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Abstract. When working with large stochastic models simulation re-
mains the only possible analysis technique. Therefore, simulative model
checking is the way to go. While finite time horizon algorithms are well
known for probabilistic linear-time temporal logic, we provide an infinite
time horizon procedure as well as steady state computation, based on ex-
act stochastic simulation algorithms. We demonstrate the approach on
models of the RKIP inhibited ERK pathway and angiogenetic process.
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1 Introduction

Stochastic modelling of biochemical reaction networks is getting more and more
popular. This also increases the demand for efficient analysis of such models.
While small and medium-sized models can be analysed numerically, we focus on
large or unbounded models. Therefore we use stochastic simulation to overcome
the problem of state space explosion.

We use stochastic Petri nets (SPN ) [1] as modelling paradigm, which gives
us a complete formalised and standardised framework, as well as an intuitive way
of modelling concurrent behaviour. A number of biochemical species N involved
in the biological model are represented as places p1 . . . pN , and the reactions
between them refer to the transitions t1 . . . tM . The kinetics of a reaction is
defined as possibly state-dependent rate function ht assigned to the transition.
Places and transitions are connected via directed arcs. Each arc contains the
stoichiometric value of the associated species. The semantics of such an SPN is
defined as continuous-time Markov chain (CTMC).

The dynamic behaviour of stochastic models can be analysed in different
ways. We showed in [2] that numerical analysis is currently efficient up to 1×109

states. Beyond this limit, stochastic simulation remains the only possible tech-
nique. Stochastic simulation may be performed with approximate or exact meth-
ods. An approximate method is τ -leaping [3], which generates an approximate
realisation of the stochastic process. Its advantage is the ability to jump over
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several transitions and thus be more efficient in trace generation than exact meth-
ods. But for simulative model checking, we need to know the exact occurrences
of each transition. Therefore, only exact simulation algorithms are suitable for
the purpose of simulative model checking, like Gillespie’s direct method [4] or
the next reaction method [5] by Gibson & Bruck.

In this paper, we extend the finite time horizon model checking algorithm of
probabilistic linear-time temporal logic to an infinite time horizon and provide
an algorithm to compute simulatively steady state formulas.

2 Stochastic Simulation

In biochemical reaction networks (with n molecular species and k reactions),
the molecular reactions between the species are random processes, because it is
impossible to predict the time at which the next reaction will occur. Stochastic
modelling has therefore become an important tool to fully understand the system
behaviour of such reaction networks.

The stochasticity can be described in a time-dependent manner by the Chem-
ical Master Equation. In probability theory, this identifies the evolution as a
continuous-time Markov chain (CTMC), with the integrated master equation
obeying a Chapman-Kolmogorov equation. When working with biological sys-
tems, it may be infeasible to set up the CTMC as the state space X ⊆ Nn can
be very large or even infinite. The largeness of CTMCs makes simulation an
important analysis technique: instead of computing the CTMC directly, simula-
tion aims at imitating the CTMC by generating different paths of the CTMC,
i.e., a sequence of discrete random variable Xl(t). The discrete random variable
Xl(t) describes the number of molecules of species Sl, l ∈ {1, . . . , n} present
at time t. The system state at time t is thus a discrete n-dimensional random
vector X(t) = (X1(t), . . . , Xn(t)) ∈ X . Given the system is in state X(t), the
probability that a transition/reaction of type j ∈ {1, . . . , k} will occur in the
infinitesimal time interval [t+ τ, t+ τ + dτ) is given by:

P (t+ τ, j|X(t))dτ = aj(X(t)) exp (−a0(X(t))τ) dτ

For each reaction j, the rate is given by the propensity function aj , where aj(x)dτ
is the conditional probability that a reaction of type j occurs in the infinitesimal
time interval [t, t+ dτ), given state X(t) at time t. The sum of the propensities
of all possible transitions in the current state X(t) is given by a0(X). Thus, the
different (enabled) transitions in the net compete in a race condition and the
fastest one determines next state and the time elapsed. In the new state, the
race condition is started anew.

To analyse or understand the behaviour of a biochemical reaction network,
many trajectories need to be simulated for a good approximation of the under-
lying CTMC. Although in principle known a long time before, Gillespie was the
first who developed a supporting theory for a stochastic simulation of chemical
kinetics [4]. He presented the Stochastic Simulation Algorithm (SSA; often also
called Gillespie’s algorithm), which is a Monte Carlo procedure for numerically
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generating CTMC. Since Gillespie’s seminal work, several variants and different
implementations and optimisations of the SSA have been proposed. Basically,
each variant performs the following steps:
1. Initialise time t = t0 and the system’s state X at time t0.
2. Repeat:

(a) determine time increment τ ∈ R
(b) select next reaction type j depending on the current state X(t)
(c) perform state transition imposed by reaction of type j and update state

vector X
(d) update time t = t+ τ .
until simulation time is reached.

The SSA simulates every state transition event, one at a time, and updates the
system after each state transition. To determine the time increment τ and to
select the next reaction requires to generate random numbers. Different realisa-
tions of the CTMC are obtained by different initialisations of the random num-
ber generator. Since reliable statements about the system behaviour (variance)
can only be made based on many simulations, the usefulness of the simulation
approach depends on the simulation time for each individual trajectory. Accel-
erating simulations is therefore desirable without changing the basic ideas of the
algorithm.

Many variants of the SSA aim at reducing the computational cost of selecting
the next reaction that will occur. Cao et al. [6] keep the reactions with larger
propensities at the beginning of the list. The position of each reaction in the list
is thereby determined after some pre-simulations. McCollum et al. [7] maintain
a loosely sorted order of the reactions as the simulation proceeds. Instead of
arranging the reactions in a linear list, Gibson & Bruck [5] propose to use ad-
vanced data structures (trees) to speed up the search for the next reaction that
will occur. However, the time to manage the advanced data structures partially
compensates the speed-up due to faster search [8].

Further performance increases of the SSA are obtained if only those propensi-
ties are recalculated that actually have changed after a state transition, whereas
all others are reused (e.g., [8, 5]).

An additional speed-up to the SSA is provided by the approximate method
τ -leaping [3], in which time t is advanced by a preselected amount τ and the
numbers of firings of the individual transitions during the time interval [t, t+ τ)
are approximated by Poisson random numbers. Thus, instead of (sequentially)
tracing every single state transition, several reactions are executed in parallel.
With τ -leaping, it is assumed that all propensity functions are approximately
constant in [t, t + τ), which is referred to as the leap condition. To ensure this,
it is important to select τ sufficiently small, but also large enough to accelerate
simulation.

3 Model Checking
Stochastic simulation produces traces through the state space of the model. For
the specification of temporal formulas we define the probabilistic extension of
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the Linear-time Temporal Logic (LTL) [9] with numerical constraints [10], which
is called Probabilistic Linear-time Temporal Logic with numerical constraints
(PLTLc) [11]. The grammar of all PLTLc formulas is given in Definition 1.

Definition 1. Probabilistic Linear-time Temporal Logic with Constraints

ψ := P./ x [φ] | P=? [φ]
./∈ {<,≤,≥, >} , x ∈ [0, 1]

φ := X Iφ | F Iφ | G Iφ | φ U Iφ | ¬φ | φ ∧ φ | φ ∨ φ | σ
I := [x1, x2] =

{
x ∈ R+| x1 ≤ x ≤ x2

}
, omit I = [0,∞)

σ := ¬σ | σ ∧ σ | σ ∨ σ | valueE value | true | false
E ∈ {<,≤,≥, >,=, 6=}

value := value ∼ value | Place | $V ariable | Int | Real | function
∼∈ {+,−, ∗, /}

The probability operator P has two different modes. If it is used with the question
mark as P=? [φ] then it will return the probability Pr(φ) that φ is true. In the
second case, P./ x [φ] returns true, if Pr(φ) ./ x is fulfilled, false otherwise. In
simulative model checking we compute a confidence interval (c.i.); in consequence
of that, we have to introduce an additional return value in the second case. For
simplicity, we assume the c.i. to have a lower and an upper bound Bl, Bu ∈ R≥0,
such that the probability Pr(φ), which is not known in our case, is Bl ≤ Pr(φ) ≤
Bu.

P./ x[φ] =





true if x ./ [Bl, Bu] ∧ x 6∈ [Bl, Bu]
false if x 6./ [Bl, Bu] ∧ x 6∈ [Bl, Bu]
unknown if x ∈ [Bl, Bu]

The operators ¬, ∧, ∨ are the standard boolean operators not, and, or. Whereas
X , F , G , U denote the temporal operators NEXT, FINALLY, GLOBALLY
and UNTIL. The NEXT operator (X Iφ) refers to true in the next state and
within the time interval I. The UNTIL operator (φ1 U Iφ2) indicates that a
state where φ2 holds is eventually reached within the time interval I, while φ1
continuously holds. The FINALLY operator (F Iφ) means that at some point
within the time interval I a state where φ holds is eventually reached. Whereas
the GLOBALLY operator (G Iφ) refers to the condition φ continuously holding
true within the time interval I. The latter two are syntactic sugar, as they rely
on the equivalences Fφ ≡ true Uφ and Gφ ≡ ¬F¬φ.
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A trace T fulfils a linear-time temporal logic formula φ if the following |=
relations hold:

T |= Xφ ⇐⇒ T (1) |= φ

T |= Fφ ⇐⇒ ∃i ∈ N : T (i) |= φ

T |= Gφ ⇐⇒ ∀i ∈ N : T (i) |= φ

T |= φ1 Uφ2 ⇐⇒ ∃i ∈ N : T (i) |= φ2 and ∀j ∈ N ∧ j < i : T (j) |= φ1

T |= ¬φ ⇐⇒ T 6|= φ

T |= φ1 ∧ φ2 ⇐⇒ T |= φ1 ∧ T |= φ2

T |= φ1 ∨ φ2 ⇐⇒ T |= φ1 ∨ T |= φ2

T |= v1 E v2 ⇐⇒ evalState(v1, T
(i)) E evalState(v2, T

(i))

The function evalState(v, T (i)) assigns a numerical value to the expression v by
looking up the tokens that each place x ∈ P (v) has in state T (i) of trace T .

In the next sections we present an algorithm to compute steady state formu-
las, and afterwards an algorithm to compute time-unbounded temporal operators
in a simulative manner. Time-bounded algorithms for simulative model checking
are well known, i.e., [10].

3.1 Steady State Computation

In steady state simulation, the measures of interest are defined as limits, as the
length of the simulation goes to infinity. There is no natural event to terminate
the simulation, so the length of the simulation is made large enough to get “good”
estimates of the quantities of interest. Steady-state simulation generally poses
two problems:

1. The existence of a transient phase may cause the estimate to be biased.
2. The simulation runs are long, and usually one cannot afford to carry out

many independent simulations.

These are several methods that allow to cope with these problems to some extent.
Among them are: the batch means method, the method of independent replicas,
and the regeneration method. Each of these methods has its advantages and
disadvantages. In our implementation we use a sample batch means algorithm
to compute the steady state.

We choose Skart [12], which is an automated sequential procedure for on-the-
fly steady state simulation output analysis, because it is specifically designed to
handle observation-based statistics and usually requires a smaller initial sample
size compared with other well-known simulation analysis procedures [12]. This
algorithm partitions a long simulation run into batches, computes an average
statistics for each batch and constructs an interval estimate using the batch
means. Based on this interval estimate Skart decides whether a steady state is
reached or more samples were needed. A detailed description of the algorithm is
given in [12].
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We extend PLTLc with the steady state operator S. Definition 2 states the
syntax of it. The return values are quite the same as for the probability operator
P. Inside of S are only state formulas allowed, i.e., no temporal operators.

Definition 2. Extension of PLTLc with steady state operator S.

ψ := P./ x [φ] | P=? [φ] | S./ x [σ] | S=? [σ]
./∈ {<,≤,≥, >} , x ∈ [0, 1]

Steady-state formulas are computed with Algorithm 1. At first the simulation
trace is created until the steady state is reached (line 4–8). To get an unbiased
result, we cut off the first n states, which bias the steady state (line 9). The
steady state probability is now the ratio To/Ts of the occupation time To of the
fulfilling states and the simulation time Ts (line 11–19). But this gives correct
results only for those Petri nets, where the reachability graph consists of only
one strongly connected component. The complexity of this decision is the same
as for constructing the reachability graph. To solve this problem, one has to
make several steady state computations and average the values. In that way
the individual steady state estimates are weighted according to the strongly
connected components.

Algorithm 1 Steady state computation for one simulation run
Require: trace← (m0, t0)
1: procedure evalSteadyState(σ)
2: steadyStateReached← false
3: pos← 0
4: repeat
5: trace← trace + nextState(trace(pos))
6: pos← pos+ 1
7: steadyStateReached← checkSteadyState(trace)
8: until steadyStateReached = true
9: cutOff ← getSteadyStateCutOff

10: To ← 0, Ts ← 0
11: for i← cutOff, |trace| do
12: (si, ti)← trace(i) . state si, sojourn time ti in si

13: Ts ← Ts + ti
14: res← evalState(σ, si)
15: if res = true then
16: To ← To + ti
17: end if
18: end for
19: return To/Ts

20: end procedure
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3.2 Verification of Time-Unbounded Until
In Algorithm 2 we present the algorithm for checking time-unbounded until
formulas. It is nearly the same as for time-bounded formulas except that one
has to stop the simulation trace at some time point. The decision of doing that
is the crucial part of the algorithm. We assume that reaching the steady state is
a reasonable stopping criteria (line 38). A system in a steady state has numerous
properties that are unchanging in time. This implies that for any property p of
the system, the partial derivative with respect to time is zero:

∂p

∂t
= 0

If a system is in steady state, then the recently observed behaviour of the system
will continue into the future. In stochastic systems, the probabilities that various
states will be repeated will remain constant.

4 MARCIE: An Implementation
MARCIE [13] is a tool for analysing generalised stochastic Petri nets (GSPN ),
supporting qualitative and quantitative analyses including model checking capa-
bilities. Particular features are symbolic state space analysis including efficient
saturation-based state space generation, evaluation of standard Petri net prop-
erties as well as Computational Tree Logic model checking. Further it offers
symbolic Continuous Stochastic Logic model checking and permits to compute
expectations for rewards which can be added to the core GSPN . Most of MAR-
CIE’s features are realised on top of an Interval Decision Diagram (IDD) im-
plementation [14]. IDDs are used to efficiently encode interval logic functions
representing marking sets of bounded Petri nets. Thus, MARCIE falls into the
category of symbolic analysis tools. However, it additionally comprises approxi-
mative and simulative engines, which work explicitly, to support also stochastic
analysis of very large and unbounded nets. It includes two exact simulation al-
gorithms, firstly Gillespie’s direct method [4], and secondly the next reaction
method by Gibson & Bruck [5].

Parallelising the simulation is a good way to speed-up the computation. We
use the Message Passing Interface (MPI) to develop a portable and scalable
simulation tool for large-scale models. The desired number of simulations runs
is equally distributed to the worker processes. Therefore the run-time decreases
with the number of workers.

MARCIE is completely written in C++, and makes use of the libraries GMP,
pthreads, flex/bison and boost. It comprises about 45,000 lines of source code.
MARCIE is available for non-commercial use; we provide statically linked bina-
ries for Linux and Mac OS X. The tool, the manual and a benchmark suite can
be found on our website http://www-dssz.informatik.tu-cottbus.de/marcie.html.
MARCIE itself comes with a textual user interface. Options and input files can
also be specified by a generic Graphical User Interface (GUI), written in Java,
which can be easily configured by means of a XML description. The GUI is part
of our Petri net analyser Charlie [15].
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Algorithm 2 Unbounded Until for one simulation run
Require: trace← (m0, t0)
1: procedure evalFormula(φ, pos, trace)
2: steadyStateReached← false, res← false
3: repeat
4: switch φ
5: case σ :
6: (spos, tpos)← trace(pos)

7: res← evalState(σ, spos)
8: return (pos, res)
9: case ¬φ1 :

10: (pos1, res1)← evalFormula(φ1, pos, trace)
11: return (pos1, ¬res1)
12: case φ1 ∧ φ2 :
13: (pos1, res1)← evalFormula(φ1, pos, trace)
14: (pos2, res2)← evalFormula(φ2, pos, trace)
15: return (min(pos1, pos2), res1 ∧ res2)
16: case φ1 ∨ φ2 :
17: (pos1, res1)← evalFormula(φ1, pos, trace)
18: (pos2, res2)← evalFormula(φ2, pos, trace)
19: return (max(pos1, pos2), res1 ∨ res2)
20: case Xφ1 :
21: if pos = |trace| then
22: trace← trace + nextState(trace(pos))
23: end if
24: pos← pos+ 1
25: (pos1, res1)← evalFormula(φ1, pos, trace)
26: return (pos1, res1)
27: case φ1Uφ2 :
28: (pos2, res2)← evalFormula(φ2, pos, trace)
29: if res2 = true then
30: return (pos2, res2)
31: end if
32: (pos1, res1)← evalFormula(φ1, pos, trace)
33: if res1 = false then
34: return (pos1, res1)
35: end if
36: pos← pos1

37: end switch
38: steadyStateReached← checkSteadyState(trace)
39: if pos = |trace| then
40: trace← trace + nextState(trace(pos))
41: end if
42: pos← pos+ 1
43: until steadyStateReached = true
44: return (pos, res)
45: end procedure
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5 Case Studies

In this section we demonstrate our approach on the models of the RKIP inhib-
ited ERK pathway and angiogenetic process. All Petri nets were modelled with
Snoopy [16] and analysed with MARCIE [13]. The experiments were carried out
on a machine with 4x AMD Opteron™ 6276 with 2.3 GHz and 256GB RAM
running CentOS 6.

5.1 RKIP inhibited ERK pathway

This model shows the influence of the Raf Kinase Inhibitor Protein (RKIP) on
the Extracellular signal Regulated Kinase (ERK) signalling pathway. A model of
non-linear ordinary differential equations was originally published in [17]. Later
on, it was discussed as qualitative and continuous Petri nets in [18], and as three
related Petri net models in [19]. The stochastic Petri net SPNERK comprises
11 places and 11 transitions connected by 34 arcs and is shown in Fig. 1. All

Raf1Star RKIP

Raf1Star_RKIP

ERKpp

MEKpp_ERK Raf1Star_RKIP_ERKpp RKIPp_RP

MEKpp ERK RKIPp RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8
r11

Raf1Star + RKIP r1,r2↔ Raf1Star RKIP
Raf1Star RKIP + ERKpp r3,r4↔ Raf1Star RKIP ERKpp
Raf1Star RKIP ERKpp r5→ Raf1Star + ERK + RKIPp

ERK + MEKpp r6,r7↔ MEKpp ERK r8→ ERKpp + MEKpp
RKIPp + RP r9,r10↔ RKIPp RP r11→ RKIP + RP

Fig. 1. Stochastic Petri net of the RKIP inhibited ERK pathway, including textual
representation of the chemical reactions.

transition rate functions use mass action kinetics with the original parameter
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values from [17]. The model is scalable by the initial amount of tokens in the
places RKIP, MEKpp, ERK and RP. The more initial tokens on each of these
places, the bigger the state space of the Petri net. Table 1 shows the number of
reachable states for different initial markings.

Table 1. The size of the state space for different initial markings of SPNERK com-
puted with MARCIE’s symbolic state space generation. All places which carry one
token in Fig. 1 have now initially N tokens.

N |states| N |states| N |states| N |states|
5 1,974 20 1,696,618 40 79,414,335 100 1.591×1010

10 47,047 25 5,723,991 50 2.834×108 250 3.582×1012

15 368,220 30 15,721,464 60 8.114×108 500 2.231×1014

We first check the reachability of a state at some time in the future, such
that the number of tokens on place MEKpp is between 60% and 80% of N:

P=? [F [MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8]] .

In any case such a state was reached, therefore the probability of the formula is
1, see Table 2.

Table 2. Reachability analysis for different initial markings N of SPNERK . The total
time is given for different numbers of workers.

N 1 2 4 8 16 32 64 result

20 0m56s 0m28s 0m14s 0m7s 0m3s 0m2s 0m0s [1,1]
30 1m17s 0m38s 0m19s 0m10s 0m4s 0m3s 0m1s [1,1]
40 1m38s 0m48s 0m24s 0m12s 0m6s 0m3s 0m1s [1,1]
50 1m57s 0m59s 0m30s 0m15s 0m7s 0m4s 0m2s [1,1]
60 2m23s 1m9s 0m35s 0m17s 0m8s 0m5s 0m3s [1,1]

Since we know now that such a state is eventually reached, we want to com-
pute the steady state probability of being in such a state, where the number of
tokens on place MEKpp is between 60% and 80% of N:

S=? [MEKpp ≥ N · 0.6 ∧MEKpp ≤ N · 0.8] .

This is the same property as in [2], so we can verify the correctness of the results.
The results in Table 3 show first that the resulting confidence interval covers the
probability computed by the Jacobi method in [2]. Second the algorithm scales
nearly linear with the number of worker processes. A very interesting behaviour
regards the relationship between the state space size and the total run-time of
the computation. One could expect an increase of the run-time, but it stays the
same. This is a result of the level semantics described in [20].
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Table 3. Steady state analysis for different initial markings N of SPNERK . The total
time is given for different numbers of workers.

N 1 2 4 8 16 32 64 result

20 7m31s 3m46s 1m53s 0m57s 0m27s 0m17s 0m10s [0.77482, 0.77534]
30 7m34s 3m43s 1m51s 0m57s 0m28s 0m17s 0m11s [0.83277, 0.83325]
40 7m40s 3m43s 1m56s 0m57s 0m28s 0m18s 0m11s [0.87416, 0.87470]
50 7m43s 3m57s 1m57s 1m0s 0m30s 0m17s 0m11s [0.90437, 0.90486]
60 7m53s 3m59s 1m56s 1m1s 0m28s 0m17s 0m12s [0.92641, 0.92696]

5.2 Angiogenesis
Angiogenesis is a complex phenomenon that goes from a molecular level to
macroscopic events. This Petri net models a part of the signal transduction
pathway involved in the angiogenetic process and was originally published in
[21]. The stochastic Petri net SPNANG comprises 39 places and 64 transitions
connected by 185 arcs.

The model is scalable by the initial amount of tokens in the places Akt, DAG,
Gab1, KdStar, Pip2, P3k, Pg and Pten. The more initial tokens on each of these
places, the bigger the state space of the Petri net. The number of reachable
states for different initial markings are shown in Table 4. As in the previous case

Table 4. The size of the state space for different initial markings of SPNANG com-
puted with MARCIE’s symbolic state space generation. The places Akt, DAG, Gab1,
KdStar, Pip2, P3k, Pg and Pten carry initially N tokens.

N |states| N |states| N |states| N |states|
1 96 4 2,413,480 7 2.181×109 10 4.537×1011

2 5,384 5 29,224,050 8 1.464×1010 15 5.207×1014

3 144,188 6 277,789,578 9 8.623×1010 20 1.428×1017

study we check for reachability first. Now we want to know the probability of
eventually reaching a state where no tokens reside on place Akt:

P=? [F [Akt = 0]] .

In contrast to SPNERK , Table 5 shows that the probability ranges from about
0.44 (N = 1) to 0.9 (N = 6). That means a state where no tokens lay on place
Akt is not always reached, because the CTMC consists of several strongly con-
nected components and in some of them such a state does not exist. Secondly
we compute the steady state probability of being in a state that has no tokens
on place Akt:

S=? [Akt = 0] .
The results in Table 6 show that the steady state probability is nearly the same
as in the reachability case as the overall steady state probability consists of
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Table 5. Reachability analysis for different initial markings N of SPNANG. The total
time is given for different numbers of workers.

N 1 2 4 8 16 32 64 result

1 12m10s 6m13s 3m3s 1m29s 0m49s 0m25s 0m13s [0.44542, 0.44642]
2 60m19s 30m18s 14m47s 7m14s 3m36s 1m52s 1m17s [0.81292, 0.81370]
3 65m37s 35m41s 18m31s 8m20s 4m2s 2m1s 1m55s [0.94319, 0.94365]
4 74m43s 37m14s 19m52s 9m45s 4m58s 2m18s 3m0s [0.98189, 0.98216]
5 79m45s 38m37s 18m54s 9m20s 4m37s 2m22s 3m35s [0.99380, 0.99396]
6 79m37s 39m57s 19m50s 9m14s 4m34s 2m11s 3m3s [0.99760, 0.99770]

two parts, first the probability of reaching a strongly connected component and
second the steady state probability inside these component. The result means the
steady state probability inside a strongly connected component, where a state
exists with Akt = 0, is almost 1. That’s why the overall steady state probability
almost coincides with the reachability probability.

Table 6. Steady state analysis for different initial markings N of SPNANG. The total
time is given for different numbers of workers.

N 1 2 4 8 16 32 64 result

1 7m1s 3m17s 1m42s 0m47s 0m26s 0m13s 0m9s [0.43773, 0.44771]
2 28m25s 14m10s 6m54s 3m33s 1m34s 0m51s 0m36s [0.80446, 0.81237]
3 58m42s 30m19s 17m54s 7m32s 3m46s 2m30s 1m20s [0.92772, 0.93284]
4 94m27s 49m59s 24m39s 11m53s 6m11s 3m25s 2m11s [0.97859, 0.98140]
5 133m56s 66m44s 33m24s 17m22s 8mm44s 4m49s 3m12s [0.98923, 0.99121]
6 170m57s 85m25s 42m54s 22m12s 11m13s 6m57s 3m30s [0.99649, 0.99758]

6 Related work

To compute the transient probability of the formula P=?[φ1 Uφ2] in state s
means to compute the probability distribution starting in s and making states
absorbing, which satisfy ¬φ1 ∨ φ2. The resulting linear system of equations can
be solved numerically by iterative methods like Gauss-Seidel or Jacobi. There
are several tools available that support such solvers, among them MARCIE [13].
The drawback of numerical solvers is their restriction to bounded CTMCs and
the complexity is typically O (n) and in worst case O

(
n2). On the other hand

they compute an “exact” result. The same methods were used to compute the
steady state distribution of bounded CTMCs for computing the steady state
probability of formulas like S=?[φ].

Statistical model checking [22–24] is a quite similar approach to simulative
model checking, but differs in some details. Hypothesis testing, i.e., sequential
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probability ratio test (SPRT), has good performance compared to the computa-
tion of point estimates, but it can only check formulas like P./ x. In the end, the
user gets a result of true or false and has no idea of the scale of the estimated
probability.

The Monte Carlo Model Checker MC2 [11] computes a point estimate of a
Probabilistic LTL logic (with numerical constraints) formula to hold for a model.
MC2 does not include any simulation engine but works offline by taking a set of
sampled trajectories generated by any simulation or ODE solver software.

Last not least, a combination of simulation and reachability analysis were
used to compute time-unbounded formulas in [22, 25]. But this approach suffers
from the same restrictions of bounded state spaces as the numerical methods.

7 Conclusions

In this paper we presented an infinite time horizon model checking algorithm plus
steady state operator for probabilistic linear-time temporal logic. We verified the
results of the simulative approach against the numerical solutions of the Jacobi
and Gauss-Seidel methods. We proved the efficiency of our algorithm and the
scalability by using several worker processes through MPI.

As our algorithm is based on stochastic simulation, its run-time does not
directly depend on the size of the state space, as for the numerical methods, but
on the rate functions of the transitions and the structural size of the Petri net.
That is the greater the sum of the transitions rates, the smaller the time steps
are, and the more simulation steps need to be done to reach a certain time point.

The main drawback of simulation-based methods remains. The achieved ac-
curacy depends on the number of simulation runs and grows exponentially with
the expected accuracy. Therefore methods of choice for bounded and medium-
sized models are numerical, otherwise simulation plays out its strength.
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