐹𝑖𝑛(𝑝𝑖)

⋅ 𝑣�𝑗  − � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐶𝐹𝑜𝑢𝑡(𝑝𝑖)

⋅ 𝑣�𝑗 

and, in addition, by the following algebraic equation for the discrete mark change 
caused by firing connected discrete transitions 

𝑚𝑑𝑖𝑠(𝑝𝑖) = � 𝑓�𝑡𝑗 → 𝑝𝑖� 
𝑡𝑗∈𝑇𝐷𝐹𝑖𝑛(𝑝𝑖)

− � 𝑓�𝑝𝑖 → 𝑡𝑗�
𝑡𝑗∈𝑇𝐷𝐹𝑜𝑢𝑡(𝑝𝑖)

. 

At these discrete firing times the continuous marking is reinitialized by 

 𝑚′(𝑝𝑖) = 𝑚(𝑝𝑖) + 𝑚𝑑𝑖𝑠(𝑝𝑖). 

4 The Petri Net Library in Modelica (PNlib) 

The xHPN definition and the corresponding definitions for activation, enabling, and 
firing mentioned above have been implemented by means of the object-oriented mod-
eling language Modelica to enable graphical hierarchical modeling, hybrid simulation, 
and animation [18]. Modelica is developed and promoted by the Modelica Associa-
tion since 1996 for modeling, simulation, and programming primarily of physical and 
technical systems and processes. Additionally, the Modelica standard library is avail-
able from the Modelica Association to model mechanical (1D/3D), electrical (analog, 
digital, machines), thermal, fluid, control systems, and hierarchical state machines. 
Furthermore, several libraries have been developed in the last decade for specific 
applications. An overview can be found on the Modelica homepage 
(www.modelica.org). The development of the language and libraries is ongoing and 
driven by several European projects (EUROSYSLIB, MODELISAR, OPENPROD, 
and MODRIO). Since the year 2000, Modelica is used successfully in the industry 
which is documented in the proceedings of many Modelica conferences and journals. 

The Modelica models are described on the textual level by discrete, algebraic, and 
differential equations and by schematics on the graphical level. A schematic consists 
of connected components which are defined by other components or on the lowest 
level by equations in the Modelica syntax. The components have connectors which 
describe the interaction between them. By drawing a line from one component to 
another, a connection is established to enable interactions. In this manner a model is 
constructed. Several components can be structured in libraries, called packages, 
which provides hierarchical modeling. Moreover, the wrapping technique enables the 
representation of sub-models consisting of several connected components by a specif-
ic adapted icon in order to simplify the modeling process. Then, the sub-models can 
be used several times in the same or in different models and, in addition, it offers an 
easy-to-use-model at the top level with an intuitive and familiar adapted view. 
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For graphical modeling, simulation, and animation an appropriated environment is 
needed. Several commercial and open- source tools are available. A full list can be 
found on the Modelica homepage (www.modelica.org). 

Each of the xHPN components - transitions, places, and arcs - is modeled by an 
own Modelica model which are organized and structured in a Modelica package, 
called PNlib (Petri Net library). All components are defined by discrete (event-
based), algebraic, and differential equations (cp. [19]). 

The main process in the place model is the recalculation of the marking after firing 
a connected transition. In the case of the discrete place model, this is realized by the 
discrete equation 

when fire pre(reStart) then 
   t = if fire then pre(t)+firingSumIn–firingSumOut 
    else reStartTokens; 
end when; 

whereby pre(t) accesses the marking t immediately before the transitions fire. To 
this amount, the arc weight sum of all firing input transitions is added and the arc 
weight sum of all firing output transitions is subtracted from it. Additionally, the to-
kens are reset to reStartTokens when the user-defined condition reStart be-
comes true; this could be a global condition. 

The marking of continuous places can change continuously as well as discretely. 
This is implemented by the following construct 

der(t) = conMarkChange; 
when discreteFire then 
   reinit(t, t+discreteMarkChange); 
end when; 
when reStart then 
   reinit(t,reStartMarks); 
end when; 

whereby the der-operator access the derivative of the marking t according to 
time. The continuous mark change is performed by a differential equation while the 
discrete mark change is performed by the reinit-operator within a discrete equa-
tion. This operator causes a re-initialization of the continuous marking every time 
when a connected discrete transition fires. Additionally, the marking is re-initialized 
by reStartMarks when the condition reStart becomes true. 

The main process of the transition is to check if it can fire. When it is possible, dis-
crete and stochastic transitions wait as long as the (random) delay is passed while the 
continuous transitions fires continuously with a speed calculated in the transition 
model. Via connector variables, the places report the transitions their markings and 
the transitions report when they fire. The conflicts which could arise in xHPN models 
have to be resolved by the mentioned methods to have successful and reliable simula-
tion (see [17]). 
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5 Application 

In this section we briefly demonstrate the PNlib possibilities in the software appli-
cation VANESA (www.vanesa.sf.net). VANESA is a powerful and easy-to-use net-
work modeling tool to members of the laboratory, which combines different fields of 
studies such as life science, database consulting, modeling and visualization for a 
semi-automatic and lab-validated reconstruction of biological networks. The applica-
tion helps to model experimental results that can be expanded with database infor-
mation to perform modern biological network analysis. Based on project experimental 
data and the integrated databases in VANESA, users are able to explore and recon-
struct any biological system, which can be further transformed, simulated, and ana-
lyzed in the language of Petri nets.  

Therefore, VANESA uses the PNlib and xHPNbio formalism for simulation pro-
cessing. One feature of VANESA is the possibility to automatically transform any 
kind of network into the language of an xHPNbio. Thus, users are able to model and 
simulate dynamic systems within one tool. Petri net simulations are performed in the 
background, not visible to users. Simulation results are visualized in plots and ani-
mated within the active window (see Fig. 1). 

6 Conclusions 

A powerful Petri net simulation environment has been developed to enable the pro-
cessing of experimental data to usable new insights about biological systems. The 
mathematical modeling concept xHPNbio serves as specification for the presented 
simulation environment. The xHPNbio elements are modeled object-oriented by dis-
crete, algebraic, and differential equations in the Modelica language. This allows an 
easy way to maintain, extend, and modify them. The hybrid simulation is performed 
by an appropriate Modelica tool which usually comprises several possibilities to adapt 
the solver settings in order to achieve reliable simulation results. 

The mathematical modeling concept xHPNbio, was specially developed based on 
the demands of biological processes, and is so powerful but also so universal and 
generic that it is an ideal all-round-tool for modeling and simulation of nearly all 
kinds of processes such as business processes, production processes, logistic process-
es, work flows, traffic flows, data flows, multi-processor systems, communication 
protocols, and functional principals. 

The PNlib will be freely available on the Modelica homepage (www.modelica.org) 
soon. However, in this paper we have already presented a software application, called 
VANESA, which uses the PNlib for simulation processes of biological networks.  

In addition, a future goal is to provide an open source Petri net simulation tool for 
up till now the PNlib works only with the commercial Modelica tool Dymola. This 
demands a further development of the open source Modelica tool OpenModelica to 
get the PNlib to work with it because some Modelica features are not yet supported. 
The University of Applied Sciences Bielefeld is already closely involved in the fur-
ther development of the OpenModelica tool [20]. 
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Fig. 1. An example of a simulation in VANESA. Starting point is the reconstruction of a bio-

logical network (NF-κB), which is automatically transformed into the xHPNbio formalism. The 
top picture shows the reconstruction of the biological network by data mining and information 

fusion. The middle left picture shows the xHPN user settings for the following simulation in the 
PNlib of Modelica. The middle right picture and the bottom picture show visualized and ani-
mated simulation results in VANESA. Simulation results can be plotted and also mapped on 
each element within the model. Plotted curves give detailed insight into system dynamics, 

whereas animated simulation results give insights about a certain time step. Shape and color of 
the elements present amount and developing of values (red increasing, blue decreasing). 
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