
Deciding the Precongruence for Deadlock

Freedom Using Operating Guidelines

Richard Müller1,2 and Christian Stahl2

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
richard.mueller@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

c.stahl@tue.nl

Abstract. In the context of asynchronously communicating and dead-
lock free services, the refinement relation of services has been formalized
by the accordance preorder. A service Impl accords with a service Spec

if every controller of Spec—that is, every environment that can inter-
act with service Spec without deadlocking—is a controller of Impl . The
procedure to decide accordance of two services uses that the set of con-
trollers of a finite-state service has a finite representation, called operating

guideline. Recently, it has been shown that the accordance preorder is
not a precongruence and thus the decision procedure based on operating
guidelines cannot be used. In this paper, we adapt the results on op-

erating guidelines to the precongruence setting : We define an operating
guideline that represents all controllers of a service w.r.t. the accordance
precongruence and show how this refinement relation of two services can
be decided based on their operating guidelines.

1 Introduction

Service-oriented computing (SOC) [6] aims at building complex systems by ag-
gregating less complex, independently-developed building blocks called services.
A service is an autonomous system that has an interface to interact with other
services via asynchronous message passing. Designing a system in such a way
allows for rapidly adjusting it to prevalent needs. Services sometimes need to be
replaced—for example, when new features have been implemented or bugs have
been fixed. This requires a notion of service refinement, which should, according
to the idea of SOC, respect compositionality : If a service Impl refines a service
Spec, then any environment that can correctly interact with Spec can also cor-
rectly interact with Impl . We refer to such an environment as a controller of
Impl and Spec, respectively. Compositionality is crucial, because organizations
usually do not know the services of other organizations involved in the system.

The absence of deadlocks is a commonly agreed minimal requirement for the
behavioral correctness of a service-oriented system. Stahl et al. [7] formalized
the replacement (or refinement) relation in the context of deadlock freedom
by the accordance preorder. The decision procedure uses that, for finite-state

services with bounded buffers, the set of controllers has a finite representation,
the operating guideline [4] of the service. The decision procedure in [7] has two
inherent characteristics: First, the interior of a service must be bounded when
considered in isolation. Second, it allows for two possibly different bounds: one
for the buffers and one for the interior of a service.

Recently, Stahl and Vogler [8] introduced a modified accordance relation
which differs from the original accordance relation in two ways: First, the mod-
ified accordance relation has been proven to be a precongruence w.r.t. service
composition; that is, it respects compositionality. Second, the modified accor-
dance relation is more uniform than the original accordance relation in [7]: Stahl
and Vogler [8] do not require the interior of a service to be bounded when con-
sidered in isolation and prescribe only one bound for the buffers and for the
interior of a service rather than possible different bounds as in [7].

t3a

p4

p5

t4

(a) Open net Spec

t3a

p4

(b) Open net Impl

t1 a

p1

p2

(c) Open net N1

t1 a

p1

p2

t2

p3

(d) Open net N2

Fig. 1. Open net Impl accords with open net Spec but not vice versa.

We illustrate the difference between the accordance relation in [7] and the
precongruence in [8] with an example: Figure 1 depicts four services modeled
as open nets. As shown in [8], open net Impl accords with open net Spec for a
bound b = 1 if we consider the precongruence, but Spec does not accord with
Impl . To see this, consider the open net N1 in Fig. 1(c) and compose N1 with
Spec and Impl by merging the common interface places a. The composition of
Impl and N1 has only one reachable marking, [p1, p2, p4], in which transition
t3 is continuously enabled. Thus, the composition is deadlock free and N1 is
a controller of Impl . Now consider the composition of Spec and N1. It has a
reachable marking where p2 contains two tokens. Thus, the composition is not
1-bounded and N1 is not a controller (for a bound of 1) of Spec. Similarly, open

net N2 in Fig. 1(d) is a controller of Impl but not a controller of Spec (for a
bound of 1), because p3 is unbounded in the composition of Spec and N2.

However, applying the decision procedure in [7] based on operating guidelines,
Spec and Impl are even accordance equivalent (assuming a single bound for the
interface and the interior); that is, every controller of Impl—like the open net
N1 or N2—is also a controller of Spec. The cause for this result is that [7] does
not consider N1 and N2, because their interiors are not 1-bounded.

So the example shows, if we assume a single bound for the interface and the
interior of a service, then the accordance precongruence implies accordance but
not the other way around. The reason is that the precongruence is more uniform
and considers a more general notion of a service. If we consider different bounds
for the interface and the interior of a service, then both refinement relations are
incomparable.

Stahl and Vogler [8] presented a procedure to decide the accordance pre-
congruence, but they also showed that the accordance precongruence cannot be
decided using the procedure in [7] based on operating guidelines without adap-
tation. In this paper, we present an operating guideline representing the set of
all controllers in the precongruence setting of [8] and show how this operating
guideline can be used to decide accordance of two services. Our motivation for
adapting the theory of operating guidelines from the setting of [7] to the setting
of [8] is twofold: First, we want to present the theory for deciding accordance
using operating guidelines such that the existing implementation in the tool
Cosme [5] can be reused and that the technique can also be applied in the pre-
congruence setting. Second, operating guidelines have proved their usefulness
also in other applications than deciding accordance, including service correction
[3], test case generation [1], and instance migration [2]. As the more general
notion of a controller is advantageous also for those applications, extending the
theory on operating guidelines is natural.

This paper is organized as follows: Section 2 introduces open nets, our formal
model for services, and gives some background information. Section 3 introduces
operating guidelines and adapts the matching technique to the modified accor-
dance relation. Section 4 decides the precongruence for deadlock freedom using
operating guidelines. We close with a discussion of related work and a conclusion
in Sect. 5.

2 Preliminaries

This section provides the basic notions, such as Petri nets, open nets for modeling
services, and open net environments for describing the behavior of open nets.

For two sets A and B, let A � B denote the disjoint union; writing A � B

expresses the implicit assumption that A and B are disjoint. Let IN denote the
non-negative integers, and let IN+ denote the positive integers. For a set A, let
P(A) denote the powerset of A, and let |A| denote the cardinality of A.

2.1 Petri Nets

As a basic model, we use place/transition Petri nets extended with a set of final
markings and transition labels.

Definition 1 (net). A net N = (P, T, F,mN ,Ω) consists of

– a finite set P of places,
– a finite set T of transitions such that P and T are disjoint,
– a flow relation F ⊆ (P × T) � (T × P),
– an initial marking mN , where a marking is a mapping m : P → IN, and
– a set Ω of final markings.

A labeled net N = (P, T, F,mN ,Ω,Σin ,Σout , l) is a net (P, T, F,mN ,Ω) to-
gether with an alphabet Σ = Σin �Σout of input actions Σin and output actions

Σout and a labeling function l : T → Σ � {τ}, where τ represents an invisible,
internal action.

In this paper, we only treat labeled nets where, for every transition t, the
label l(t) of t is either τ or t itself.

Introducing net N implicitly introduces its components P, T, F,mN ,Ω; the
same applies to nets N �, N1, etc. and their components P �, T �, F �,mN � ,Ω�, and
P1, T1, F1,mN1 ,Ω1, respectively—and it also applies to other structures later on.

Graphically, a circle represents a place, a box represents a transition, and
the directed arcs between places and transitions represent the flow relation. A
marking is a distribution of tokens over the places. Graphically, a black dot
represents a token. Transition labels beside τ are written into the respective
boxes.

Let x ∈ P � T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We canonically extend
the notion of a preset/postset to sets of nodes. We interpret presets and postsets
as multisets when used in operations also involving multisets. A marking is a
multiset over the set P of places; for example, [p1, 2p2] denotes a marking m

with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. For n ∈ IN, a
place p ∈ P and a set M of markings over P , M(p) = n denotes that for all
m ∈ M , m(p) = n. We define + and − for the sum and the difference of two
markings and =, <,>,≤,≥ for comparison of markings in the standard way. We
canonically extend the notion of a marking of N to supersets Q ⊇ P of places;
that is, for a mapping m : P → IN, we extend m to the marking m : Q → IN
such that for all p ∈ Q \ P , m(p) = 0. Analogously, a marking can be restricted
to a subset Q ⊆ P of the places of N .

The behavior of a net N relies on the marking of N and changing the marking
by the firing of transitions of N . A transition t ∈ T is enabled at a marking m,

denoted by m
t−→ , if for all p ∈ •t, m(p) > 0. If t is enabled at m, it can fire,

thereby changing the marking m to a marking m� = m− •t+ t•. The firing of t

is denoted by m
t−→ m�; that is, t is enabled at m and firing it results in m�. The

behavior of N can be extended to sequences: m1
t1−−→ . . .

tk−1−−−→ mk is a run of

N if for all 0 < i < k, mi

ti−→ mi+1. A marking m� is reachable from a marking

m if there exists a (possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and
m� = mk; for v = t1 . . . tk, we also write m1

v−→ mk. Marking m� is reachable if
mN = m. The set MN represents the set of all reachable markings of N .

In the case of labeled nets, we lift runs to traces: If m1
v−→ mk and w is

obtained from v by replacing each transition by its label and removing all τ
labels, we write m1

w
==⇒ mk and refer to w as a trace. As usual, ε denotes the

empty trace. The reachability graph RG(N) of net N has the reachable markings

MN as its nodes and a t-labeled edge from m to m� whenever m
t−→ m� in N . In

the case of a labeled net, each edge label t is replaced by l(t).
Finally, we introduce b-boundedness and deadlock freedom of nets. A marking

m of net N is b-bounded for a bound b ∈ IN+, if m(p) ≤ b for all p ∈ P . Net N is
b-bounded if every reachable marking is b-bounded. The set M b

N
represents the

set of all reachable b-bounded markings of N . A reachable marking m /∈ Ω of N
is a deadlock if no transition t ∈ T of N is enabled at m. If N has no deadlock,
then it is deadlock free.

2.2 Open Nets and Open Net Behavior

Like Lohmann et al. [4] and Stahl et al. [7], we model services as open nets [9,4],
thereby restricting ourselves to the communication protocol of a service. In the
model, we abstract from data and identify each message by the label of its mes-
sage channel. An open net extends a net by an interface. An interface consists
of two disjoint sets of input and output places corresponding to asynchronous
input and output channels. In the initial marking and the final markings, inter-
face places are not marked. An input place has an empty preset, and an output
place has an empty postset.

Definition 2 (open net). An open net N is a tuple (P, T, F,mN ,Ω, I, O) with

– (P � I �O, T, F,mN ,Ω) is a net,
– for all p ∈ I �O, mN (p) = 0 and Ω(p) = 0,
– the set I of input places satisfies •I = ∅, and
– the set O of output places satisfies O• = ∅.

If I = O = ∅, then N is a closed net. Open net N is sequentially communicating

if each transition is connected to at most one interface place I � O. The inner

net inner(N) results from removing the interface places and their adjacent arcs
from N . Two open nets are interface equivalent if they have the same sets of
input and output places.

Graphically, we represent an open net like a net with a dashed frame around
it. The interface places are depicted on the frame. Later, we consider the be-
havior of an open net, which is basically its reachability graph. To simplify the
labeling of transitions connected to interface places, we only consider sequen-
tially communicating nets. That way, each transition is labeled by a single label

b

...

a

...

y

x

(a) Open net L

y

...

x

...

d

c

(b) Open net R

y

x

...

d

c

...

b

...

a

...

(c) Open net L⊕R

b

...

a

...

y

x tx

ty
ta

tb

x

y

a

b
(d) Labeled net env(L)

y

...

x

...

d

c tc

td
tx

ty

c

d

x

y
(e) Labeled net env(R)

Fig. 2. Schematic example of open nets, open net composition, and their environment.

rather by a set of labels. This restriction is not significant as every open net can
be transformed into an equivalent sequentially communicating open net [4].

For the composition of open nets, we assume that the sets of transitions are
pairwise disjoint and that no internal place of an open net is a place of any other
open net. In contrast, the interfaces intentionally overlap. We require that all
communication is bilateral and directed ; that is, every shared place p has only
one open net that sends into p and one open net that receives from p. We refer to
open nets that fulfill these properties as composable. We compose two composable
open nets N1 and N2 by merging shared interface places and turn these places
into internal places; see Fig. 2(a) and 2(b) for a schematic example of open nets
and their composition. The definition of composable thereby guarantees that an
open net composition is again an open net (possibly a closed net).

Definition 3 (open net composition). Open nets N1 and N2 are compos-

able if (P1 � T1 � I1 � O1) ∩ (P2 � T2 � I2 � O2) = (I1 ∩ O2) � (I2 ∩ O1).
The composition of two composable open nets N1 and N2 is the open net
N1 ⊕N2 = (P, T, F,mN ,Ω, I, O) where

– P = P1 � P2 � (I1 ∩O2) � (I2 ∩O1),
– T = T1 � T2,
– F = F1 � F2,
– mN = mN1 +mN2 ,
– I = (I1 � I2) \ (O1 �O2),
– O = (O1 �O2) \ (I1 � I2), and
– Ω = {m1 +m2 | m1 ∈ Ω1,m2 ∈ Ω2}.

To define the behavior of an open net N , we consider its environment env(N).
The net env(N) is a net that can be constructed from N by adding to each

interface place p ∈ I �O a p-labeled transition tp in env(N). The net env(N) is
just a tool to define our characterizations and prove our results. Intuitively, one
can understand the construction as translating the asynchronous interface of N
into a buffered synchronous interface (with unbounded buffers) described by the
transition labels of env(N).

Definition 4 (open net environment). The environment of an open net N
is the labeled net env(N) = (P � I �O, T � T �, F � F �,mN ,Ω, I, O, l) where

– T � = {tx | x ∈ I �O} is the set of interface transitions,
– F � = {(tx, x) | x ∈ I} � {(x, tx) | x ∈ O}, and

– l(t) =

�
τ, t ∈ T

x, tx ∈ T �.

We refer to a transition from T as internal transition. A marking m of env(N)
is stable if at most internal transitions of env(N) are enabled at m.

Figures 2(d) and 2(e) show the environments of the open nets L and R from
Fig. 2(a) and 2(b). A transition label is depicted inside a transition with bold
font to distinguish it from the transition’s identity.

The behavior of an open net N can now be defined by the reachability graph
RG(env(N)) of its environment. As we are interested in finite-state services, we
always define the behavior of an open net with regard to a bound b. As soon as b
is violated, we can stop the computation of the behavior in this state; however,
we keep this state to identify the bound violation.

Definition 5 (open net behavior). Let b ∈ IN+. The b-behavior behb(N) of
an open net N is the reachability graph of env(N) where we remove all outgoing
edges from every non-b-bounded node (thereby removing unreachable nodes and
edges too).

Clearly, the b-behavior of an open net N has at most (b+2)(|P |+|I|+|O|) states.
Figure 3 depicts the environment net of open netN2 and its behavior beh1(N2).

Recall that transitions t1 and t2 are labeled τ . Every leaf in beh1(N2) violates
the bound and has thus no successor.

We interpret behb(N) as a labeled automaton with input and output labels.

Definition 6 (automaton). An automaton A = (Q,E, qA,Σin ,Σout) consists
of

– a finite set Q of states,
– an edge relation E ⊆ Q×

�
Σin � Σout � {τ}

�
×Q,

– an initial node qA, and
– an alphabet Σ = Σin � Σout of input labels Σin and output labels Σout .

A is deterministic if no node has two outgoing edges with the same label.

We compare two automata with a simulation relation, thereby treating τ as
an ordinary action.

t1
a

p1

p2

t2

p3

ta
a

(a) Labeled net env(N2)

[p1]

[p1,a]

[p2] [p1,2a]

[p2,p3] [p2,a]

a

!

!

a

a

[p2,p3,a] [p2,2a]

[p2,2p3,a] [p2,p3,2a]

[p2,2p3] [p2,p3,a]

! a ! a

a!

[p2,2p3,a] [p2,p3,2a]

! a

(b) Behavior beh1(N2)

Fig. 3. Constructing the 1-behavior of open net N2.

Definition 7 (simulation relation). Let A and B be two automata with label
set Σ = Σin � Σout . Then � ⊆ QA ×QB is a simulation of A by B if

– (qA, qB) ∈ �, and
– for every (p, q) ∈ �, x ∈ Σ � {τ}, p� ∈ QA such that p

x−→ p� in A, there
exists q� ∈ QB such that q

x−→ q� in B and (p�, q�) ∈ �.

Simulation � is minimal if for every simulation �� of A by B, � ⊆ ��.

For all automata A and B where B is deterministic, the minimal simulation
relation of A by B is uniquely defined.

3 Operating Guidelines

In this section, we formally define the notion of a controller of an open net N

and present a finite representation of all controllers of N , the operating guideline

of N .
The composition of a service C with a service N shall be deadlock free; that

is, if the composition gets stuck, then it is in a final state. As we are interested in
finite-state services, the composition must be bounded. A service C guaranteeing
these two requirements can be seen as a controller of the service N .

Definition 8 (b-controller). Let b ∈ IN+. An open net C is a b-controller of
an open net N if the composition N ⊕ C is a closed net, deadlock free, and
b-bounded.

A b-operating guideline OGb(N) of a service N describes how another service
C should successfully communicate with N . Technically, it characterizes the pos-
sibly infinite set of b-controllers of N in a finite manner. Because a b-controller of
N provides suitable inputs for N and accepts its outputs, OGb(N) interchanges
the inputs and outputs of N . The structure of OGb(N) is an automaton where
a Boolean formula is attached to each state. The structure is the behavior of a
b-controller that exhibits the behavior of every b-controller of N ; the formula of
a state indicates which combinations of outgoing edges must be present in any
b-controller. Thus, a literal of such a Boolean formula is a transition label of N
or the literal final , specifying that N is in a final state. That way, we can employ
simulation for comparing the behavior of an open net with OGb(N) later on.

Definition 9 (annotated automaton). An annotated automaton (Q,E, qA,

Σin ,Σout ,φ) is an automaton (Q,E, qA,Σin ,Σout) whose nodes q ∈ Q are anno-
tated with a Boolean formula φ(q) over Σin � Σout � {final}.

To construct OGb(N), we calculate the b-behavior behb(N) of N and make
the automaton deterministic by constructing the powerset automaton. A state
of OGb(N) contains a set of markings of env(N); we refer to it as a node.
These markings can be reached by firing internal transitions of env(N). An edge
connects two nodes of OGb(N), thereby referring to an interface transition of
env(N) (i.e., the environment takes a token from an output place or produces a
token on an input place of N). A b-controller cannot know which marking m of
a node Q net env(N) might be in, but it has to avoid a deadlock and a bound
violation in any case; the formula φ(Q) describes how to do this. The literals of
φ are I �O� {final}. Recall that nonstable markings have an internal transition
enabled and, thus, are not deadlocks; all internal transitions remain in the same
node. As a consequence, φ(Q) is a conjunction indexed by all stable markings

m ∈ Q. Every conjunct is a disjunction of the following propositional atoms:
final if m is a final marking, x ∈ I if Q

x−→ (i.e., x does not lead to a bound
violation in any case), and x ∈ O if tx is enabled at m (i.e., if in marking m, net
N has already produced a message on output place x). Hence, the formulae are
in conjunctive normal form (CNF) without negation. Here, Q

x−→ means that
Q has an outgoing x-labeled edge.

Definition 10 (b-operating guideline). Let b ∈ IN+. The b-operating guide-

line of an open netN is the annotated automatonOGb(N) = (Q, E,Q0,Σin ,Σout ,φ),
where

– Q = P(M b

env(N)) is a set of nodes,

– E = {(Q, x,Q�) ∈ Q× I �O ×Q | Q� = {m� | ∃m ∈ Q : m
x

==⇒ m�}}
� {(Q, τ, Q) | Q ∈ Q} is a set of edges,

– Q0 = {m� | menv(N)
ε

=⇒ m�} ∩ P(M b

env(N)) is the initial node,
– Σin = O are the input labels,
– Σout = I are the output labels, and

– φ associates to each Q ∈ Q a Boolean formula with propositional atoms
taken from I �O � {final} such that

φ(Q) =
�

m:m∈Q∧m is stable

�
ψ1(m) ∨ ψ2(m)

�
with

ψ1(m) =
�

x:x∈I∧Q
x−→

x ∨
�

x:x∈O∧m
tx−−→

x

ψ2(m) =

�
final , if m ∈ Ωenv(N),

false, otherwise.

Clearly, OGb(N) is finite and deterministic by construction; if Q0 = ∅, then
the b-operating guideline of N does not exist. We refer to Q ∈ Q with Q = ∅ as
the empty node and denote it by Q∅. Intuitively, the empty node Q∅ refers to
markings which are unreachable in env(N).

We proceed with a short complexity analysis. Let b ∈ IN+ and N be an open
net. Let further x = |M b

env(N)| denote the cardinality of the set of reachable, b-

bounded markings of env(N), and let k = |I�O| denote the size of the interface.
The powerset construction may yield, in worst case, 2x nodes of OGb(N). The
formula φ(Q) of a nodeQ has at most x·(k+1) literals. As calculating the formula
of a node can be done during the construction, OGb(N) can be computed in time
and space proportional to O(2x · x · (k + 1)).

[p4]

a

!

!"#$

Q0

Q

(a) OG1(Impl)

[p4],
[p5,a]

[p5]

a

!

!"#$

!
a

Q0

Q

Q1

(b) OG1(Spec)

Fig. 4. Operating guidelines of open nets Impl and Spec. The annotation of all nodes
is true, which we omitted.

Figure 4 depicts the 1-operating guidelines for open nets Spec and Impl . All
nodes of OG1(Impl) and OG1(Spec) have the same annotation, true3, thus we
omitted them. For OG1(Impl), we have Q0 = {[p4]}. A 1-controller can receive

3 An annotation is a formula over I � O � {final}; true and false are also Boolean
formulae.

message a, but Impl will never send this message. Thus, there is an a-labeled
edge from Q0 to the empty node Q∅. In Q∅, every action can occur, because the
empty node refers to markings which are unreachable in env(Impl).

We determine if an open net C is a b-controller of an open net N by matching

its b-behavior behb(C) with the b-operating guideline OGb(N) of N . To this end,
we need to check whether C and N are composable, the behavior of C can be
mimicked by OGb(N) (by checking a simulation relation), and every state m of
behb(C) satisfies the Boolean formula in the corresponding node Q of OGb(N).
State m satisfies φ(Q) if either a correct combination of interface transition of
env(C) is enabled at m such that N ⊕ C remains b-bounded or m is a final
marking and env(N) is in a final marking, too (i.e., φ(Q) contains the literal
final).

Definition 11 (matching). Let b ∈ IN+ and let N and C be composable open
nets. Then behb(C) matches with OGb(N) if

1. The input (output) labels of behb(C) are the input (output) labels ofOGb(N).
2. There exists a minimal simulation relation � of behb(C) by OGb(N) such

that
(a) if [m,Q] ∈ � with m not b-bounded in env(C), then Q = Q∅, and
(b) if [m,Q] ∈ � with m stable in env(C), then φ(Q) evaluates to true,

written m |= φ(Q), for the following assignment β:
– β(c) = true if c �= final and m

c−→ in behb(C),
– β(c) = true if c = final and m ∈ Ωenv(C), and
– β(c) = false, otherwise.

Consider again open net N2, which is a 1-controller of Impl . Automaton
beh1 (N2) in Fig. 3(b)) matches with OG1 (Impl) (Fig. 4(a)). The simulation
relation relates state [p1] with Q0 and all other states of beh1 (N2) with Q∅. The
annotations trivially evaluate to true. Open net N2 is not a 1-controller of Spec
and beh1 (N2) does not match with OG1 (Spec): The simulation relation relates
state [p2, 2p3] with node Q1, thereby violating item 2(a) of Def. 11.

With the next theorem, we show that the b-operating guideline of an open
net N characterizes the set of b-controllers of N .

Theorem 12 (b-controllability vs. matching). Let b ∈ IN+
. For composable

open nets N and C, C is a b-controller of N iff behb(C) matches with OGb(N).

Proof. (⇒): Let C be a b-controller of N . Then item (1) of Def. 11 holds because
C and N are composable and N ⊕ C is a closed net.

Suppose a simulation relation � of behb(C) by OGb(N) does not exist. Then
there exists (m,Q) ∈ � and m

x−→ in behb(C) but Q � x−→ in OGb(N) by Def. 7.
By Def. 10, Q

x−→ Q� and there exists a marking of env(N) in Q� that violates
bound b and, therefore, Q� has been removed from OGb(N). As the respective
trace to Q� is also a trace in behb(C), there is a corresponding marking in MN⊕C

that violates the bound, and we have a contradiction to our assumption. Thus,
� exists, and � is even minimal as OGb(N) is deterministic by Def. 10.

To show item (2a) of Def. 11, assume (m,Q) ∈ �, with m is not b-bounded,
and Q �= Q∅. There exists v ∈ (I �O)∗ with menv(C)

v
=⇒ m in env(C) by Def. 5

and menv(N)
v

=⇒ m� in env(N) by Def. 10. As a consequence, we find a corre-
sponding marking in MN⊕C that is not b-bounded; thus, we have a contradiction
to our assumption and conclude Q = Q∅.

To show item (2b) of Def. 11, let (m,Q) ∈ � such that m is stable in env(C).
We show for each m� ∈ Q with m� is stable in env(N) that m |= ψ1(m�)∨ψ2(m�).
If m+m� ∈ ΩN⊕C , then m ∈ Ωenv(C) and ψ2(m�) = final , thus m |= ψ2(m�) by
Def. 11. Assume m+m� /∈ ΩN⊕C . Then C can either produce a token on a place
i ∈ IN or consume a token from a place o ∈ ON , because N ⊕ C is deadlock

free by assumption. In the former case, we have m
i−→ in behb(C), and Q

i−→ as
N ⊕ C is b-bounded. Thus, m |= ψ1(m�) by Def. 11. In the latter case, we have

m
o−→ in behb(C), and m� t

o

−−→ . Thus, m |= ψ1(m�) by Def. 11.

(⇐): Let � be a minimal simulation of behb(C) by OGb(N). We have to show
that N ⊕ C is a closed net, deadlock free, and b-bounded.

N ⊕ C is a closed net because of item (1) in Def. 11. Next, we show that
N ⊕ C is b-bounded. Let m (m�) be a marking of C (N) such that m + m� is
a reachable marking of N ⊕ C that violates the bound. Let v denote the trace
of env(C) that corresponds to the run from mC to m. As � exists, v is also a
trace in OGb(N) and so it is in env(N). By the construction of OGb(N), the
corresponding markings in env(N) do not violate the bound, so it suffices to
assume that m violates the bound in env(C). Then, (m,Q) ∈ � with Q = Q∅
by assumption. However, this implies that m + m� is not reachable in MN⊕C ,
which is a contradiction to our assumption. Thus, N ⊕ C is b-bounded.

Finally, we show that N ⊕ C is deadlock free. Let m (m�) be a marking of
C (N) such that m+m� is a reachable marking of N ⊕ C. Marking m is also a
state in behb(C). From the existence of � we conclude that there exists a node Q
of OGb(N) with (m,Q) ∈ �. Further, we have m� ∈ Q; otherwise, N ⊕ C is not
b-bounded. Assume m is stable in env(C) and m� is stable in env(N); otherwise,
m + m� is no deadlock of N ⊕ C by Def. 4. Then m |= ψ1(m�) ∨ ψ2(m�) by
assumption. If m |= ψ1(m�), then there exists x ∈ (I�O) with m

x−→ in behb(C)
by Def. 11. The corresponding transition is also enabled in N ⊕C; thus, m+m�

is no deadlock. If m |= ψ2(m�), then m ∈ Ωenv(C) by Def. 11 and m� ∈ Ωenv(N)

by Def. 10. Thus, m + m� ∈ ΩN⊕C by Def. 3 and m + m� is no deadlock of
N ⊕ C. ��

The minimal simulation relation of behb(C) by OGb(N) can be computed in
time and space proportional to O(|behb(C)|·|OGb(N)|). Together with the anno-
tation check, matching behb(C) with OGb(N) has a complexity of O(|behb(C)| ·
|OGb(N)| · 2k+1), whereas k = |I � O| denotes the size of the interface. Conse-
quently, checking whether an open net is a b-controller is decidable.

Theorem 13 (decidability of b-controllability). Checking whether an open

net is a b-controller of another open net= is decidable for every b ∈ IN+
.

4 Accordance

An algorithm to decide accordance for two open nets Spec and Impl must decide
whether every controller of Spec is also a controller of Impl . As an open net has
potentially infinitely many controllers, we must check inclusion of two infinite
sets. Because the set of all controllers of an open net can be represented in a
finite manner using the operating guideline, we may use the operating guidelines
of Spec and Impl to decide that Impl accords with Spec.

The b-accordance relation has been defined by Stahl and Vogler [8] and they
showed that it is a precongruence for composition operator ⊕ and therefore
supports compositional reasoning.

Definition 14 (b-accordance). Let b ∈ IN+. For interface equivalent open
nets Impl and Spec, Impl b-accords with Spec, denoted by Impl �b

acc Spec, if for
all open nets C hold: C is a b-controller of Spec implies C is a b-controller of
Impl .

We show that deciding accordance of Impl and Spec reduces to checking that
the operating guideline of Spec simulates the operating guideline of Impl and
that the corresponding formulae of related states imply each other.

Definition 15 (b-refinement). Let b ∈ IN+. For interface equivalent open nets
Impl and Spec, OGb(Impl) b-refines OGb(Spec), denoted by OGb(Impl) �b

ref

OGb(Spec), if there exists a minimal simulation � of OGb(Spec) by OGb(Impl)
such that for each pair of nodes (Q,Q�) ∈ �:

1. Q = Q∅ implies Q� = Q∅
�, and

2. the formula φOGb(Spec)(Q) ⇒ φOGb(Impl)(Q
�) is a tautology.

The first item is crucial; otherwise, we could have a b-controller of Spec that
is not a b-controller of Impl because it violates the bound only in the composition
with Impl (the respective state is not reachable in the composition with Spec).

Consider Fig. 4. OG1(Impl) 1-refines OG1(Spec), but OG1(Spec) does not 1-
refine OG1(Impl): Node Q∅ of OG1(Impl) is related with node Q1 of OG1(Spec),
thereby violating item (1) of Def. 15.

The next theorem justifies that refinement of operating guidelines and accor-
dance coincide.

Theorem 16 (b-accordance vs. b-refinement). Let b ∈ IN+
. For inter-

face equivalent open nets Impl and Spec, Impl �b
acc Spec iff OGb(Impl) �b

ref

OGb(Spec).

Proof. Let OGb(Spec) = (Q, E,Q0,Σin ,Σout ,φ) and OGb(Impl) = (Q�, E�, Q�
0,

Σin ,Σout ,φ
�) be the operating guidelines of open nets Spec and Impl , respec-

tively.
(⇒): Let Impl �b

acc Spec. Consider an open net C whose behavior behb(C) is
isomorph to the underlying automaton of OGb(Spec) and that has a final state
if literal final occurs in the annotation of the respective node. Clearly, C is a

b-controller of Spec and of Impl . Thus, by Definition 11, there exists a minimal
simulation relation of behb(C) by OGb(Impl), and hence there is a minimal
simulation relation � of OGb(Spec) by OGb(Impl).

Let Q ∈ Q, and let β be an arbitrary assignment to literals occurring in
φ(Q) with β evaluates φ(Q) to true. Remove from the underlying automaton
of OGb(Spec) and node Q all outgoing, x-labeled edges where β(Q)(x) is false.
By Definition 11, the corresponding automaton still matches with Spec and thus
with Impl . Let Q� ∈ Q� with (Q,Q�) ∈ �. Using Definition 11 again, we can
see that β satisfies φ�(Q�) as well. Thus, φ(Q) ⇒ φ�(Q�) is a tautology, for all
(Q,Q�) ∈ �.

Assume now that Q = Q∅. A b-controller C of Spec could be in a marking
m that violates bound b, and m is related with Q∅. By assumption, C is a b-
controller of Impl and hence we conclude that for all Q� ∈ Q�, (Q∅, Q

�) in the
simulation relation of OGb(Spec) by OGb(Impl) implies Q� = Q∅

� (as otherwise
Impl ⊕ C is not b-bounded).

(⇐): Let OGb(Impl) �b

ref
OGb(Spec) and C be a b-controller of Spec. We

have to show that C is b-controller of Impl , too.
By Definition 11, there exists a minimal simulation relation �behb(C),OGb(Spec)

of behb(C) by OGb(Spec) and, by assumption, we also have a minimal simula-
tion relation �OGb(Spec),OGb(Impl) of OGb(Spec) by OGb(Impl). As simulation is
transitive we conclude that �behb(C),OGb(Impl) is a simulation relation of behb(C)
by OGb(Impl). Relation �behb(C),OGb(Impl) is even a minimal simulation relation,
because the underlying automata of OGb(Spec) and OGb(Impl) are deterministic
by construction.

By assumption, behb(C) matches with OGb(Spec); that is, for all markings m
with (m,Q) ∈ �behb(C),OGb(Spec) and m is stable in env(C), m satisfies φ(Q). In
addition, we know φ(Q) ⇒ φ�(Q�), for all (Q,Q�) ∈ �OGb(Spec),OGb(Impl). Hence,
m satisfies φ(Q�), for all (m,Q�) ∈ �behb(C),OGb(Impl).

Suppose there exists a marking m of C that is not b-bounded. Then, by Defi-
nition 11, for all Q ∈ Q, (m,Q) ∈ �behb(C),OGb(Spec) implies Q = Q∅. By assump-
tion, for each pair of nodes (Q,Q�) ∈ �OGb(Spec),OGb(Impl), Q = Q∅ implies Q� =
Q∅

�; thus, we conclude (m,Q�) ∈ �behb(C),OGb(Impl) implies Q� = Q∅
�. ��

We proceed with a short complexity analysis. Let b ∈ IN+, and let Impl

and Spec be interface equivalent open nets. A minimal simulation relation of
OGb(Impl) by OGb(Spec) can be computed in time and space proportional to
O(|OGb(Impl)| · |OGb(Spec)|). Let k = |I � O| denote the size of the interface.
Then, checking whether Impl b-refines Spec has a complexity of O(|OGb(Impl)| ·
|OGb(Spec)| · 2k+1). So checking b-accordance is decidable.

Theorem 17 (decidability of b-accordance). Checking b-accordance of two

open nets is decidable for every b ∈ IN+
.

5 Conclusion

We have investigated the accordance precongruence of services. A service Impl

accords with a service Spec if every controller of Spec (i.e., every service that

deadlock freely communicates with Spec) is also a controller of Impl . We have
presented a novel way to decide accordance. To this end, we used the notion
of an operating guideline [4], which represents all controllers of a service in a
finite manner. We have adapted the procedure of checking whether a service is a
controller of an a given service and is, thus, contained in the operating guideline.
In addition, we have also adapted the procedure for deciding accordance [7] for
two services Spec and Impl based on their operating guidelines.

In contrast to [4], we considered controllers with unbounded interior. This
caused the adaptation of the techniques introduced in [4,7], because we need to
distinguish whether a controller can potentially violate the bound in the com-
position or not. The definition of matching (see Def. 11) extends the respective
definition in [4] by item 2(a), where we require that states, in which the con-
troller violates the bound, are not reachable in the composition. Similar, item
(1) in the definition of operating guideline refinement (see Def. 15) extends the
respective definition in [7]. Also here, we assign a more prominent role to the
empty node: The new accordance check has to distinguish whether an input is
enabled in the empty node or in another true annotated node—that is, whether
the input is enabled in a reachable state or not.

In ongoing work, we aim to study efficient procedures to decide accordance
for stricter termination criteria than deadlock freedom, including responsiveness
[10] (i.e., controllers either terminate or have the possibility to communicate)
and weak termination (i.e., the service has always the possibility to terminate).

References

1. Kaschner, K.: Conformance testing for asynchronously communicating services. In:
ICSOC 2011. LNCS, vol. 7084, pp. 108–124. Springer (2011)

2. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance
migration. In: ICSOC 2009. pp. 607–621. LNCS 5900, Springer-Verlag (2009)

3. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: BPM 2008. pp. 132–147. LNCS 5240, Springer-Verlag
(2008)

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer (2007)

5. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for op-
erating guidelines. Fundam. Inform. 107, 1–19 (2011)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson (2007)
7. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with

operating guidelines. In: ToPNoC II. pp. 172–191. LNCS 5460, Springer (2009)
8. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-

dom. Acta Informatica 49(2), 69–103 (2012)
9. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets,

LNCS, vol. 625. Springer (1992)
10. Vogler, W., Stahl, C., Müller, R.: A trace-based semantics for responsiveness. In:

ACSD 2012. IEEE Computer Society (2012), to appear

	Deciding the Precongruence for Deadlock Freedom Using Operating Guidelines

