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Abstract. In the development of distributed systems a central role is
played by formal tools supporting various aspects of modularity such
as compositionality, refinement and abstraction. One of the main chal-
lenges consists in developing methods allowing to derive properties of
the composed system from properties of the components. In this context
we consider Elementary Net Systems related by morphisms and com-
pose them through an interface. Imposing structural constraints on the
components, we obtain some structural properties of the composed sys-
tem and, requiring additional local behavioural constaints, behavioural
properties.
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1 Introduction

In the development of distributed systems a central role is played by formal
tools supporting various aspects of modularity such as compositionality, refine-
ment and abstraction. Several formal approaches are available. One of the main
challenges consists in developing languages and methods allowing to derive prop-
erties of the refined or composed system from properties of the components.

In this paper we present a composition operator such that, by imposing on
the components structural constraints and only local behavioural constraints,
the composed system inherits behavioural properties of the components.

We consider systems modelled by State Machine Decomposable Elementary
Net Systems, i.e.: Elementary Net Systems obtained by composing state ma-
chines through synchronized events.

Following the approach proposed in [13, 1, 4, 5], the basic idea consists in
composing two different refinements of a common abstract view, obtaining a
new model which describes the system comprising the details of both operands,
while respecting the same abstract view.

The rules for identifying elements of the nets being composed are expressed
by means of morphisms towards another net system, called interface. The inter-
face can be seen as an abstraction of the whole system, shared by the components
or, alternatively, it can be interpreted as the specification of the communication



protocol with which the components agree. In this case, each operand can be
seen as made of the actual, local, component, and of an interface to the rest of
the system. Even if this operation is not a limit in the category of nets here con-
sidered, the composed system results to be related to both the components and
the interface by means of morphisms, and the resulting diagram is commutative.

The use of products in a suitable category of nets as a way to model com-
position by synchronization has been studied by several authors. A variation on
this theme, more similar to ours, proposed by Fabre in [8], applies to safe nets
and is built on the notion of pullback.

Fig. 1: An example of composition based on α-morphisms

Using morphisms to formalize the relation between a refined net and a more
abstract one is not new. The majority of refinement approaches introduced in
Petri net theory are mainly based on transition refinement and, less frequently,



on place refinement; see [9] and for a survey [6]. Another survey paper, [12],
describes a set of techniques which allow to refine transitions in Place/transition
nets, so that the relation between the abstract net and its refinement is given
by a morphism. There, the emphasis is on refinement rules that preserve specific
behavioural properties, within the wider context of general transformation rules
on nets.

A very general class of morphisms, interpreted as abstraction of system re-
quirements, with less focus on strict preservation of behavioural properties, is
defined in [7].

The refinement we use in this paper is similar in spirit to the one proposed
in [11]. In that approach, refinement is defined on transition systems, however
it is strictly related to refinement of local states in nets, through the notion of
region.

The morphisms used in this paper, called α-morphisms, can be seen as a
special case of those introduced by Winskel in [17]. Other morphisms in the
same line of Winskel morphisms, are the ones given in [16] and [2].

A simple example shows the main features of our proposal (see Fig. 1). The
interface, NI , is a simple sequence of two events. The two components, N1 and
N2, refine the same local state, b1, each by a subnet, shown on a gray background.
The composed net, N1�NI�N2, contains both refinements of b1, while the rest of
the net, not refined by the components, is taken as it is.

The paper is structured as follows. In Section 2 we collect preliminary defi-
nitions related to Petri nets which are used in the rest of the paper. Section 3
contains the definition of α-morphisms and their properties. Section 4 contains
the definition of �N -morphisms [13] and their properties. Section 5 defines the
composition guided by α-morphisms and the main result of the paper: under
some structural and local behavioural properties the composed net is bisimilar
to its components. Finally, in Section 6 we discuss some critical issues in our
approach. Proofs omitted in this paper can be found in an extended version [3].

2 Preliminary definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems [15].

We will use the symbol ↓ to denote the restriction of a function on a subset
of its domain.

2.1 Petri Nets

In net theory, models of distributed systems are based on objects called nets
which specify local states, local transitions and the relations among them. A net
is a triple N = (B,E, F ), where B is a set of conditions or local states, E is a
set of events or transitions such that B ∩ E = ∅ and F ⊆ (B × E) ∪ (E ×B) is
the flow relation.



We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E; note that we allow nets with isolated elements.

The preset of an element x ∈ X is •x = {y ∈ X|(y, x) ∈ F}; the postset of x
is x• = {y ∈ X|(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by �N = {x ∈ XN : •x = ∅}
and the out-elements of N by N� = {x ∈ XN : x• = ∅}.

A net is simple if for all x, y ∈ X, if •x = •y and x• = y•, then x = y.

A net N � = (B�, E�, F �) is a subnet of N = (B,E, F ) if B� ⊆ B,E� ⊆ E, and
F � = F ∩ ((B�×E�)∪ (E�×B�)). Given a subset of elements A ⊆ X, we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A,E ∩A,F ∩ (A×A)).

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B,E, F,m0), where (B,E, F ) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

The elements in the initial marking are interpreted as the conditions which
are true in the initial state.

A subnet of an Elementary Net System N identified by a subset of conditions
A and all its pre and post events, N(A ∪ •A•), is a Sequential Component of
N if N(A ∪ •A•) is a State Machine and if it has only one token in the initial
marking.

An Elementary Net System is covered by Sequential Components if every
condition of the net belongs to at least a Sequential Component. In this case we
say that the system is State Machine Decomposable.

The behaviour of Elementary Net Systems is defined through the firing rule,
which specifies when an event can occur, and how event occurrences modify the
holding of conditions, i.e. the state of the system.

Let N = (B,E, F,m0) be an Elementary Net System, e ∈ E and m ⊆ B. The
event e is enabled at m, denoted m [e�, if •e ⊆ m and e•∩m = ∅; the occurrence
of e at m leads from m to m�, denoted m [e�m�, iff m� = (m \ •e) ∪ e•.

Let � denote the empty word in E∗. The firing rule is extended to sequences
of events by m [��m and ∀e ∈ E, ∀w ∈ E∗,m [ew�m� = m [e�m��[w�m�; w is then
called firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w�m. The set of all reachable markings of N is denoted by [m0�.

An Elementary Net System is contact-free if ∀e ∈ E, ∀m ∈ [m0�: •e ⊆ m
implies e• ∩ m = ∅. If an Elementary Net System is covered by Sequential
Components then it is contact-free. An event is called dead at a marking m if it
is not enabled at any marking reachable fromm. A reachable markingm is called
dead if no event is enabled at m. An Elementary Net System is deadlock-free if
no reachable marking is dead.



2.2 Unfoldings

The semantics of an Elementary Net System can be given as its unfolding. The
unfolding is an acyclic net, possibly infinite, which records the occurrences of its
elements in all possible executions.

Definition 1. Let N = (B,E, F ) be a net, and let x, y ∈ X. We say that x and
y are in conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E
such that exF ∗x, eyF ∗y, and •ex ∩ •ey �= ∅.

Definition 2. An occurrence net is a net N = (B,E, F ) satisfying:

1. if e1, e2 ∈ E, e1• ∩ e2• �= ∅ then e1 = e2;
2. F ∗ is a partial order,
3. for any x ∈ X, {y : yF ∗x} is finite;
4. #N is irreflexive,
5. the minimal elements with respect to F ∗ are conditions.

A branching process of N is an occurrence net whose elements can be mapped
to the elements of N .

Definition 3. Let N = (B,E, F,m0) be an Elementary Net System, and Σ =
(P, T,G) be an occurrence net. Let π : P ∪ T → B ∪ E be a map.

The pair (Σ,π) is a branching process of N if:

– π(P ) ⊆ B, π(T ) ⊆ E;
– π restricted to the minimal elements of Σ is a bijection on m0;
– for each t ∈ T , π restricted to •t is injective and π restricted to t• is injective;
– for each t ∈ T , π(•t) = •(π(t)) and π(t•) = (•π(t)).

The unfolding of an Elementary Net System N , denoted by Unf (N), is the
“maximal” branching process of N , namely the unique branching process such
that any other branching process of N is isomorphic to a subnet of Unf (N). The
map associated to the unfolding will be denoted u and called folding.

3 A class of morphisms

In the rest of the paper, we consider the class of State Machine Decomposable
Elementary Net Systems (SMD-EN Systems).

In this section we give the formal definition of α-morphisms for this class of
systems, and present some of their properties, particularly with respect to the
preservation of both structural and behavioural properties, as formally intro-
duced in [4].

We start by giving the formal definition of a general morphism and then
present the more specific restrictions.

Definition 4. Let Ni = (Bi, Ei, Fi,mi
0) be a SMD-EN System, for i = 1, 2. An

ω-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:



1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1•) = ϕ(e1)•;
4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1•) = {ϕ(e1)};

We require that the map is total and surjective because N1 refines the ab-
stract model N2, and any abstract element must be related to its refinement.

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2,
in this case, we will call bubble the subnet identified by this subset N1(ϕ−1(b2));
if more than one element is mapped on b2, we will say that b2 is refined by ϕ.
As example, we can see in Fig. 1 the refinement of condition b1 of NI with the
bubble enclosed in the shaded oval on N1.

The additional constraints listed in the next definition will be explained below
through simple examples.

Definition 5. Let Ni = (Bi, Ei, Fi,mi
0) be a SMD-EN System, for i = 1, 2.

An α-morphism from N1 to N2 is an ω-morphism with the following additional
constraints:

5. ∀b2 ∈ B2:
(a) N1(ϕ−1(b2)) is an acyclic net;
(b) ∀b1 ∈ �N1(ϕ−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 �= ∅ ⇒ •b1 �= ∅);
(c) ∀b1 ∈ N1(ϕ−1(b2))�, ϕ(b1•) = b2•;
(d) ∀b1 ∈ ϕ−1(b2) ∩B1,

(b1 �∈ �N1(ϕ−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 �∈ N1(ϕ−1(b2))� ⇒
ϕ(b1•) = {b2});

(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a Sequential Component NSC of N1 such
that b1 ∈ BSC and ϕ−1(•b2•) ⊆ ESC .

(a) Pre events of an in-condition (b) Post events of an out-condition

Fig. 2: Pre and post event of a bubble

As we can see in Fig. 2a and 2b, in-conditions and out-conditions have dif-
ferent constraints, 5b and 5c respectively. As required by 5c, we do not allow
that choices, which are internal to a bubble, constrain a final marking of that
bubble: i.e., each out-condition of the bubble must have the same choices of the



condition it refines. Instead, pre-events do not need this strict constraint (5b):
hence it is sufficient that pre-events of any in-condition are mapped on a subset
of the pre-events of the condition it refines. For example, in this particular case,
we know that the choice between e1 and f1 of Figure 2a is made before the bub-
ble, and this is implied also by the requirement 5e) on Sequential Components.
Moreover, the conditions that are internal to a bubble must have pre-events and
post-events which are all mapped to the refined condition b2, as required by 5d.

By 5e, events in the neighbourhood of a bubble, as well as their images, can
not be concurrent. However, within a bubble there can be concurrent events. By
the combined effect of 5a-5e, in any execution, when a post-event of a bubble
fires, in the next marking no local state within the bubble will be marked.

The α-morphisms are closed by composition, the identity function on X is an
α-morphism, and the composition is associative. Hence, the family of SMD-EN
Systems together with α-morphisms forms a category.

We now list some properties of α-morphisms which have been proved in [4].
Given an α-morphism ϕ : N1 → N2 we can say that:

p1 the partition of the nodes of N1 induced by ϕ can be lifted to a net structure:
the class of nodes mapped to a place b becomes a place, while the class of
nodes mapped to an event e becomes an event; the flow relation is defined
in the obvious way. The resulting net is isomorphic to N2;

p2 firing an output event of a bubble empties the bubble: Let e1 ∈ E1, b2 ∈ B2:
e1 ∈ ϕ−1(b2•); m1,m�

1 ∈
�
m1

0

�
: m1 [e1�m�

1, then m�
1 ∩ ϕ−1(b2) = ∅;

p3 no input event of a bubble is enabled whenever a token is within the bubble:
Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(•b2); m1,m�

1 ∈
�
m1

0

�
: m1 [e1�m�

1 then
m1 ∩ ϕ−1(b2) = ∅;

p4 sequential components are reflected in the sense that the inverse image of a
sequential component is covered by sequential components. Sequential com-
ponents are not preserved;

p5 ϕ preserves reachable markings:
If m1 ∈

�
m1

0

�
and m1 [e�m�

1 in N1 then ϕ(m1) ∈
�
m2

0

�
and

– if ϕ(e) ∈ E2 then ϕ(m1) [ϕ(e)�ϕ(m�
1) else

– (if ϕ(e) ∈ B2 then) ϕ(m1) = ϕ(m�
1).

Stronger properties hold under additional constraints. Given an α-morphism
ϕ : N1 → N2, and a condition b2 ∈ B2 with its refinement N1(ϕ−1(b2)), we define
two new SMD-EN Systems. The first one, denoted S1(b2), contains (a copy of)
the subnet N1(ϕ−1(b2)), its pre and post events in E1 and two new conditions:
bin1 , which is pre of all the pre events, and bout1 , which is post of all the post-events.
The initial marking of S1(b2) will be {bin1 } or, if there are no pre events, the initial
marking of the bubble in N1. The second system, denoted S2(b2), contains b2,
its pre- and post-events and two new conditions: bin2 , which is pre of all the
pre-events, and bout2 , which is post of all the post-events. The initial marking of
S2(b2) will be {bin2 } or, if there are no pre events, the initial marking of b2. Define
ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements of S1(b2),
and extends it with ϕS(bin1 ) = bin2 and ϕS(bout1 ) = bout2 . Note that S1(b2) and



S2(b2) are SMD-EN Systems and that ϕS is an α-morphism. Let Unf (S1(b2))
be the unfolding of S1(b2), with folding function u : Unf (S1(b2)) → S1(b2).

Consider the following additional constraints:

c1 the initial marking of each bubble is at the start of the bubble itself; formally:
for each b2 ∈ B2 one of the following conditions hold
– ϕ−1(b2) ∩m1

0 = ∅ or
– if •b2 �= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1

0 = e1• or
– if •b2 = ∅ then ϕ−1(b2) ∩m1

0 = �ϕ−1(b2);
c2 any condition is refined by a subnet such that, when a final marking is

reached, this one enables events which correspond to the post-events of the
refined condition, i.e.:
ϕS ◦ u is an α-morphism from Unf (S1(b2)) to S2(b2);

c3 different bubbles do not “interfere” with each other:
we say that two bubbles interfere with each other when their images share,
at least, a neighbour.

The first condition assures that the initial marking of a bubble, if present, is in
the initial conditions of the bubble and is generated by one of the pre-events, if
there are some of them. The second condition is necessary to give to each final
marking of a bubble the same choices that the abstract condition has. The third
one is not restrictive since the refinement of two interfering conditions can be
done in two different steps.

Under c1, c2, and c3, the following properties can be proved [4]:

p6 reachable markings of N2 are reflected:
for all m2 ∈

�
m2

0

�
, there is m1 ∈

�
m1

0

�
such that ϕ(m1) = m2;

p7 N1 and N2 are weakly bisimilar:
by using ϕ, define two labelling functions such that E2 are all observ-
able, i.e.: l2 is the identity function, and the invisible events of N1 are the
ones mapped to conditions; then (N1, l1) and (N2, l2) are weakly bisimilar
(N1, l1) ≈ (N2, l2).

For a definition of weak bisimulation of EN Systems see [14].

4 Relations with �N -morphisms

The ω and α-morphisms here defined are related to �N -morphisms, introduced
in [13] and studied in [5], that are a restriction of N -morphisms defined in [10].

Here, we are interested in pointing out the precise relation, because we will
apply to α-morphisms some results previously shown for �N -morphisms.

First, let us recall the definition of �N -morphisms.

Definition 6. Let Ni = (Bi, Ei, Fi,m0) be an EN system for i = 1, 2.
A �N -morphism from N1 to N2 is a pair (β, η), where:

1. β ⊆ B1 ×B2 and β−1 : B2 → B1 is a total and injective function;



2. η : E1 →∗ E2 is a partial and surjective function;
3. if η(e1) is undefined, then β(•e1) = ∅ = β(e1•);
4. if η(e1) = e2, then β(•e1) = •e2 and β(e1•) = e2•;
5. ∀(b1, b2) ∈ β : [b1 ∈ m1

0 ⇔ b2 ∈ m2
0].

In order to compare ω- and α-morphisms with �N -morphisms, we need some
auxiliary notions. Given an ω-morphism ϕ from N1 to N2, we say that N1 is
canonical with respect to ϕ if, for each bubble induced by ϕ, it contains a local
state corresponding to the image of the bubble.

Definition 7. Let ϕ : X1 → X2 be an ω-morphism from N1 to N2. N1 is
canonical with respect to ϕ if for each b2 ∈ B2, there exists a unique b1 ∈
ϕ−1(b2) ∩B1 satisfying:

– b1 ∈ m1
0 ⇔ b2 ∈ m2

0;
– •b1 = ϕ−1(•b2);
– b1• = ϕ−1(b2•).

In this case, b1 is said to be the representation of b2, denoted rN1(b2). We de-
fine the subnet of a bubble, obtained by removing the representation: N−rep

1 (b2) =
N1(ϕ−1(b2) \ {rN1(b2)}).

If N1 is not canonical, it is always possible to construct its unique canonical
version, NC

1 , either by adding the missing representations (and marking them as
their images) or by deleting multiple representations. The corresponding mor-
phism, ϕC , coincides with ϕ, plus the mapping of new conditions on the corre-
sponding conditions of N2. It is easy to verify that the canonical version of a
system, with respect to an α-morphism to another SMD-EN System, is unique
up to isomorphisms.

We have proved in [4] that ϕC is an ω-morphism from NC
1 to N2. Here, we

need to prove that, if ϕ is an α-morphism, then ϕC is also an α-morphism, as
needed in Section 5.

Proposition 1. Let ϕ : N1 → N2 be an α-morphism, then ϕC is an α-morphism
from NC

1 to N2.

Given an ω-morphism from N1 to N2, take NC
1 , N2 and ϕC . Now, restrict ϕC

to all the nodes of NC
1 that are not in a bubble N−rep

1 (b2) for some b2 ∈ B2 and

call it (ϕC)rep: this is a �N -morphism.

Proposition 2. ((ϕC)rep ↓ BC
1 , (ϕ

C)rep ↓ EC
1 ) is a �N -morphism.

Every α-morphism is obviously an ω-morphism. Adding the representation
for each condition of N2 does not modify its behaviour, because of the con-
straint on sequential components. Hence, the results achieved here hold for α-
morphisms. In this sense, we consider them as a special case of �N -morphisms.

The converse is not true, as shown in Fig. 3, where an �N -morphism from N1

to N2 is given by identical names of elements; it is easy to see that there is no
α-morphism from N1 to N2, since there is no way to map b3 and b5.



Fig. 3: An example of �N -morphism which is not an α-morphism

�N -morphisms are suitable to drive an operation of composition of nets. Let
N1 and N2 be a pair of EN Systems, each one related to another EN System,
called interface NI , by �N -morphisms, (βi, ηi). We can see NI as the protocol
of the interaction between them. The morphisms are surjective so that each
system cannot ignore a part of the protocol. The composition of N1 and N2 on
the interface NI , denoted N = N1�NI�N2, is given by the union of the local
part of each system Ni and the common part corresponding to the protocol.
The composition induces �N -morphisms, (β�

i, η
�
i), from the composed system to

its components.
This composition has several properties, proved in [5], which will be used

later and which we informally resume here:

n1 if the components reflect the sequences of the interface, the composed net
reflects the sequences of the two components;

n2 if one component is weakly bisimilar to the interface, then the composed net
is weakly bisimilar to the other component.

In particular, n2 says that if a component is bisimilar to the interface, then
only the other component can add behavioural constraints to the composed
system.

5 Composition based on α-morphisms

In this section, we define a way of composing SMD-EN systems, in a similar way
as in [5], but based on α-morphisms.

The starting point is a set of three SMD-EN systems; one of them, NI , plays
the role of an interface between the other two,N1 andN2. A pair of α-morphisms,
one from N1 to NI , the other from N2 to NI , determine how the two components
refine the local states of the interface, and which events in the two components
have to synchronize.

The crucial point in the definition concerns the choice of synchronizing events.
Suppose that the morphisms onto the interface map bubbles A1 and A2 to the



same local state b (where Ai is taken in Ni). Then, the representations of A1 and
A2 are local states which are identified in composing the two nets. This implies
that any event in N1 which puts a token in the representation of A1 must be
synchronized with any event doing the same in the representation of A2. This
explains the definition of the sets Esync, below.

It is assumed that N1, N2 and NI are disjoint and that N1 and N2 are
canonical with respect to the corresponding morphisms.

Definition 8. Let Ni = (Bi, Ei, Fi,mi
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi.

We define N = N1�NI�N2 = (B,E, F,m0) such that

B =
�

bI∈BI

BBubble(bI) E =

�
�

eI∈EI

Esync(eI)

�
∪
�

�

bI∈BI

EBubble(bI)

�

F =
�

bI∈BI

�
F (bI) ∪ FBubble(bI)

�

Where:

Esync(eI) = {e = �e1, e2� : e1 ∈ E1, e2 ∈ E2,ϕ1(e1) = eI = ϕ2(e2)}

Let bI ∈ BI :

Bubble(bI) = ((BN−rep
1 (bI)

∪ {bI} ∪BN−rep
2 (bI)

),

(EN−rep
1 (bI)

∪ EN−rep
2 (bI)

),

(FN−rep
1 (bI)

∪ FN−rep
2 (bI)

))

F (bI) =
•F (bI) ∪ F •(bI)

Let e = �e1, e2� ∈
�

eI∈•bI
Esync(eI),

•F (bI) = {(e, b) : b ∈ �Bubble(bI), (e1, b) ∈ F1} ∪
{(e, bI)} ∪
{(e, b) : b ∈ �Bubble(bI), (e2, b) ∈ F2}

Let e = �e1, e2� ∈
�

eI∈bI• Esync(eI),

F •(bI) = {(b, e) : b ∈ Bubble(bI)
�, (b, e1) ∈ F1} ∪

{(bI , e)} ∪
{(b, e) : b ∈ Bubble(bI)

�, (b, e2) ∈ F2}



Note that in order to simplify the notation, N1�NI�N2 does not refer to
the morphisms ϕi. By construction, N = N1�NI�N2 as defined above is an
EN System. Moreover, it is covered by sequential components. To see this, take
b ∈ B. If b ∈ BI , then b belongs to a sequential component in NI , and all
the conditions in this component are also in N , and these, together with their
neighbourhood, identify a sequential component in N . If b ∈ Bi, then b belongs
to a sequential component in Ni, and all the conditions in this component have
a corresponding condition in N . It is easy to check that these, together with
their neighbourhood, identify a sequential component in N .

We now define a map ϕ�
i from N onto Ni, and we will show in Theorem 1

that it is an α-morphism.

Definition 9. Define ϕ�
i as follows, for each x ∈ X:

ϕ�
i(x) =






x, if x ∈ Xi

rNi(x), if x ∈ BI

rNi(ϕ3−i(x)), if x ∈ B3−i

ei, if x = �e1, e2�
rNi(ϕ3−i(x)), if x ∈ E3−i

Theorem 1. The map ϕ�
i is an α-morphism from N = N1�NI�N2 to Ni, i =

1, 2.

By construction we get the following result:

Proposition 3. The system N = N1�NI�N2 is canonical with respect to ϕ�
1 and

to ϕ�
2.

These results say that the composed system refines both the components,
as well as the interface. For each abstract condition there is a corresponding
condition in the composed system.

NI

N1

ϕ1

������������
N2

ϕ2

������������

N1�NI�N2

ϕ�
1

������������

ϕ�
2

������������

To show that the diagram above commutes, we prove that the operation
essentially coincides with the composition based on �N -morphisms. Since in that
case the diagram commutes, the same holds for α-morphisms.

The following proposition is the direct consequence of the definitions of com-
position.



Proposition 4. Let Ni = (Bi, Ei, Fi,mi
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi. Let Nα = N1�NI�αN2 = (B,E, F,m0) be the composition of N1

and N2 using ϕ1 and ϕ2. Let ϕ�
i be the α-morphism from N to Ni created by the

composition operation.

Now, consider the �N -morphism ((ϕi)rep ↓ Bi, (ϕi)rep ↓ Ei). Let N
�N =

N1�NI�
�NN2 = (B,E, F,m0) be the composition of N1 and N2 using ((ϕ1)rep ↓

B1, (ϕ1)rep ↓ E1) and ((ϕ2)rep ↓ B2, (ϕ2)rep ↓ E2). Let (β�
i, η

�
i) be the �N -

morphism from N to Ni created by the composition operation.

The systems Nα and N
�N are isomorphic, β�

i = (ϕ�
i)

rep ↓ Bi and η�i =
(ϕi)rep ↓ Ei.

The diagram in Fig. 1 is an example of composition which is not a pull-
back diagram. It is still an open problem whether, in general, the diagram of a
composition operation is a pushout.

Fig. 4: An example of composition based on α-morphisms



From results in Section 3 and 4 we can derive a property valid for composition
based on α-morphisms. We know that, if N1 is weakly bisimilar to NI then N
is weakly bisimilar to N2. By p7 we can check weak bisimilarity between N1

and NI using c1, c2 and c3. These constraints are either structural or locally
behavioural, while, in the case of �N -morphisms, checking bisimilarity must be
made globally. Fig. 4 shows an example in which N1 and N2 are weakly bisimilar
to NI . Hence N1�NI�N2 is weakly bisimilar to N1, N2 and NI .

6 Conclusions

We have proposed a way to compose State Machine Decomposable EN Systems,
by identifying elements of the components. The identification is ruled by mor-
phisms from the components to a net, which can be seen as an interface or as a
common abstraction of the overall system.

We have proved that α-morphisms can be seen as a particular case of �N -
morphisms [5] and that, composing two systems using α-morphisms or using
�N -morphisms, we obtain isomorphic systems.

Here, we have looked at the properties of the composed net which can be
deduced from properties of the components. In particular, the constraints of α-
morphisms allow to check bisimilarity between a component and the interface by
using only structural and local behavioural constraints. By a property holding
also in the case of �N -morphisms, this can be lifted to bisimilarity between the
composed net and the components.

We plan to explore the extension of these ideas to P/T nets and to colored
nets that can be unfolded to State Machine Decomposable EN Systems.

Acknowledgments

Work partially supported by MIUR.

References

1. Marek A. Bednarczyk, Luca Bernardinello, Benôıt Caillaud, Wies�law Paw�lowski,
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