
Joint Proceedings of:

»LAM’12«
5th International Workshop on

Logics, Agents, and Mobility

»WooPS 2012«
1st International Workshop on

Petri Net-based Security

»CompoNet 2012«
2nd International Workshop on

Petri Nets Compositions

Satellite events of the

33th International Conference on
Application and Theory of Petri Nets

and Other Models of Concurrency
and the

12th International Conference on
Application of Concurrency to System

Hamburg, Germany, June, 2012

Compilation Editor:
Michael Köhler-Bußmeier
University of Hamburg
Department for Informatics
Theoretical Foundations of Informatics
Vogt-Kölln-Str. 30
D-22527 Hamburg
Germany
http://www.informatik.uni-hamburg.de/TGI/

Copyright c© 2012 for the individual papers by the papers’ authors. Copying
permitted only for private and academic purposes. This volume is published and
copyrighted by its editors.

Table of Contents

Preface of the International Workshop on Logics, Agents, and Mobility
(LAM’12) . 1

Berndt Müller (Farwer) and Michael Köhler-Bußmeier

Reconfigurable Petri Nets: Modeling and Analysis (Invited Talk) 3
Julia Padberg

Modelling Intentional Reasoning with Defeasible and Temporal Logic 5
José Mart́ın Castro-Manzano

A Mobility Logic for Object Net Systems . 19
Frank Heitmann and Michael Köhler-Bußmeier

BDD-based Bounded Model Checking for LTLK over Two Variants of
Interpreted Systems . 35

Artur Mȩski, Wojciech Penczek, and Maciej Szreter

Preface of the International Workshop on Petri Net-based Security (WooPS’12) 51
Rafael Accorsi, Tadao Murata, and Silvio Ranise

Developing and Integrating Petri net tools - an Experience Report (Invited
Talk) . 53

Karsten Wolf

Analysing SONAR Model Transformations . 55
Michael Köhler-Bußmeier

Inference of Local Properties in Petri Nets Composed through an Interface 71
Carlo Ferigato and Elisabetta Mangioni

Preface of the 2nd International Workshop on Petri Nets Compositions
(CompoNet’12) . 85

Hanna Klaudel and Franck Pommereau

Composition of Elementary Net Systems based on α-Morphisms 87
Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello

Deciding the Precongruence for Deadlock Freedom Using Operating Guide-
lines . 103

Richard Müller and Christian Stahl

Compositional Analysis of Modular Petri Nets using Hierarchical State
Space Abstraction . 119

Yves-Stan Le Cornec

i

ii

Preface by the LAM’12 Organisers

This volume contains of the contributions to the 5th International Workshop on
Logics, Agents, and Mobility. The workshop took place as a satelite event of 33th
International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency and the 12th International Conference on Application of
Concurrency to System in Hamburg, Germany.

The aim of this series of workshops is to bring together active researchers in
the areas of logics and other formal frameworks on the one hand, and mobile
systems on the other hand. The main focus is on the field of logics and calculi
for mobile agents, and multi-agent systems. Many notions used in the theory of
agents are derived from philosophy, logic, and linguistics, and interdisciplinary
discourse has proved fruitful for the advance of this domain.

Outside of academia, the deployment of large-scale pervasive infrastructures
(mobile ad-hoc networks, mobile devices, RFIDs, etc.) is becoming a reality. This
raises a number of scientific and technological challenges for the software mod-
elling and programming models for such large-scale, open and highly-dynamic
distributed systems. The agent and multi-agent systems approach seems par-
ticularly adapted to tackle this challenge, but there are many issues remaining
to be investigated. For instance, the agents must be location-aware since the
actual services available to them may depend on their (physical or virtual) lo-
cation. The quality and quantity of resources at their disposal is also largely
fluctuant, and the agents must be able to adapt to such highly dynamic environ-
ments. Moreover, mobility itself raises a large number of difficult issues related
to safety and security, which require the ability to reason about the software.
Logics and type systems with temporal or other kinds of modalities (relating to
location, resource and/or security-awareness) play a central role in the semantic
characterisation and then verification of properties about mobile agent systems.

There are still many open problems and research questions in the theory of
such systems. The workshop is intended to showcase results and current work
being undertaken in these areas with a focus on logics for specification and
verification of dynamic, mobile systems.

We would like to thank all authors who have submitted papers. Each paper
was reviewed by at least three referees. During the reviewing process the pro-
gram comittee selected three contributions for publication. We wish to thank all
members of the program comittee for their effort.

Finally we would like to thank our invited speaker, Julia Padberg, for her
lecture: Reconfigurable Petri Nets: Modeling and Analysis.

June 2012 Berndt Müller (Farwer)
Michael Köhler-Bußmeier

1

Programme Chairs

Berndt Müller (Farwer)
Michael Köhler-Bußmeier

Programme Committee

Matteo Baldoni
Nils Bulling
Marina De Vos
Louise Dennis
Jürgen Dix
Michael Fisher
Didier Galmiche
Andreas Herzig
Kathrin Hoffmann
Michael Köhler-Bußmeier
Joao Leite
Dale Miller
Berndt Müller (chair)
Frederic Peschanski
Wamberto Vasconcelos
Thomas Ågotnes

2

Reconfigurable Petri Nets:
Modeling and Analysis

Julia Padberg

Hamburg University of Applied Sciences, Germany

Abstract
The results of the research group forMA�NET (funded by the German Research
Council 2006-2012) on reconfigurable Petri nets are presented in this talk. We
introduce a family of modeling techniques consisting of Petri nets together with
a set of rules. For reconfigurable Petri nets not only the follower marking can
be computed but also the structure can be changed by rule application to ob-
tain a new net that is more appropriate with respect to some requirements of
the environment. Moreover, these activities can be interleaved. For rule-based
modification of Petri nets we use the framework of net transformations that is
inspired by graph transformation systems. The basic idea behind net transfor-
mation is the stepwise modification of Petri nets by given rules. The rules present
a rewriting of nets where the left-hand side is replaced by the right-hand side.

Motivation for this family of formal modeling techniques is the observation
that in increasingly many application areas the underlying system has to be dy-
namic in a structural sense. Complex coordination and structural adaptation at
run-time (e.g. mobile ad-hoc networks, communication spaces, ubiquitous com-
puting) are main features that need to be modeled adequately. The distinction
between the net behavior and the dynamic change of its net structure is the
characteristic feature that makes reconfigurable Petri nets so suitable for sys-
tems with dynamic structures.

In this talk we first motivate the use of reconfigurable Petri nets and present
their basic ideas. The concepts are discussed and are then given mathematically.
We employ the notion of high-level replacement systems extensively to obtain
rules and transformations of place/transition nets. These notions are then exem-
plified in a case study modeling scenarios of the Living Place Hamburg. Living
Place Hamburg can be considered as a system of ubiquitous computing and am-
bient intelligence. Scenarios of the Living Place are modeled using reconfigurable
place/transition nets providing a formal model of the internal system behavior
of this system, so that this model helps us to improve our understanding of
the modeled system. Subsequently we extend the theory to algebraic high-level
nets, this employs again high-level replacement systems with nested application
conditions as well as a individual token approach. These new concepts are illus-
trated and discussed in the case study Skype at length. The analysis of Skype as a
concrete and typical existing Communication Platform is an example for a mod-
eling methodology for Communication Platforms using an integrated modeling
approach based on algebraic higher order nets.

The talk is concluded with a discussion of further results.

3

4

Modelling Intentional Reasoning with Defeasible
and Temporal Logic

José Mart́ın Castro-Manzano

Escuela de Filosof́ıa
Universidad Popular Autónoma del Estado de Puebla
21 sur 1103 Barrio de Santiago, Puebla, México 72410

Instituto de Investigaciones Filosóficas
Universidad Nacional Autónoma de México

Circuito Mario de la Cueva s/n Ciudad Universitaria, México, D.F., México 04510
josemartin.castro@upaep.mx

Abstract. We follow the hypothesis that intentional reasoning is a form
of logical reasoning sui generis by its double nature: temporal and de-
feasible. Then we briefly describe a formal framework that deals with
these topics and we study the metalogical properties of its notion of in-
ference. The idea is that intentional reasoning can be represented in a
well-behaved defeasible logic and has the right to be called logical rea-
soning since it behaves, mutatis mutandis, as a logic, strictly speaking,
as a non-monotonic logic.

Keywords: Defeasible logic, temporal logic, BDI logic, intention.

1 Introduction

The relationship between philosophy and computer science is very profound and
unique [23]. Not only because these disciplines share some common historical
data –like Leibniz’s mathesis universalis [8]– and interesting anecdotes –like
the correspondence between Newell and Russell [11]–, but more importantly
because from the constant dialog that occurs within these disciplines we gain
useful hypothesis, formal methods and functional analysis that may shed some
light about different aspects of the nature of human behavior, specially under a
cognitive schema. The cognitive schema we follow is the BDI model (that stands
for Beliefs, Desires and Intentions) as originally exposed by Bratman [4] and
formally developed by Rao and company [21,22]. The general aspect we study is
the case of the non-monotonicity of intentional reasoning.

There is no doubt that reasoning using beliefs and intentions during time
is a very common task, done on a daily basis; but the nature and the status
of such kind of reasoning, which we will be calling intentional, are far from
being clear and distinct. However, it would be blatantly false to declare that
this study is entirely new, for there are recent efforts to capture some of these
ideas already [13,16,19]. But, in particular, we can observe, on one side, the case
of BDI logics [22,24] in order to capture and understand the nature of intentional

5

2

reasoning; and on the other side, the case of defeasible logics [20] to try to catch
the status of non-monotonic reasoning.

The problem with these approaches, nevertheless, is that, in first place, hu-
man reasoning is not and should not be monotonic [18], and thus, the logical
models should be non-monotonic, but the BDI techniques are monotonic; and
in second place, intentional states should respect temporal norms, and so, the
logical models need to be temporal as well, but the non-monotonic procedures
do not consider the temporal or intentional aspect. So, in the state of the art, de-
feasible logics have been mainly developed to reason about beliefs [20] but have
been barely used to reason about temporal structures [14]; on the other hand,
intentional logics have been mostly used to reason about intentional states and
temporal behavior but most of them are monotonic [7,21,24].

Under this situation our main contribution is a brief study of the nature and
status of intentional reasoning following the hypothesis that intentional reasoning
is a form of logical reasoning sui generis by its temporal and defeasible nature
and we suggest that intentional reasoning has the right to be called logical since
it behaves, mutatis mutandis, as a logic. In particular, this study is important
by its own sake because defeasible reasoning has certain patterns of inference
and therefore the usual challenge is to provide a reasonable description of these
patterns. Briefly, the idea is that if monotony is not a property of intentional
reasoning and we want to give an adequate description of its notion of inference,
then we must study the metalogical properties of intentional inference that occur
instead of monotony. Because once monotonicity is given up, a very organic
question about the status of this kind of reasoning emerges: why should we
consider intentional reasoning as an instance of a logic bona fide?

This paper is organized in the next way. In Section 2 we briefly expose what
is understood as intentional reasoning. In Section 3 is our main contribution and
finally, in Section 4 we sum up the results obtained.

2 Intentional reasoning

Two general requirements to be checked out while developing a logical framework
are material and formal adequacy [1]. Material adequacy is about capturing an
objective phenomenon. Formal adequacy has to do with the metalogical proper-
ties that a notion of logical consequence satisfies. The nature of intentional rea-
soning is related to a material aspect, while its status is directly connected with
a formal one. During this study, due to reasons of space, we will focus mainly on
the latter in order to argue that intentional reasoning can be modelled in a well-
behaved defeasible logic, given that a well-behaved defeasible logic has to satisfy
conditions of Supraclassicality, Reflexivity, Cut and Cautious Monotony [12].

But just to give some pointers about material adequacy, let us consider the
next example for sake of explanation: assume there is an agent that has an in-
tention of the form on(X,Y) ← put(X,Y). This means that, for such an agent
to achieve on(a, b) it typically has to put a on b. If we imagine such an agent
is immersed in a dynamic environment, of course the agent will try to put, typ-

6

3

ically, a on b; nevertheless, a rational agent would only do it as long as it is
possible; otherwise, we would say the agent is not rational. Therefore, it results
quite natural to talk about some intentions that are maintained typically but not
absolutely if we want to guarantee some level of rationality. And so, it is reason-
able to conclude that intentions –in particular policy-based intentions [4]–, allow
some form of defeasible reasoning [13] that must comply with some metalogical
properties. But before we explore such properties, let us review some previous
details.

The current logical systems that are used to model intentional reasoning are
built in terms of what we call a bratmanian model. A bratmanian model is a
model that i) follows general guidelines of Bratman’s theory of practical reason-
ing [4], ii) uses the BDI architecture [21] to represent data structures and iii)
configures notions of logical consequence based on relations between intentional
states. There are several logics based upon bratmanian models, but we consider
there are, at least, two important problems with the usual logics [7,22,24].

For one, such logics tend to interpret intentions as a unique fragment –usually
represented by an opertator INT–, while Bratman’s original theory distinguished
three classes of intentions: deliberative, non-deliberative and policy-based. In
particular, policy-based intentions are of great importance given their structure
and behavior: they have the structure of complex rules and behave like plans.
This remark is important for two reasons: because the existing formalisms, de-
spite of recognizing the intimate relationship between plans and intentions, seem
to forget that intentions behave like plans; and because the rule-like structure
allows us to build a more detailed picture of the nature of intentional reasoning.

But the bigger problem is that these systems do not quite recognize that
intentional reasoning has a temporal and defeasible nature. Intuitively, the idea
is that intentional reasoning is temporal because intentions and beliefs are dy-
namic data structures, i.e., they change during time; but is also defeasible, be-
cause if these data structures are dynamic, their consequences may change. The
bratmanian model we propose tries to respect this double nature by following
the general guidelines of Bratman’s theory of practical reasoning [4], so we dis-
tinguish functional (pro-activity, inertia, admissibility), descriptive (partiality,
dynamism, hierarchy) and normative (internal, external consistency and coher-
ence) properties that configure a notion of inference. To capture this notion
of inference in a formal fashion the next framework is proposed in terms of
AgentSpeak(L)[3] (see Appendix):

Definition 1 (Non-monotonic intentional framework) A non-monotonic inten-
tional framework is a tuple 〈B, I, FB , FI ,`, |∼ ,a, ∼| ,�〉 where:

– B denotes the belief base.
– I denotes the set of intentions.
– FB ⊆ B denotes the basic beliefs.
– FI ⊆ I denotes the basic intentions.
– ` and a are strong consequence relations.
– |∼ and ∼| are weak consequence relations.

7

4

– �⊆ I2 s.t. � is acyclic.

The item B denotes the beliefs, which are literals. FB stands for the beliefs
that are considered as basic; and similarly FI stands for intentions considered
as basic. Each intention φ ∈ I is a structure te : ctx← body where te represents
the goal of the intention –so we preserve proactivity–, ctx a context and the rest
denotes the body. When ctx or body are empty we write te : > ← > or just te.
Also it is assumed that plans are partially instantiated.

Internal consistency is preserved by allowing the context of an intention de-
noted by ctx(φ), ctx(φ) ∈ B and by letting te be the head of the intention. So,
strong consistency is implied by internal consistency (given that strong consis-
tency is ctx(φ) ∈ B). Means-end coherence will be implied by admissibility –the
constraint that an agent will not consider contradictory options– and the hier-
archy of intentions is represented by the order relation, which we require to be
acyclic in order to solve conflicts between intentions. And with this framework
we can arrange a notion of inference where we will say that φ is strongly (weakly)
derivable from a sequence ∆ if and only if there is a proof of ∆ ` φ (∆ |∼ φ).
And also, that φ is not strongly (weakly) provable if and only if there is a proof
of ∆ a φ (∆ ∼| φ), where ∆ = 〈B, I〉.

2.1 The system NBDICTL
AS(L)

We start with CTLAgentSpeak(L) [15] as a logical tool for the formal specifica-
tion (similar approaches have been accomplished for other programming lan-
guages [9]). Of course, initially, the approach is similar to a BDICTL system
defined after BKD45DKDIKD with the temporal operators: next (©), eventu-
ally (♦), always (�), until (U), optional (E), inevitable (A), and so on, defined
after CTL∗ [6,10].

Syntax of BDICTL
AS(L) CTLAgentSpeak(L) may be seen as an instance ofBDICTL.

The idea is to define some BDICTL semantics in terms of AgentSpeak(L) struc-
tures. So, we need a language able to express temporal and intentional states.
Thus, we require in first place some way to express these features.

Definition 2 (Syntax of BDICTLAS(L)) If φ is an AgentSpeak(L) atomic formula,

then BEL(φ), DES(φ) and INT(φ) are well formed formulas of BDICTLAS(L).

To specify the temporal behavior we use CTL∗ in the next way.

Definition 3 (BDICTLAS(L) temporal syntax) Every BDICTLAS(L) formula is a state
formula s:

– s ::= φ|s ∧ s|¬s
– p ::= s|¬p|p ∧ p|Ep|Ap| © p|♦p|�p|p U p

8

5

Semantics of BDICTL
AS(L) Initially the semantics of BEL, DES and INT is

adopted from [2]. So, we assume the next function:

agoals(>) = {},
agoals(i[p]) =

{
{at} ∪ agoals(i) if p = +!at : ct← h,
agoals(i) otherwise

which gives us the set of atomic formulas (at) attached to an achievement goal
(+!) and i[p] denotes the stack of intentions with p at the top.

Definition 4 (BDICTLAS(L) semantics) The operators BEL, DES and INT are de-

fined in terms of an agent ag and its configuration 〈ag, C,M, T, s〉:
BEL〈ag,C,M,T,s〉(φ) ≡ φ ∈ bs

INT〈ag,C,M,T,s〉(φ) ≡ φ ∈
⋃

i∈CI

agoals(i) ∨
⋃

〈te,i〉∈CE

agoals(i)

DES〈ag,C,M,T,s〉(φ) ≡ 〈+!φ, i〉 ∈ CE ∨ INT(φ)

where CI denotes current intentions and CE suspended intentions.

And now some notation: we will denote an intention φ with head g by φ[g].
Also, a negative intention is denoted by φ[gc], i.e., the intention φ with ¬g as the
head. The semantics of this theory will require a Kripke structure K = 〈S,R, V 〉
where S is the set of agent configurations, R is an access relation defined after
the transition system Γ and V is a valuation function that goes from agent
configurations to true propositions in those states.

Definition 5 Let K = 〈S, Γ, V 〉, then:

– S is a set of agent configurations c = 〈ag, C,M, T, s〉.
– Γ ⊆ S2 is a total relation such that for all c ∈ Γ there is a c′ ∈ Γ s.t.

(c, c′) ∈ Γ .
– V is valuation s.t.:

- VBEL(c, φ) = BELc(φ) where c = 〈ag, C,M, T, s〉.
- VDES(c, φ) = DESc(φ) where c = 〈ag, C,M, T, s〉.
- VINT(c, φ) = INTc(φ) where c = 〈ag, C,M, T, s〉.

– Paths are sequences of configurations c0, . . . , cn s.t. ∀i(ci, ci+1) ∈ R. We use
xi to indicate the i-th state of path x. Then:

S1 K, c |= BEL(φ)⇔ φ ∈ VBEL(c)
S2 K, c |= DES(φ)⇔ φ ∈ VDES(c)
S3 K, c |= INT(φ)⇔ φ ∈ VINT(c)
S4 K, c |= Eφ⇔ ∃x = c1, . . . ∈ K|K,x |= φ
S5 K, c |= Aφ⇔ ∀x = c1, . . . ∈ K|K,x |= φ
P1 K, c |= φ⇔ K,x0 |= φ where φ is a state formula.
P2 K, c |=©φ⇔ K,x1 |= φ.
P3 K, c |= ♦φ⇔ K,xn |= φ for n ≥ 0
P4 K, c |= �φ⇔ K,xn |= φ for all n
P5 K, c |= φ U ψ ⇔ ∃k ≥ 0 s.t. K,xk |= ψ and for all j, k, 0 ≤ j < k|K, cj |= φ

or ∀j ≥ 0 : K,xj |= φ

9

6

A notion of inference comes in four cases: if the sequence is ∆ ` φ, we say φ is
strongly provable; if it is ∆ a φ we say φ is not strongly provable. If is ∆ |∼ φ
we say φ is weakly provable and if it is ∆ ∼| φ, then φ is not weakly provable.

Definition 6 (Proof) A proof of φ from ∆ is a finite sequence of beliefs and
intentions satisfying:

1. ∆ ` φ iff
1.1. �A(INT(φ)) or
1.2. �A(∃φ[g] ∈ FI : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) ` ψ[g′])

2. ∆ |∼ φ iff
2.1. ∆ ` φ or
2.2. ∆ a ¬φ and

2.2.1. ♦E(INT(φ) U ¬BEL(ctx(φ))) or
2.2.2. ♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′]) and

2.2.2.1. ∀γ[gc] ∈ I, γ[gc] fails at ∆ or
2.2.2.2. ψ[g′] � γ[gc]

3. ∆ a φ iff
3.1. ♦E(INT(¬φ)) and
3.2. ♦E(∀φ[g] ∈ FI : ¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ[g′])

4. ∆ ∼| φ iff
4.1. ∆ a φ and
4.2. ∆ ` ¬φ or

4.2.1. �A¬(INT(φ) U ¬BEL(ctx(φ))) and
4.2.2. �A(∀φ[g] ∈ I : ¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) ∼| ψ[g′]) or

4.2.2.1. ∃γ[gc] ∈ I s.t. γ[gc] succeds at ∆ and
4.2.2.2. ψ[g′] 6� γ[gc]

3 Formal adequacy

Once monotonicity is given up a very intuitive question arises: why should we
consider intentional reasoning as an instance of a logic bona fide? We indirectly
answer this question by arguing that intentional reasoning under this bratmanian
model has some good properties.

3.1 Consistency

We suggest a square of opposition in order to depict logical relationships of
consistency and coherence.

Proposition 1 (Subalterns1) If ` φ then |∼ φ.

Proof. Let us assume that ` φ but not |∼ φ, i.e., ∼| φ. Then, given ` φ we have
two general cases. Case 1: given the initial assumption that ` φ, by Definition 6
item 1.1, we have that �A(INT(φ)). Now, given the second assumption, i.e., that
∼| φ, by Definition 6 item 4.1, we have a φ. And so, ♦E(INT(¬φ)), and thus, by

10

7

the temporal semantics, we get ¬φ; however, given the initial assumption, we
also obtain φ, which is a contradiction.

Case 2: given the assumption that ` φ, by Definition 6 item 1.2, we have
that ∃φ[g] ∈ FI : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) ` ψ[g′]. Now, given the second
assumption, that ∼| φ, we also have a φ and so we obtain ♦E(∀φ[g] ∈ FI :
¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ), and thus we can obtain ∀φ[g] ∈ FI :
¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ) which is ¬(∃φ[g] ∈ FI : BEL(ctx(φ)) ∧
∀ψ[g′] ∈ body(φ) ` ψ[g′]). �

Corollary 1 (Subalterns2) If ∼| φ then a φ.

Proposition 2 (Contradictories1) There is no φ s.t. ` φ and a φ.

Proof. Assume that there is a φ s.t. ` φ and a φ. If a φ then, by Definition 6
item 3.1, ♦E(INT(¬φ)). Thus, by proper semantics, we can obtain ¬φ. However,
given that ` φ it also follows that φ, which is a contradiction. �

Corollary 2 (Contradictories2) There is no φ s.t. |∼ φ and ∼| φ.

Proposition 3 (Contraries) There is no φ s.t. ` φ and ∼| φ.

Proof. Assume there is a φ such that ` φ and ∼| φ. By Proposition 1, it follows
that |∼ φ, but that contradicts the assumption that ∼| φ by Corollary 2. �

Proposition 4 (Subcontraries) For all φ either |∼ φ or a φ.

Proof. Assume it is not the case that for all φ either |∼ φ or a φ. Then there
is φ s.t. ∼| φ and ` φ. Taking ∼| φ it follows from Corollary 1 that a φ. By
Proposition 2 we get a contradiction with ` φ. �

These propositions form the next square of opposition where c denotes con-
tradictories, s subalterns, k contraries and r subcontraries.

` φ < k > ∼| φ

s
∨

c

>
<

s
∨

|∼ φ
∨

<
<

r > a φ
∨>

Proposition 1 and Corollary 1 represent Supraclassicality; Proposition 2 and
Corollary 2 stand for Consistency while the remaining statements specify the
coherence of the square, and thus, the overall coherence of the system.

Consider, for example, a scenario in which an agent intends to acquire its
PhD, and we set the next configuration ∆ of beliefs and intentions: FB = {>},
B = {scolarship}, FI = {research : > ← >}, I = {phd : > ← thesis, exam;
thesis : scolarship ← research; exam : > ← research}. And suppose we send

11

8

the query: phd? The search of intentions with head phd in FI fails, thus the
alternative ` φ[phd] does not hold. Thus, we can infer, by contradiction rule
(Proposition 2), that it is not strongly provable that phd, i.e., that eventually in
some state the intention phd does not hold. Thus, the result of the query should
be that the agent will get its PhD defeasibly under the ∆ configuration. On the
contrary, the query research? will succedd as ` φ[research], and thus, we would
say research is both strongly and weakly provable (Proposition 1).

3.2 Soundness

The framework is Sound with respect to its semantics.

Definition 7 (Satisfaction) A formula φ is true in K iff φ is true in all config-
urations σ in K. This is to say, K |= φ⇔ K,σ |= φ for all σ ∈ S.

Definition 8 (Run of an agent in a model) Given an initial configuration β, a

transition system Γ and a valuation V , Kβ
Γ =

〈
SβΓ , R

β
Γ , V

〉
denotes a run of an

agent in a model.

Definition 9 (Validity) A formula φ ∈ BDICTLAS(L) is true for any agent run in

Γ iff ∀Kβ
Γ |= φ

By denoting (∃Kβ
Γ |= φ U ¬BEL(ctx(φ)))∨ |= φ as |≈ φ, and assuming

|= φ ≥ |≈ φ and ≈| φ ≥=| φ, a series of translations can be found s.t.:

` φ > ∀Kβ
Γ |= φ > |= φ

|∼ φ >
>

|≈ φ
∨

And also for the rest of the fragments:

∼| φ > ∃Kβ
Γ |= ¬φ ∧ ∀Kβ

Γ |= ¬(φ U ¬BEL(ctx(φ))) > ≈| φ

a φ >
>

=| φ
∨

Proposition 5 The following relations hold:

a) If ` φ then |= φ b) If |∼ φ then |≈ φ

Proof. Base case. Taking ∆i as a sequence with i = 1.
Case a) If we assume ` φ, we have two subcases. First subcase is given by Def-

inition 6 item 1.1. Thus we have �A(INT(φ)). This means, by Definition 5 items
P4 and S5 and Definition 4, that for all paths and all states φ ∈ CI ∨CE . We can

12

9

represent this expression, by way of a translation, in terms of runs. Since paths
and states are sequences of agent configurations we have that ∀Kβ

Γ |= φ, which
implies |= φ. Second subcase is given by Definition 6 item 1.2, which in terms of
runs means that for all runs ∃φ[g] ∈ FI : BEL(ctx(φ))∧∀ψ[g′] ∈ body(φ) ` ψ[g′].
Since∆1 is a single step, body(φ) = > and for all runs BEL(ctx(φ))), ctx(φ) ∈ FB .

Then ∀Kβ
Γ |= φ which, same as above, implies |= φ.

Case b) Let us suppose |∼ φ. Then we have two subcases. The first one is
given by Definition 6 item 2.1. So, we have that ` φ which, as we showed above,
already implies |= φ. On the other hand, by item 2.2, we have a ¬φ and two
alternatives. The first alternative, item 2.2.1, is ♦E(INT(φ) U ¬BEL(ctx(φ))).
Thus, we can reduce this expression by way of Definition 5 items P3 and S4, to
a translation in terms of runs: ∃Kβ

Γ |= φ U ¬BEL(ctx(φ)), which implies |≈ φ.
The second alternative comes from item 2.2.2, ♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧
∀ψ[g′] ∈ body(φ) |∼ ψ[g′]) which in terms of runs means that for some run
∃φ[g] ∈ I : BEL(ctx(φ))∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′], but ∆1 is a single step, and
thus body(φ) = >. Thus, there is a run in which ∃φ[g] ∈ I : BEL(ctx(φ)), i.e.,

(∃Kβ
Γ |= (φ U ¬BEL(ctx(φ))) by using the weak case of Definition 6 P5. Thus,

by addition, (∃Kβ
Γ |= (φ U ¬BEL(ctx(φ)))∨ |= φ, and therefore, |≈ φ.

Inductive case. Case a) Let us assume that for n ≤ k, if ∆n ` φ then ∆ |= φ.
And suppose ∆n+1. Further, suppose ∆n ` φ, then we have two alternatives.
First one being, by Definition 6 item 1.1, that we have an intention φ s.t. ctx(φ) =
body(φ) = >. Since body(φ) is empty, it trivially holds at n, and by the induction
hypothesis, body(φ) ⊆ ∆n+1, and thus |= φ. Secondly, by Definition 6 item 1.2,
for all runs ∃φ[g] ∈ I : BEL(ctx(φ))∧∀ψ[g′] ∈ body(φ) ` ψ[g′]. Thus, for all runs
n, ∀ψ[g′] ∈ body(φ) ` ψ[g′], and so by the induction hypothesis, body(φ) ⊆ ∆n+1,
i.e., ∆ ` ψ[g′]. Therefore, |= φ.

Case b) Let us assume that for n ≤ k, if ∆n |∼ φ then ∆ |≈ φ. And suppose
∆n+1. Assume ∆n |∼ φ. We have two alternatives. The first one is given by
Definition 6 item 2.1, i.e., ` φ, which already implies |= φ. The second alternative
is given by item 2.2, ∆ a ¬φ and two subcases: ♦E(INT(φ) U ¬BEL(ctx(φ))) or
♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′]). If we consider the
first subcase there are runs n which comply with the definition of |≈ φ. In the
remaining subcase we have ∀ψ[g′] ∈ body(φ) |∼ ψ[g′], since body(φ) ⊆ ∆n, by
the induction hypothesis ∆ |∼ ψ[g′], and thus, ∆n+1 |∼ φ, i.e., |≈ φ. �

Corollary 3 The following relations hold:

a) If a φ then =| φ b) If ∼| φ then ≈| φ

3.3 Other formal properties

But there are other formal properties that may be used to explore and define
the rationality of intentional reasoning, i.e., its good behavior. In first place, it
results quite reasonable to impose Reflexivity on the consequence relation so
that if φ ∈ ∆, then ∆ |∼ φ.

13

10

Further, another reasonable property should be one that dictates that strong
intentions imply weak intentions. In more specific terms, that if an intention φ
follows from ∆ in a monotonic way, then it must also follow according to a non-
monotonic approach. Thus, in second place, we need the reasonable requirement
that intentions strongly mantained have to be also weakly mantained, but no
the other way around:

Proposition 6 (Supraclassicality) If ∆ ` φ, then ∆ |∼ φ.

Proof. See Proposition 1. �
Another property, a very strong one, is Consistency Preservation. This prop-

erty tells us that if some intentional set is classically consistent, then so is the
set of defeasible consequences of it.

Proposition 7 (Consistency preservation) If ∆ |∼ ⊥, then ∆ ` ⊥.

Proof. Let us consider the form of the intention ⊥. Such intention is the intention
of the form φ ∧ ¬φ, which is, therefore, impossible to achieve, that is to say, for
all agent runs, |∼ ⊥ is never achieved. Thus ∆ |∼ ⊥ is false, which makes the
whole implication true. �

And, if an intention φ is a consequence of ∆, then ψ is a consequence of
∆ and φ only if it is already a consequence of ∆, because adding to ∆ some
intentions that are already a consequence of ∆ does not lead to any increase
of information. In terms of the size of a proof [1], such size does not affect the
degree to which the initial information supports the conclusion:

Proposition 8 (Cautious cut) If ∆ |∼ φ and ∆,φ |∼ ψ then ∆ |∼ ψ.

Proof. Let us start by transforming the original proposition into the next one:
if ∆ ∼| ψ then it is not the case that ∆ |∼ φ and ∆,φ |∼ ψ. Further, this
proposition can be transformed again: if ∆ ∼| ψ then either ∆ ∼| φ or ∆,φ ∼| ψ
from which, using Corollary 1, we can infer: if ∆ a ψ then either ∆ a φ or
∆,φ a ψ. Now, let us assume that ∆ a ψ but it is not the case that either ∆ a φ
or ∆,φ a ψ, i.e., that ∆ a ψ but ∆ ` φ and ∆,φ ` ψ. Considering the expression
∆,φ ` ψ we have two alternatives: either ψ ∈ body(φ) or ψ 6∈ body(φ). In the
first case, given that ∆ ` φ then, since ψ ∈ body(φ) it follows that ` ψ, but that
contradicts the assumption that ∆ a ψ. In the remaining case, if ∆,φ ` ψ but
ψ 6∈ body(φ), then ∆ ` ψ, which contradicts the assumption that ∆ a ψ. �

If we go a little bit further, we should look for some form of Cautious
Monotony as the converse of Cut in such a way that if φ is taken back into
∆ that does not lead to any decrease of information, that is to say, that adding
implicit information is a monotonic task:

Proposition 9 (Cautious monotony) If ∆ |∼ ψ and ∆ |∼ γ then ∆,ψ |∼ γ.

Proof. Let us transform the original proposition: if ∆,ψ ∼| γ then it is not
the case that ∆ |∼ ψ and ∆ |∼ γ. Thus, if ∆,ψ ∼| γ then either ∆ ∼| ψ or

14

11

∆ ∼| γ, and by Corollary 1, if ∆,ψ a γ then either ∆ a ψ or ∆ a γ. Now, let
us suppose that ∆,ψ a γ but it is false that either ∆ a ψ or ∆ a γ, this is to
say, that ∆,ψ a γ and ∆ ` ψ and ∆ ` γ. Regarding the expression ∆,ψ a γ
we have two alternatives: either γ ∈ body(ψ) or γ 6∈ body(ψ). In the first case,
since γ ∈ body(ψ) and ∆ a ψ, then a γ, which contradicts the assumption that
∆ ` γ. On the other hand, if we consider the second alternative, ∆ a γ, but that
contradicts the assumption that ∆ ` γ. �

4 Conclusion

It seems reasonable to conclude that this bratmanian model of intentional rea-
soning captures relevant features of the nature of intentional reasoning and can
be modelled in a well-behaved defeasible logic that clarifies its status, since it sat-
isfies conditions of Consistency, Soundness, Supraclassicality, Reflexivity, Con-
sistency Preservation, Cautious Cut and Cautious Monotony. In other words,
it is plausible to conclude that intentional reasoning has the right to be called
logical reasoning since it behaves, mutatis mutandis, as a logic, strictly speaking,
as a non-monotonic logic.

The relevance of this work becomes clear once we notice that, although
intentions have received a lot of attention, their dynamic features have not
been studied completely [16]. There are formal theories of intentional reason-
ing [7,17,22,24] but very few of them consider the revision of intentions [16]
or the non-monotonicity of intentions [13] as legitimate research topics, which
we find odd since the foundational theory guarantees that such research is le-
gitimate and necessary [4]. Recent works confirm the status of this emerging
area [13,16,19].

Acknowledgements. The author would like to thank the anonymous reviewers
for their helpful comments and precise corrections; and the School of Philosophy
at UPAEP for all the assistance. This work has also been supported by the
CONACyT scholarship 214783.

References

1. Antonelli, A.: Grounded Consequence for Defeasible Logic. Cambridge: Cambridge
University Press (2005)

2. Bordini, R.H., Moreira, Á.F.: Proving BDI properties of agent-oriented program-
ming languages. Annals of Mathematics and Artificial Intelligence 42, 197–226
(2004)

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, England (2007)

4. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

5. Castro-Manzano, J.M., Barceló-Aspeitia. A.A. and Guerra-Hernández, A.: Consis-
tency and soundness for a defeasible logic of intention. Advances in soft computing
algorithms, Research in Computing Science vol. 54, (2011)

15

12

6. Clarke, E. M. Jr., Grumberg, O. and Peled. D. A.: Model Checking. MIT Press,
Boston, MA., USA, (1999)

7. Cohen, P., Levesque, H.: Intention is choice with commitment. Artificial Intelligence
42(3), 213-261 (1990)

8. Couturat, L.: La logique de Leibniz d’aprés de documents inédits. G. Olms,
Hildesheim (1962)

9. Dastani, M., van Riemsdijk, M.B., Meyer, J.C.: A grounded specification language
for agent programs. In: AAMAS’07. ACM, New York, NY, pp. 1-8 (2007)

10. Emerson, A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Elsevier Science Publishers B.V., Amsterdam, (1990)

11. Dear Bertrand Russell... A Selection of his Correspondence with the General Public
19501968, edited by Barry Feinberg and Ronald Kasrils. London, George Allen and
Unwin, (1969)

12. Gabbay, D. M.: Theoretical foundations for nonmonotonic reasoning in expert
systems. in K. Apt (ed.), Logics and Models of Concurrent Systems, Berlin and
New York: Springer Verlag, pp. 439459 (1985).

13. Governatori, G., Padmanabhan, V. and Sattar, A.: A Defeasible Logic of Policy-
based Intentions. In AI 2002: Advances in Artificial Intelligence, LNAI-2557.
Springer Verlag (2002)

14. Governatori, G., Terenziani, P.: Temporal Extensions to Defeasible Logic. In Pro-
ceedings of IJCAI’07 Workshop on Spatial and Temporal Reasoning, India (2007)

15. A. Guerra-Hernández, J. M. Castro-Manzano, A. El-Fallah-Seghrouchni.: CTLA-
gentSpeak(L): a Specification Language for Agent Programs. Journal of Algorithms
in Cognition, Informatics and Logic, (2009)

16. Hoek, W. van der, Jamroga, W., Wooldridge, M.: Towards a theory of intention
revision. Synthese, Springer-Verlag (2007).

17. Konolige, K., Pollack, M. E.: A representationalist theory of intentions. In Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI-93), 390-395,
San Mateo: Morgan Kaufmann (1993).

18. Nute, D.: Defeasible logic. In: INAP 2001, LNAI 2543M 151-169, Springer-Verlag,
(2003).

19. Icard, Th., Pacuit. E., Shoham, Y.: Joint revision of belief and intention. Pro-
ceedings of the Twelfth International Conference on the Principles of Knowledge
Representation and Reasoning, (2010).

20. Prakken, H., Vreeswijk, G.: Logics for defeasible argumentation. In D. Gabbay and
F. Guenthner (eds.), Handbook of Philosophical Logic, second edition, Vol 4, pp.
219-318. Kluwer Academic Publishers, Dordrecht etc., (2002).

21. Rao, A.S., Georgeff, M.P.: Modelling Rational Agents within a BDI-Architecture.
In: Huhns, M.N., Singh, M.P., (eds.) Readings in Agents, pp. 317–328. Morgan
Kaufmann (1998).

22. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) MAAMAW. LNCS, vol. 1038, pp. 42–55.
Springer, Heidelberg (1996).

23. Turner, R. and Eden, A.: ”The Philosophy of Computer Science”, The Stanford
Encyclopedia of Philosophy (Summer 2009 Edition), Edward N. Zalta (ed.), URL
= ¡http://plato.stanford.edu/archives/sum2009/entries/computer-science/¿.

24. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000).

16

13

Appendix

AgentSpeak(L) syntax An agent ag is formed by a set of plans ps and beliefs
bs (grounded literals). Each plan has the form te : ctx ← h. The context ctx of
a plan is a literal or a conjunction of them. A non empty plan body h is a finite
sequence of actions A(t1, . . . , tn), goals g (achieve ! or test ? an atomic formula
P (t1, . . . , tn)), or beliefs updates u (addition + or deletion −). > denotes empty
elements, e.g., plan bodies, contexts, intentions. The trigger events te are updates
(addition or deletion) of beliefs or goals. The syntax is shown in Table 1.

ag ::= bs ps h ::= h1;> | >
bs ::= b1 . . . bn (n ≥ 0) h1 ::= a | g | u | h1;h1

ps ::= p1 . . . pn (n ≥ 1) at ::= P (t1, . . . , tn) (n ≥ 0)
p ::= te : ctx← h a ::= A(t1, . . . , tn) (n ≥ 0)
te ::= +at | − at | + g | − g g ::= !at | ?at
ctx ::= ctx1 | > u ::= +b | − b
ctx1 ::= at | ¬at | ctx1 ∧ ctx1

Table 1. Sintax of AgentSpeak(L).

AgentSpeak(L) semantics The operational semantics of AgentSpeak(L) are
defined by a transition system, as showed in Figure 1, between configurations
〈ag, C,M, T, s〉:

ProcMsg

SelEv RelPl ApplPl

SelAppl

AddIM

SelInt

ExecInt

ClrInt

SelEv2

SelEv1 Rel1

Rel2

Appl1Appl2

SelAppl
ExtEv
IntEv

SelInt1

SelInt2

Action

AchvGl

TestGl1
TestGl2

AddBel
DelBel

ClrInt2

ClrInt1
ClrInt3

Fig. 1. The interpreter for AgentSpeak(L) as a transition system.

Under such semantics a run is a set Run = {(σi, σj)|Γ ` σi → σj} where Γ is
the transition system defined by the AgentSpeak(L) operational semantics and
σi, σj are agent configurations.

17

18

A Mobility Logic for Object Net Systems

Frank Heitmann and Michael Köhler-Bußmeier

University of Hamburg, Department for Informatics
Vogt-Kölln-Straße 30, D-22527 Hamburg

{heitmann,koehler}@informatik.uni-hamburg.de

Abstract. In this paper we present work in progress on a special variant
of Object Petri Nets and on the introduction of a Mobility Logic to reason
about them.
The Petri nets considered in this paper allow the vertical transport of net
tokens i.e. the transport of net tokens through different nesting levels,
giving one enhanced modelling capabilities and allowing one to naturally
model certain situations arising in nested structures.
The logic then allows us not only to reason about the evolution of the
described system in time, but also about spatial configurations, i.e. in
this logic we can express for example, that a certain object or agent
is always somewhere or at a specific location. This part of our work is
inspired by the work of Cardelli and Gordon on the Ambient Calculus
and the Ambient Logic.

Keywords: design methods, higher-level Petri net models, nets-within-nets,
mobility logic, model checking and verification

1 Introduction

Object Petri Nets are Petri Nets whose tokens may be Petri Nets again and
thus may have an inner structure and activity. This approach is useful to model
mobile systems and other systems arising in Computer Science which enjoy a
certain nesting of structures (cf. [10] and [11]).

This approach, which is also called the nets-within-nets paradigm, was pro-
posed by Valk [22, 23] for a two levelled structure and generalised in [12, 13]
for arbitrary nesting structures. By now many related approaches like recur-
sive nets [6], nested nets [18], adaptive workflow nets [19], AHO systems [9],
PN2 [8], Mobile Systems [17], and many others are known. See [14] for a detailed
discussion.1

A variant introduced a few years ago in [15], allows the vertical transport
of net tokens, i.e. the transport of net tokens through different nesting levels,
giving one enhanced modelling capabilities and allowing one to naturally model
certain situations arising in nested structures.

1 Another line of research also dealing with nesting, but not in the field of Petri nets,
is concerned with process calculi. Arguably most prominently there are the Ambient
Calculus of Gordon and Cardelli [2] and the Seal Calculus [3] among many others.

19

Unfortunately the formalism was rather complicated and thus not well suited
for neither theoretical investigations nor modelling applications. In the first part
of this paper we devise a more convenient variant with regard to theoretical in-
vestigations than the variant known so far. The variant proposed here retains the
ability to transport tokens in the vertical dimension, but in particular restricts
the transitions participating in the firing to at most two levels.

After introducing the formalism we go on and introduce a logic that allows us
not only to reason about the evolution of the described system in time, but also
about spatial configurations, i.e. a logic in which we can express for example,
that a certain object or agent is always somewhere or at a specific location. This
part of our work is deeply inspired by the work of Cardelli and Gordon on the
Ambient Calculus and the Ambient Logic [2], [1].

While the main part of this presentation deals with the introduction of the
formalism and the logic and thus with definitions and examples, we also hint at
work in progress regarding the complexity of certain problems for object nets and
the newly developed logic. In particular we show that the reachability problem
is decidable in PSpace for a specific finite-state-segment of our formalism and
argue that the model checking problem for the new logic might also be in PSpace
for this variant.

In the following we assume basic knowledge of Petri nets, see e.g. [20].

2 Object Nets

In [15] we presented a formalism for object nets which was rather complicated.
The firing rule was particularly hard to formulate and to understand as were
the events themselves. Unsurprisingly the formalism was Turing-complete, but
many of the formalism’s facets where not even used in the proof.

In the following we will present a stripped-down variant that still captures
the essentials of the formalism in [15], namely the nets-within-nets structure,
the synchronisation, and in particular the possibility to transport nets vertically
through the channels. For an example take a look at Figure 3. An object net
resides on place p′ whose place p is again marked by another object net. The
transitions t′ and t use the same channel descriptor c and the channel proper-
ties match.2 Ignoring the inner structure of the net tokens both transitions are
activated and may fire. The successor marking is pictured in Figure 4. The net
token previously on p′ has travelled to p′′′, but it’s place p is now empty, because
that object net has travelled in the vertical dimension via channel c to the place
p′′. In the following we will give a formal description of this formalism.

An Object Net System (ONS for short) consist of a system net N̂ = (P̂ , T̂ , F̂)
and a finite number of object nets N = {N1, . . . , Nm}, Ni = (Pi, Ti, Fi). Black
tokens can be described by a special object net which has no places and transi-
tions. We set N̂ := N ∪ N̂ . Instead of Pi, Ti and so on we sometimes make use

2 This will be defined later, for now note that the channel property ↑N1 of t means
that t wants to send a object of type N1 upwards and the channel property ∩N1 of
t′ means that it wants to catch a object of type N1 (both via channel c).

20

Fig. 1. Before Firing. Fig. 2. After Firing.

of the notation T (Ni) := Ti, i.e. given an object net N the set of its transitions

is denoted by T (N), the set of its places by P (N). We use PN :=
⋃̇
N∈NP (N),

P := PN ∪ P̂ , TN :=
⋃̇
N∈NT (N), and T := TN ∪ T̂ to denote the set of all

places and transitions.

The places are all typed via the typing function d : P → N . Note that no
place is typed with the system net N̂ .

Transitions are labelled with channels to allow for synchronisation. Chan-
nels consist of a descriptor taken from a finite set of channel descriptors Cd =
{c1, c2, . . . , cn} and a channel property Cp = {⇑,⇓,⇑N1 , . . . ,⇑Nm ,⇓N1 , . . . ,⇓Nm

,∪N1
, . . . ,∪Nm

,∩N1
, . . . ,∩Nm

}. A channel is then a element of the set C :=
Cp × Cd, where instead of e.g. (⇑, c1) we usually simply write ⇑ c1.

Since the system net is at the highest level of the hierarchy, not every channel
can be used there. To ease the notation later we additionally define Ĉ := (Cp\{⇑
,⇑N1

, . . . ,⇑Nm
,∪N1

, . . . ,∪Nm
})× Cd.

The labelling functions are now defined as

l̂ : T̂ → (Ĉ ×N) ∪ {ε}

and for each i ∈ [m] as

li : Ti → (C × N̂) ∪ {ε}

which are combined to

l : T → (C × N̂) ∪ {ε}

with l(t) = l̂(t) if t ∈ T̂ and l(t) = li(t) if t ∈ Ti.
Note that each transition is labelled with exactly one channel or ε. The

intended meaning of l(t) = (c,N) is that t synchronizes via channel c with a net
of type N . In the case of l(t) = ε the transition t fires autonomously.

We now describe the possible labellings together with there intended meaning
and the restrictions the labellings impose on the nets’ structure.

1. l(t) = ε, t ∈ T (N). In this case there is no synchronisation and t fires in
principal as in a normal p/t net.

21

Fig. 3. Before Firing. Fig. 4. After Firing.

2. l(t) = (⇑ c,N ′), t ∈ T (N), N 6= N̂3. The labelling means that t wants to
synchronize (via c) with a transition in N ′, where N ′ is a net ”above” N ,
i.e. N is a net-token in N ′ (see Figure 1 and 2). Formally we demand a place
p′ in N ′ with d(p′) = N and a transition t′ ∈ p′• with l(t′) = (⇓ c,N).

3. l(t′) = (⇓ c,N), t′ ∈ T (N ′). The complement to the above case. There is
now a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t with
l(t) = (⇑ c,N ′).

4. l(t) = (⇑N1
c,N ′), t ∈ T (N), N 6= N̂ . Similar to ⇑ above, t wants to synchro-

nize (via c) with a transition in N ′ ”above”. This time additionally a net of
type N1 is send from N through c upwards to N ′ (resp. to a place in the
postset of the transition in N ′ that uses the channel c). The situation is de-
picted in Figures 3 and 4. Note that the token on place p (Fig. 3) resp. place
p′′ (Fig. 4) can be an object net. Formally there is a place p′ with d(p′) = N
and a transition t′ ∈ p′• with l(t′) = (∩N1

c,N).4 Moreover there is a place
p ∈ •t with d(p) = N1 and no place in the postset of t of this type. In N ′

there is a place p′′ ∈ t′• with d(p′′) = N1 and no place in the preset of t′ of
this type. (The net of type N1 thus travels from p (in N) to p′′ (in N ′).)

5. l(t′) = (∩N1c,N). The complement to the case above, but similar to ⇓.
There is a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t with
l(t) = (⇑N1

c,N ′). Moreover there is a place p ∈ t• with d(p) = N1 and no
place in the postset of t with this type, and also a place p′′ ∈ t′• in N ′ with
d(p′′) = N1 and no place in the preset of t of this type.

6. l(t) = (⇓N1
c,N ′), t ∈ T (N). Similar to ⇓ above, t wants to synchronize via

c with a transition in N ′ ”below”. This time a net of type N1 is additionally
send from N through c downwards to N ′ (resp. to a place in the postset of
the transition in N ′ that uses the channel ∪N1

c). The situation is depicted
in Figures 5 and 6. Note again that the token on place p (Fig. 5) resp. place
p′′ (Fig. 6) can be an object net. Formally there is a place p ∈ •t with
d(p) = N ′, a transition t′ in N ′ with l(t′) = (∪N1

c,N) and moreover a place
p′ ∈ •t with d(p′) = N1 and a place p′′ ∈ t′• with d(p′′) = N1. There is no

3 In the system net N̂ the channel property ⇑ can not be used.
4 The usage of the symbol ∩ shall illustrate that a net coming from below is ”caught.

22

Fig. 5. Before Firing. Fig. 6. After Firing.

place in the postset of t or in the preset of t′ of type N1. (The Net of type
N1 thus travels from p′ (in N) to p′′ (in N ′).)

7. l(t′) = (∪N1c,N), t′ ∈ T (N ′), N ′ 6= N̂ . Again the complement to the case
directly above.

In addition to the above described restrictions on the nets’ structure imposed
by the labelling, we demand that each type appears at most once in the preset
and in the postset of a transition, i.e.

∀N ∈ N̂ ∀t ∈ T (N) : |{p | p ∈ •t ∧ d(p) = N}|, |{p | p ∈ t• ∧ d(p) = N}| ≤ 1

Markings. To define markings, which will turn out to be nested multi-sets, let
OS be an object net system as above consisting of a system net N̂ and a finite
set of object nets N . Furthermore let d : P → N be the typing function (no
place is typed with the system net). Now let

M0(N) := {p[0] | p ∈ P (N)}

for a N ∈ N̂ and letM0 := ∪N∈N̂M0(N). Note that with µ ∈MS(M0(N)) for

a fix N ∈ N̂ we can describe how many empty net tokens reside on each place of
N (this includes black tokens, which are just special net tokens in our setting).
The multiset µ is thus similar to the usual multiset of places that describes a
marking.

Let

Mi+1(N) := {p[µ] | p ∈ P (N) ∧ µ ∈MS(∪k≤iMk(d(p))} and

Mi+1 := ∪N∈N̂Mi+1(N)

and finally let

M :=MS(∪i≥0Mi) =MS(∪i≥0 ∪N∈N̂ Mi(N)).

Each nested multiset µ ∈ M, µ =
∑n
k=1 p̂k[Mk], is a marking of the object net

system OS, where p̂k is a place in the system net and Mk is a marking of a
net-token of type d(p̂k), which again might be a nested multiset.

23

We extend addition, subtraction and ≤-relations etc. for nested multisets in
the usual way, e.g. µ ≤ µ′ for two nested multisets if another nested multiset ρ
exists such that µ+ρ = µ′. Furthermore, we need a relation to address the nesting
of markings. We write µ

`
µ′ to indicate that the submarking µ′ is contained in

the marking µ within exactly one level of nesting:

µ
h
µ′ iff ∃p ∈ P, µ′′ ∈M . µ ≡ p[µ′] + µ′′

The reflexive and transitive closure of this relation is denoted by
`∗

as usual.
Thus µ

`∗
µ′ means that µ contains µ′ at some nesting level.

Note that M differs for different object net systems. If necessary we will
denote the set of possible markings of a ONS OS byMOS , but if no ambiguities
can arise, we neglect the subscript.

Given a (sub-)marking µ we use Π1(µ) to abstract away the substructure of
all net-tokens and Π2

N (µ) for the summed up marking of all net tokens of type
N ∈ N ignoring their local distribution, i.e.

Π1(
n∑

k=1

pk[Mk]) =
n∑

k=1

pk

Π2
N (

n∑

k=1

pk[Mk]) =
n∑

k=1

1N (pk) ·Mk,

where 1N : P → {0, 1} with 1N (p) = 1 iff d(p) = N . Note that the summation in
Π2
N is not recursive, i.e. a marking of a net token of type N on a deeper nesting

level is not summed up (but remains in the sub-marking Mk). Defined in this
way Π2

N is useful to describe the firing rule.

Object Net Systems, Events, and the Firing Rule.

Definition 1. An Object Net System (ONS) is a tuple OS = (N̂ ,N , d, l) with

1. The system net N̂ ,
2. a finite set of object nets N ,
3. the typing function d : P → N , and
4. the labelling function l : T → (C × N̂) ∪ {ε}, which is consistent with the

structural restrictions mentioned above.

An ONS with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where the initial

marking µ0 ∈M is a marking of N̂ , i.e. there is a k such that µ0 ∈Mk(N̂).

To define events and the firing rule we distinguish four cases in accordance
with the labelling above:

1. (t, t′) ∈ T × T with l(t) = (⇑N1
c,N ′) and l(t′) = (∩N1

c,N) (Fig. 3 and 4).
2. (t, t′) ∈ T × T with l(t) = (⇓N1 c,N

′) and l(t′) = (∪N1c,N) (Fig. 5 and 6).
3. (t, t′) ∈ T × T with l(t) = (⇑ c,N ′) and l(t′) = (⇓ c,N) (Fig. 1 and 2).
4. t ∈ T with l(t) = ε.

24

The first three cases are synchronous events, the last one describes an au-
tonomous event.

Now for the first case let µ be the current marking and let λ, λ′, ρ, ρ′ ≤ µ be
sub-markings with λ′ ≤ λ and ρ′ ≤ ρ. The intended meaning is that λ is the
sub-marking of µ enabling t′ and λ′ is the sub-marking (of λ) that enables t in
the synchronous event. Then ρ is the resulting sub-marking with regard to t′

and ρ′ with regard to t. Furthermore a net of type N1 is removed from λ′ and
added to ρ.

This is expressed in the firing predicate φ⇑N1
,∩N1

:

φ⇑N1
,∩N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t′) ∧Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧Π1(ρ′) = post(t) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ′) = Π2

N ′(λ′) ∧
Π2
N (ρ) = Π2

N (λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = Π2
N1

(λ′) ∧
Π2
N1

(ρ′) = 0

(1)

The first two lines take care of activation of t and t′ and the correct successor
marking. Lines 3 and 4 handle non involved object nets and the last three lines
correctly relate the different (sub-)markings with regard to the synchronous
event, i.e. with regard to the two firing transitions.

The other cases are quite similar and the third and fourth case can even be
seen as special (and easier) cases to the above.

For the second case the firing predicate is given by

φ⇓N1
,∪N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t) ∧Π1(ρ) = post(t) ∧
Π1(λ′) = pre(t′) ∧Π1(ρ′) = post(t′) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ′) = Π2

N ′(λ′) ∧
Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = 0 ∧
Π2
N1

(ρ′) = Π2
N1

(λ)

(2)

Note that λ now enables t, λ′ enables t′, ρ is the resulting sub-marking with
regard to t and ρ′ with regard to t′. Furthermore a net of type N1 is removed
from λ and added to ρ′ (and also to ρ, since ρ′ ≤ ρ). In principle the first two
cases only differ in the last three lines that relate the different (sub-)markings
and the firing transitions.

At last the third and fourth case:

25

Fig. 7. The object nets N0 and N1 (from Theorem 1).

φ⇑,⇓(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t′) ∧Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧Π1(ρ′) = post(t) ∧
∀N ∈ N \ {N ′} : Π2

N (ρ) = Π2
N (λ) ∧

Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′

(3)

φε(t, λ, ρ) ⇐⇒
Π1(λ) = pre(t) ∧Π1(ρ) = post(t) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)

(4)

Note that the four firing predicates might a first glance look cumbersome, but
are quite similar and in particular restrict every firing to two levels, which is far
better tractable from a theoretical point of view than the firing rule introduced
in [15] where a tree of synchronous transitions was able to fire. The firing rule
can now be stated as follows:

Definition 2 (Firing Rule). Let OS be an ONS and µ, µ′ ∈M markings. The
synchronous event (t, t′) is enabled in µ for the mode (λ, λ′, ρ, ρ′) ∈M4 iff λ′ ≤
λ ≤ µ, ρ′ ≤ ρ and one of φ⇑N1

,∩N1
, φ⇓N1

,∪N1
, or φ⇑,⇓ holds for (t, t′, λ, λ′, ρ, ρ′),

according to the labelling of t and t′.
An autonomous event t, l(t) = ε is enabled in µ for the mode (λ, ρ) iff λ ≤ µ

and φε holds.

An event ϑ that is enabled in µ for a mode can fire: µ
ϑ−−→
OS

µ′. The resulting

successor marking is defined as µ′ = µ− λ+ ρ.
The set of events is denoted by Θ. Firing is extend to sequences w ∈ Θ∗ in

the usual way. The set of reachable markings from a marking µ is denoted by
RSOS (µ) or simply RS(µ). The reachability problem asks given an ONS OS
with initial marking µ0 and a marking µ, if µ ∈ RSOS (µ0) holds.

2.1 Turing-Completeness of Object Net Systems

In [15] we have shown that the there defined object net formalism can directly
simulate counter programs and thus is Turing-complete. We have severely re-
stricted the formalism here, but retained the general ability to transfer net-
tokens in the vertical dimension of the nested marking. The formalism devised
here remains Turing-complete and indeed the proof in [15] can be easily adjusted
to our new setting. We will only sketch the proof here.

26

Fig. 8. Net fragments for the simulation of counter programs (from Theorem 1).

Theorem 1. Object net systems can directly simulate counter programs and
thus the reachability problem is undecidable for them.

Proof sketch. In counter programs one has a fixed number of counters, an increase
and a decrease operation and an operation that tests if a certain counter is zero
and jumps accordingly.

The counters are encoded by the nesting depth of the two object nets depicted
in Figure 7. For a counter cj two places p0j and p1j will exist in the system net,

where p0j is typed with N0 and p1j with N1. Initially each place p0j will hold a
object net of type N0 whose place z0 will be marked by a black token. If the
counter is increased a net token of type N1 is created and the aforementioned net
token will be put into it on place s0. The net-tokens are then either packed into
each other or unpacked from each other depending on the increase or decrease
operation used in the counter program.

Figure 8 shows the net fragments for each of the possible counter program
commands. Note how in the increase operation either a net token of type N0 or
of type N1 is created, depending on the most outer net token currently encoding
the state of the counter. The current net-token is then put into the new one
by use of the channel in0 or in1 again depending on the current state of the
counter. If in the current state of the counter the place p0j is marked, then the
channel in0 is used by synchronizing with the identically named channel in the

27

net of type N1 residing on q1k. The net of type N0 is taken from p0j transported
down via the channel in0 to the place s0 in the net of type N1. This very net
then ends up at place p1j representing the new state of the counter. Note how
the channel properties of the channel in0 match. Unpacking for the decrease
operation is encoded similarly. The zero test can be easily encoded by trying to
synchronise with the transition in N0 which uses channel zero0. Only the net on
the lowest level has the place z0 marked. Garbage collection (on the lower right
of Figure 8) is only needed to make final markings unique and is not discussed
here.

Details on the construction can be found in [15]. �

Safeness for Object Net Systems. Introducing safeness for ONS and thus
restricting the state space to a finite size is part of current work and we only
want to touch the topic and not go into details.

In general it is a good idea to restrict the size of the state space by introducing
safeness for a given Petri net formalism. Unfortunately due to the nesting depth
the state space might non the less become very big for ONS. It seems that
the reachability problem is far beyond PSpace (for 1-safe p/t nets and also
for safe Eos, a nets-within-nets formalism with only two levels, reachability is
PSpace-complete [5], [16]) and indeed seems to be Exptime-complete.

Definition 3 (Safeness). Let OS be an ONS with initial marking µ0. OS is
safe iff |RSOS (µ0)| <∞, i.e. if the set of reachable markings of OS is finite.

OS is strongly safe iff OS is safe and each net-token is 1-safe, that is, if
|RSOS (µ0)| <∞ and ∀µ ∈ RS(µ0) ∀µ′a∗ µ ∀p ∈ P : Π1(µ′)(p) ≤ 1

Conjecture 1. The Reachability problem for safe ONS is Exptime-complete.

Additionally forbidding the creation of net-tokens on the other hand gives
us the opportunity to solve the reachability problem in PSpace again. This
restriction is indeed not as severe as it might seem at first glance, because it
simply does not allow the creation or destruction of net-tokens which - if net-
tokens are interpreted as agents - might not be so undesirable at all.

Definition 4. Let OS be an ONS and µ =
∑n
k=1 pk[Mk] be a marking of OS.

With Π3
N (µ) we denote the number of net-tokens of type N present in µ, i.e.

Π3
N (

n∑

k=1

pk[Mk]) =

n∑

k=1

1N (pk) +Π3
N (Mk).

Note that Π3
N (µ) is calculated recursively.

Theorem 2. Let OS be a strongly safe ONS in which no object nets are created
nor destroyed, i.e. if µ, µ′ ∈ RSOS (µ0) and µ′ is an immediate successor of µ,
then Π3

N (µ) = Π3
N (µ′) for all N ∈ N .5 Then the reachability problem is solvable

in PSpace.
5 The firing rule ensures that the object nets are actually the ”same nets.

28

Proof sketch. Assume that k net-tokens are present in OS . Furthermore for
N ∈ N̂ let PN be the set of places of N . Let n = max{PN | N ∈ N̂} be the
maximal number of places of the involved nets.

We give an (rough) upper bound for the number of reachable markings.
Assume that all net-tokens reside on one system net place p̂. Ignoring the nesting
and in particular the structure of nested tokens and thus only taking into account
if a place of a net-token is marked or not, we have an upper bound of (2n)k = 2n·k

different markings, because each net-token is 1-safe and thus has at most 2n

different markings and because we have k net-tokens.
To give a bound for the number of different nestings, we use Cayley’s formula

according to which the number of different trees on n nodes is nn−2 [4]. Note
that the nesting of the k net-tokens can be represented by forests, i.e. by a set
of trees. The root of each tree represents a net-token residing on p̂. The children
of a node v of the tree represent net-tokens residing in the net-token represented
by v.

At most we have k trees and each of the k net-tokens may be part of one of
those trees, so we have at most kk different trees. In each of these possibilities
we have at most k trees and each tree has at most k nodes, so we have an upper
bound of kk · k · kk−2 < k2k for the number of forests on k nodes (where the last
factor comes from Cayley’s formula).6

Taking the number m := |P̂ | of system net places into account we end up with
at most (k2k · 2nk)m ≤ (k2k · 2nk)n = k2kn · 2nkn = 2log k·2kn · 2nkn < 22kkn+nkn

Now note that 2kkn+ nkn is a polynomial in the input length and thus the
technique Savitch used to prove that PSpace and NPSpace are equal (cf. [21])
is applicable. Since we can furthermore test in polynomial space if a marking is
reachable from another marking and also if a marking is identical to another all
necessary operations are possible in polynomial space in the input length, and
thus the reachability problem is solvable in polynomial space.7 �

The result above can be easily complemented by a proof of PSpace-hardness.
Indeed the proof in [7] that the reachability problem is PSpace-hard for ppGSMs
can be carried over one-to-one to the setting above.

3 A Mobility Logic for Object Nets

In common logics used in formal verification like CTL and LTL statements about
time are possible, e.g. it is possible to ask if a certain state is ever reached or if
all states reached (in time) have a certain property. In the context of modelling
formalisms which allow to model the local distribution of certain objects a logic
which also takes locality into account is highly useful. One then might ask ques-
tions like e.g. if a certain object will be at a certain position at a certain point
in time, or if a certain object will at least be somewhere.

6 This bound is only a rough approximation, but it suffices here.
7 For a more detailed discussion of this technique we direct the reader to [7], where

we also used it to prove that polynomial space suffices to decide reachability for
ppGSMs.

29

A prominent example for this is the Ambient Calculus and the Ambient Logic
associated with it [2], [1], by which our work is deeply inspired. The ambient
calculus can be used to describe processes which do not only evolve in time, but
also in space. The ambient logic can then be used to express properties of such
processes taking into account both, time and space.

For the object net formalism presented above a similar logic is desirable. In
the example above one could then for example ask the question if it is possible
for an agent to enter a certain vehicle. In the following we devise a Mobility
Logic for Object Net Systems in which satisfaction of formulas will be defined
with regard to a given marking of a given object net system, i.e. OS, µ |= F holds
that the marking µ of the object net system OS satisfies the closed formula F .
We usually omit the ONS OS.

The satisfaction relation ≡ is based on the structural congruence relation.
Intuitively, this relation equalizes markings up to ’commutativity’ and ’associa-
tivity’ of submarkings.

µ ≡ µ
µ ≡ µ′ ⇒ µ′ ≡ µ
µ ≡ µ′, µ′ ≡ µ′′ ⇒ µ ≡ µ′′

µ + µ′ ≡ µ′ + µ
(µ + µ′) + µ′′ ≡ µ + (µ′ + µ′′)
µ + 0 ≡ µ

Formulas are defined inductively by the following grammar:

φ := T | ¬φ | (φ ∨ φ) |
0 | p[φ] | (φ+ φ) |
♦φ | � φ

To define the semantic, let OS be an ONS andM be the set of markings of
OS. The truth of a formula φ as defined above is then given by the recursively
defined relation |= with regard to OS. Note that we used µ

`
µ′ to indicate that

the submarking µ′ is contained in the marking µ within exactly one level of
nesting and that µ

`∗
µ′ means that µ contains µ′ at some nesting level.

∀µ ∈M µ |= T
∀µ ∈M µ |= ¬φ iff µ 6|= φ
∀µ ∈M µ |= (φ1 ∨ φ2) iff µ |= φ1 or µ |= φ2
∀µ ∈M µ |= 0 iff µ ≡ 0
∀µ ∈M µ |= p[φ] iff ∃µ′ ∈M.µ ≡ p[µ′] ∧ µ′ |= φ
∀µ ∈M µ |= (φ1 + φ2) iff ∃µ′, µ′′ ∈M.µ ≡ µ′ + µ′′∧

µ′ |= φ1 ∧ µ′′ |= φ2
∀µ ∈M µ |= ♦φ iff ∃µ′ ∈M.µ

∗−→ µ′ ∧ µ′ |= φ
∀µ ∈M µ |= �φ iff ∃µ′ ∈M.µ

`∗
µ′ ∧ µ′ |= φ

30

Example 1. We give a few examples for formulas of the mobility logic:

– µ |= (p[T] + T) is true, if the place p is marked in µ at nesting depth 0, that
is µ is congruent to p[µ′] + µ′′, where µ′ and µ′′ are submarkings.

– µ |= ♦(p1[0] + p2[p[0]]) is true, if the place p1 is marked in µ with an empty
net-token (which might also symbolize a black token) and p2 is marked with
an object net whose place p is marked by an empty net-token (or a black
token). In this way the standard reachability problem can be formulated.

– µ |= �p[T] is true if in the marking µ a object net N resides (in some
nesting depth) whose place p is marked (in an arbitrary way). Note that no
other place of N might be marked. To allow this one would use the formula
�(p[T] + T).

– µ |= ♦� p[T] is true if from µ a marking µ′ is reachable that satisfies �p[T]
(see above).

Model Checking the Mobility Logic against ONS. Given an ONS OS ,
a marking µ of OS , and a formula φ of the mobility logic, we want to decide if
OS , µ |= φ holds, i.e. if φ is satisfied in the marking µ of OS .

Since we can easily express reachability with the operator ♦ in the logic, the
problem is undecidable for the general ONS-formalism due to Theorem 1 above.

For the restricted ONS-formalisms which enjoy a finite state space, i.e. for
safe ONS, strongly safe ONS, and for strongly safe ONS, with a constant num-
ber of net-tokens, the question is currently open. We suspect that in the last
case PSpace again suffices and that we need exponential time or exponential
space in the first two cases.

Note that to decide if µ |= �p[T] + T holds, it is sufficient to scan over µ in
linear time and test if p is present somewhere - at least if µ is given as a string
as in our examples. This test should thus be easy to do in a subroutine in a
PSpace-algorithm.

The nesting of operators on the other hand, might complicate things since to
test µ |= ♦�♦φ the formula ♦φ might be true for an object net somewhere which
is reached sometime, but only if this object net is then treated in isolation (and
not taking the other nets into account). So we might have to start subroutines
with different object net systems to decide if certain sub-formulas hold or not.

4 Conclusion and Outlook

The formalisms introduced in this paper, the considered problems, and the re-
sults and conjectures so far are summarized in Table 1 below. The entries with
a question mark are conjectures.

We have introduced a simplified version of the object net formalism from [15],
which still allows the transportation of net-tokens in the vertical dimension,
but which has a much easier firing rule, in particular restricting the transitions
participating in the firing to at most two levels of nesting.

31

Table 1. The results and conjectures so far.

Reachability Model Checking Mob. Log.

ONS undecidable undecidable

safe ONS Exptime-complete ? Exptime-complete ?

strongly safe ONS Exptime-complete ? Exptime-complete ?

strongly safe ONS with a
constant number of net-tokens

PSpace-complete PSpace-complete ?

We have shown that the formalism remains Turing-complete and have in-
troduced several restrictions of the formalism to a finite state space: safe ONS,
strongly safe ONS, and strongly safe ONS with a constant number of net-tokens.
For the last formalism we have shown that the reachability problem is solvable in
polynomial space, but all these formalisms deserve a more thorough investigation
in the future.

We have then introduced a mobility logic for object net systems which allows
to reason about the nesting and thus about the location of net-tokens. In future
work we want to focus on the model checking problem for this logic and variants
of the object net formalism. We also want to investigate variants of the logic
where reasonable. For example it might be interesting to restrict the allowed
nesting of operators to prevent e.g. formulas of the form ♦� ♦φ.

References

1. Cardelli, L., Gordon, A.D.: Anytime, anywhere. modal logics for mobile ambients.
In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 365–377. ACM Press (2000)

2. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240,
177–213 (2000)

3. Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Information and Com-
putation 201, 1–54 (2005)

4. Cayley, A.: A theorem on trees. Quarterly Journal of Pure and Applied Mathe-
matics 23, 376–378 (1889)

5. Esparza, J.: Decidability and complexity of petri net problems – an introduction.
In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models, Ad-
vances in Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 374–428.
Springer-Verlag (1998)

6. Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets. In: Do-
natelli, S., Kleijn, J. (eds.) Application and Theory of Petri Nets. Lecture Notes
in Computer Science, vol. 1639, pp. 228–247. Springer-Verlag (1999)

7. Heitmann, F., Köhler-Bußmeier, M.: P- and t-systems in the nets-within-nets-
formalism. In: Pomello, L., Haddad, S. (eds.) To Appear in 33rd International
Conference on Application and Theory of Petri Nets and Concurrency. Lecture
Notes in Computer Science, Springer-Verlag (2012)

8. Hiraishi, K.: PN2: An elementary model for design and analysis of multi-agent
systems. In: Arbab, F., Talcott, C.L. (eds.) Coordination Models and Languages,
COORDINATION 2002. Lecture Notes in Computer Science, vol. 2315, pp. 220–
235. Springer-Verlag (2002)

32

9. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Application and Theory of Petri Nets and Other Models of Concurrency.
Lecture Notes in Computer Science, vol. 3536, pp. 268 – 288. Springer-Verlag (2005)

10. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In:
Colom, J.M., Koutny, M. (eds.) Application and Theory of Petri Nets. Lecture
Notes in Computer Science, vol. 2075, pp. 224–241. Springer-Verlag (2001)

11. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In: v. d. Aalst, W., Best, E. (eds.) Application and Theory of Petri
Nets. Lecture Notes in Computer Science, vol. 2679, pp. 121–140. Springer-Verlag
(2003)

12. Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fundamenta
Informaticae 54(2-3) (2003)

13. Köhler, M., Rölke, H.: Properties of Object Petri Nets. In: Cortadella, J., Reisig, W.
(eds.) Application and Theory of Petri Nets. Lecture Notes in Computer Science,
vol. 3099, pp. 278–297. Springer-Verlag (2004)

14. Köhler-Bußmeier, M.: A survey of elementary object systems: Decidability results.
Report of the Department of Informatics, Universität Hamburg (2011)

15. Köhler-Bußmeier, M., Heitmann, F.: On the expressiveness of communication chan-
nels for object nets. Fundamenta Informaticae 93(1-3), 205–219 (2009)

16. Köhler-Bußmeier, M., Heitmann, F.: Safeness for object nets. Fundamenta Infor-
maticae 101(1-2), 29–43 (2010)

17. Lakos, C.: A Petri net view of mobility. In: Formal Techniques for Networked and
Distributed Systems (FORTE 2005). Lecture Notes in Computer Science, vol. 3731,
pp. 174–188. Springer-Verlag (2005)

18. Lomazova, I.A.: Nested Petri nets – a formalism for specification of multi-agent
distributed systems. Fundamenta Informaticae 43(1-4), 195–214 (2000)

19. Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested nets for adaptive systems. In: Application and Theory of Petri Nets and
Other Models of Concurrency. pp. 241–260. Lecture Notes in Computer Science,
Springer-Verlag (2006)

20. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Lecture
Notes in Computer Science, vol. 1491. Springer-Verlag (1998)

21. Savitch, W.: Relationship between nondeterministic and deterministic tape com-
plexities. J. on Computer and System Sciences 4, 177–192 (1970)

22. Valk, R.: Modelling concurrency by task/flow EN systems. In: 3rd Workshop on
Concurrency and Compositionality. No. 191 in GMD-Studien, Gesellschaft für
Mathematik und Datenverarbeitung, St. Augustin, Bonn (1991)

23. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets 2003. Lecture
Notes in Computer Science, vol. 3098, pp. 819–848. Springer-Verlag (2003)

33

34

BDD-based Bounded Model Checking for LTLK
over Two Variants of Interpreted Systems?

Artur Mȩski1,2, Wojciech Penczek1,3, and Maciej Szreter1

1 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland
{meski,penczek,mszreter}@ipipan.waw.pl

2 University of Lódź FMCS, Banacha 22, 90-238 Lódź, Poland
3 University of Natural Sciences and Humanities, Institute of Informatics,

3 Maja 54, 08-110 Siedlce, Poland

Abstract We present a novel approach to verification of multi-agent
systems by bounded model checking for Linear Time Temporal Logic
extended with the epistemic component (LTLK). The systems are mod-
elled by two variants of interpreted systems: standard and interleaved
ones. Our method is based on binary decision diagrams (BDD). We de-
scribe the algorithm and provide its experimental evaluation together
with the comparison with another tool. This allows to draw some con-
clusions which semantics is preferable for bounded model checking LTLK
properties of multi-agent systems.

1 Introduction

It is often crucial to ensure that multi-agent systems (MAS) conform to their
specifications and exhibit some desired behaviour. This can be checked in a
fully automatic manner using model checking [5], which is one of the rapidly
developing verification techniques. Model checking has been studied by various
researchers in the context of MAS and different modal logics for specifying MAS
properties [2,7,8,13,15,18,22,23].

When the verification is performed by searching directly through the state
space of the MAS, its size is likely to grow exponentially with the number of
agents, which is known as the state-space explosion problem. Therefore, several
approaches alleviating this problem have been proposed. One of them is bounded
model checking (BMC) [1], in which only a portion of the original model trun-
cated up to some specific depth is considered. This approach can be combined
either with a translation of the verification problem to the propositional sat-
isfiability problem (SAT) [20,13] or with symbolic techniques based on binary
decision diagrams (BDDs) [11].

In this paper we present a novel approach to verification of MAS by BDD-
based bounded model checking for Linear Time Temporal Logic extended with

? Partly supported by National Science Centre under the grant No.
2011/01/B/ST6/05317 and 2011/01/B/ST6/01477.

35

the epistemic component (LTLK, also called CKLn [8]). The systems are mod-
eled by two variants of Interpreted Systems: standard (IS) [6] and interleaved
ones (IIS) [14]. IIS restrict IS by enforcing asynchronous semantics. This does not
reduce the expressive power of IS, but modifies this popular modelling approach
by bringing the semantics known from verification of concurrent systems like
networks of automata or variants of Petri nets. Our paper shows that the mod-
elling approach has a very strong impact on the efficiency of verification. The
experimental results exhibit that the IIS-based approach can greatly improve
the practical applicability of the bounded model checking method for LTLK.

There has been already some intensive research on BMC for MAS, but
mostly for the properties expressible in CTLK, based either on SAT [20,10]
or on BDDs [11]. A SAT-based verification method for the LTLK properties
of MAS, modeled by IIS, was put forward in [21]. Our technical report [16]
presents a BDD-based approach to verification of LTLK for IIS, while the SAT-
and BDD-based approaches for IIS are compared in [17].

The rest of the paper is organised as follows. Section 2 provides the basic
definitions and notations for LTLK and IS. Our BDD-based BMC method is
described in Section 3. The last two sections contain the discussion of an exper-
imental evaluation of the approach and the final remarks.

2 Preliminaries

In this section we introduce the basic definitions used in the paper. In particular,
we define the semantics of interpreted systems, as well as the syntax and the
semantics of LTLK.

2.1 Formalisms for Modelling Multi-Agent Systems

Interpreted Systems The semantics of interpreted systems provides a setting
to reason about MAS by means of specifications based on knowledge and linear
or branching time. We report here the basic setting as popularised in [6]. We
begin by assuming a MAS to be composed of n agents1 A. We associate a set of
possible local states Li and actions Acti to each agent i ∈ A. We assume that the
special action εi, called “null”, or “silent” action of agent i belongs to Acti; as it
will be clear below the local state of agent i remains the same if the null action
is performed. Also note we do not assume that the sets of actions of the agents
are disjoint. We call Act =

∏
i∈AActi the set of all possible joint actions, i.e.

tuples of local actions executed by agents. We consider a local protocol modelling
the program the agent is executing. Formally, for any agent i, the actions of the
agents are selected according to a local protocol Pi : Li → 2Acti . For each agent i,
we define a relation ti ⊆ Li × Act × Li, where (l, (a1, . . . , an), l) ∈ ti for each
l ∈ Li if ai = εi. A global state g = (g1, . . . , gn) is a tuple of local states for

1 Note in the present study we do not consider the environment component. This may
be added with no technical difficulty at the price of heavier notation.

36

all the agents corresponding to an instantaneous snapshot of the system at a
given time. Given a global state g = (g1, . . . , gn) we denote by li(g) the local
component gi of agent i ∈ A in g.

For each agent i ∈ A, ∼i ⊆ G×G is an epistemic indistinguishability relation
over global states defined by g ∼i h if li(g) = li(h). Further, let Γ ⊆ A. The
union of Γ ’s accessibility relations is defined as ∼EΓ=

⋃
i∈Γ ∼i. By ∼CΓ we denote

the transitive closure of ∼EΓ , whereas ∼DΓ =
⋂
i∈Γ ∼i.

A global evolution T ⊆ G × Act × G is defined as follows: (g, a, h) ∈ T iff
there exists an action a = (a1, . . . , an) ∈ Act such that for all i ∈ A we have
ai ∈ Pi(li(g)) and (li(g), a, li(h)) ∈ ti. For g, h ∈ G and a ∈ Act s.t. (g, a, h) ∈ T
we write g

a−→ h. We assume that the global evolution relation T is total, i.e.,
for each g ∈ G there exists a ∈ Act and h ∈ G such that g

a−→ h.
An infinite sequence of global states and actions ρ = g0a0g1a1g2 . . . is called

a path originating from g0 if there is a sequence of transitions from g0 onwards,
i.e., gi

ai−→ gi+1 for every i ≥ 0. Any finite prefix of a path is called a run. By
length(ρ) we mean the number of the states of ρ if ρ is a run, and ω if ρ is a path.
In order to limit the indices range of ρ which can be a path or run, we define

the relation �ρ. Let �ρ
def
= < if ρ is a path, and �ρ

def
= ≤ if ρ is a run. A state g is

said to be reachable from g0 if there is a path or a run ρ = g0a0g1a1g2 . . . such
that g = gi for some i ≥ 0. The set of all the paths and runs originating from
g is denoted by Π(g). The set of all the paths originating from g is denoted by
Πω(g).

Definition 1 (Interpreted Systems). Given a set of propositions PV such
that {true, false} ⊆ PV, an interpreted system (IS), also referred to as a model,
is a tuple M = (G, ι,Π, {∼i}i∈A,V), where G is a set of global states, ι ∈ G
is an initial (global) state such that each state in G is reachable from ι, Π =⋃
g∈GΠ(g) is the set of all the interleaved paths and runs originating from all

the states in G, and V : G→ 2PV is a valuation function.

By Πω we denote the set of all the paths of Π.

Interleaved Interpreted Systems We define a restriction of interpreted sys-
tems, called interleaved interpreted systems in which global evolution function is
restricted, so that every agent either executes a shared action or the null action.

We assume that εi ∈ Pi(l), for any l ∈ Li, i.e., we insist on the null action to
be enabled at every local state. For each action a ∈ ⋃

i∈AActi by Agent(a) ⊆ A
we mean all the agents i such that a ∈ Acti, i.e., the set of the agents potentially
able to perform a. Then, the global evolution relation T is defined as before, but
it is restricted by the following condition: if (g, a, h) ∈ T then there exists a joint
action a = (a1, . . . , an) ∈ Act, and an action α ∈ ⋃

i∈AActi \ {ε1, . . . , εn} such
that: ai = α for all i ∈ Agent(α), and ai = εi for all i ∈ A \ Agent(α). Similar
to blocking synchronisation in automata, the above insists on all the agents
performing the same non-epsilon action in a global evolution; additionally, note
that if an agent has the action being performed in its repertoire it must be
performed for the global evolution to be allowed. This assumes local protocols

37

are defined in such a way to permit this; if a local protocol does not allow this,
the local action cannot be performed and therefore the global evolution does not
comply with the above definition of interleaving.

2.2 Syntax and Semantics of LTLK

Combinations of linear time with knowledge have long been used in the anal-
ysis of temporal epistemic properties of systems [6]. We now recall the basic
definitions here and adapt them to our purposes when needed.

Definition 2 (Syntax). Let PV be a set of atomic propositions to be interpreted
over the global states of a system, p ∈ PV, q ∈ A, and Γ ⊆ A. Then, the syntax
of LTLK is defined by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ |
Kqϕ | Kqϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ.

The temporal operators U and R are named as usual until and release respec-
tively, X is the next step operator. The epistemic operators Kq , DΓ ,EΓ , and
CΓ represent, respectively, knowledge of agent q , distributed knowledge in the
group Γ , “everyone in Γ knows”, and common knowledge among agents in Γ ,
whereas Kq , DΓ ,EΓ , and CΓ are the corresponding dual ones.

Typically, the semantics of LTLK is defined over paths of a model M only,
whereas our semantics exploits paths and runs. This semantics can be conve-
niently applied also to submodels (to be defined later) in order to verify efficiently
the existential fragment of LTLK over paths and runs.

Definition 3 (Semantics). Given a model M = (G, ι,Π, {∼q}q∈A,V), where
V(s) is the set of propositions that hold at s, let ρ(i) denote the i-th state of a
path or run ρ ∈ Π, and ρ[i] denote the path or run ρ with a designated formula
evaluation position i, where i �ρ length(ρ). Note that ρ[0] = ρ. The formal
semantics of LTLK is defined recursively as follows:

– M,ρ[i] |= p iff p ∈ V(ρ(i)),
– M,ρ[i] |= ¬ϕ iff M,ρ[i] 6|= ϕ,
– M,ρ[i] |= ϕ1 ∧ ϕ2 iff M,ρ[i] |= ϕ1 and M,ρ[i] |= ϕ2,
– M,ρ[i] |= ϕ1 ∨ ϕ2 iff M,ρ[i] |= ϕ1 or M,ρ[i] |= ϕ2,
– M,ρ[i] |= Xϕ iff length(ρ) > i and M,ρ[i+ 1] |= ϕ;
– M,ρ[i] |= ϕ1Uϕ2 iff (∃k ≥ i)[M,ρ[k] |= ϕ2 and (∀i ≤ j < k) M,ρ[j] |= ϕ1],
– M,ρ[i] |= ϕ1Rϕ2 iff [(ρ ∈ Πω(ι) and (∀k ≥ i) M,ρ[k] |= ϕ2] or

(∃k ≥ i)[M,ρ[k] |= ϕ1 and (∀i ≤ j ≤ k) M,ρ[j] |= ϕ2],
– M,ρ[i] |= Kqϕ iff (∀ρ′ ∈ Πω(ι))(∀k ≥ 0)[ρ′(k) ∼q ρ(i) implies M,ρ′[k] |= ϕ],
– M,ρ[i] |= Kqϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼q ρ(i) and M,ρ′[k] |= ϕ],
– M,ρ[i] |= YΓϕ iff (∀ρ′∈Πω(ι))(∀k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) implies M,ρ′[k] |= ϕ],
– M,ρ[i] |= YΓϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) and M,ρ′[k] |= ϕ],
where Y ∈ {D,E,C}.

Let g ∈ G and ϕ be an LTLK formula. We use the following notations:

38

– M, g |= ϕ iff M,ρ[0] |= ϕ for all the paths ρ ∈ Πω(g);
– M |= ϕ iff M, ι |= ϕ;
– Props(ϕ) is the set of atomic propositions appearing in ϕ.

LTL is the sublogic of LTLK which consists only of the formulae built without
the epistemic operators. ELTLK is the existential fragment of LTLK, defined
by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Kqϕ | EΓϕ | DΓϕ | CΓϕ.

Moreover, an ELTLK formula ϕ holds in the model M , denoted M |=∃ ϕ, iff
M,ρ[0] |= ϕ for some path or run ρ ∈ Π(ι). The intuition behind this definition is
that ELTLK is obtained only by restricting the syntax of the epistemic operators
while the temporal ones remain the same. We get the existential version of these
operators by the change from the universal quantification over the paths (|=) to
the existential quantification (|=∃) over the paths and the runs in the definition
of the validity in the model M . Notice that this change is only necessary when
ϕ contains a temporal operator, which is not nested in an epistemic operator.

Our semantics meets two important properties. Firstly, for LTL the definition
of validity in a model M uses paths only. Secondly, if we replace each Π with
Πω, the semantics does not change as our models have total transition relations
(each run is a prefix of some path). The semantics applied to submodels of M
does not have the above property, but it preserves ELTLK over M , which is
shown in Lemma 1.

3 BDD-based BMC for ELTLK

In this section we show how to perform BMC of ELTLK using BDDs [5] by
combining the standard approach for ELTL [4] with the method for the epistemic
operators [22] in a similar manner to the solution for CTL∗ of [5].

Let PV be a set of propositions. For an ELTLK formula ϕ we define induc-
tively the number γ(ϕ) of nested epistemic operators in the formula:

– if ϕ = p, where p ∈ PV, then γ(ϕ) = 0,
– if ϕ = �ϕ′ and � ∈ {¬,X}, then γ(ϕ) = γ(ϕ′),
– if ϕ = ϕ′ � ϕ′′ and � ∈ {∧,∨,U,R}, then γ(ϕ) = γ(ϕ′) + γ(ϕ′′),
– if ϕ = Yϕ′ and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, then γ(ϕ) = γ(ϕ′) + 1.

Let Y ∈ {Kq ,EΓ ,DΓ ,CΓ }. If ϕ = Yψ is an ELTLK formula, by sub(ϕ) we
denote the formula ψ nested in the epistemic operator Y. Moreover, for an
arbitrary ELTLK formula ϕ we define inductively the set Y(ϕ) of its subformulae
in the form Yψ:

– if ϕ = p, where p ∈ PV, then Y(ϕ) = ∅,
– if ϕ = �ϕ′ and � ∈ {¬,X}, then Y(ϕ) = Y(ϕ′),
– if ϕ = ϕ′ � ϕ′′ and � ∈ {∧,∨,U,R}, then Y(ϕ) = Y(ϕ′) ∪ Y(ϕ′′),
– if ϕ = Yϕ′ and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, then Y(ϕ) = Y(ϕ′) ∪ {ϕ}.

39

Definition 4. Let M = (G, ι,Π, {∼q}q∈A,V) and U ⊆ G with ι ∈ U . The
submodel generated by U is a tuple M |U = (U, ι,Π ′, {∼′q}q∈A,V ′), where: ∼′q=
∼q ∩ U2 for each q ∈ A, V ′ = V ∩ U2, and Π ′ is the set of the paths and
runs of M having all the states in U , formally, Π ′ = {ρ ∈ Π | (∀0 ≤ i �ρ
length(ρ)) ρ(i) ∈ U}.

For ELTLK formulae ϕ,ψ, and ψ′, by ϕ[ψ ← ψ′] we denote the formula ϕ in
which every occurrence of ψ is replaced with ψ′. Let M = (G, ι,Π, {∼q}q∈A,V)
be a model, then by VM we understand the valuation function V of the model
M , and by GR ⊆ G the set of its reachable states. Moreover, we define [[M,ϕ]] =
{g ∈ GR |M, g |=∃ ϕ}.

Reducing ELTLK to ELTL. Given a model M = (G, ι,Π, {∼q}q∈A,V),
and an ELTLK formula ϕ, Algorithm 1 is used to compute the set [[M,ϕ]],
under the assumption that we have the algorithms for computing this set for
each ϕ being an ELTL formula or in the form Yp, where p ∈ PV, and Y ∈
{Kq ,EΓ ,DΓ ,CΓ } (we use the algorithms from [4] and [22], respectively). In
order to obtain this set, we construct a new model Mc together with an ELTL
formula ϕc, as described in Algorithm 1, and compute the set [[Mc, ϕc]], which
is equal to [[M,ϕ]]. Initially ϕc equals ϕ, which is an ELTLK formula, and we
process the formula in stages to reduce it to an ELTL formula by replacing with
atomic propositions all its subformulae containing epistemic operators. We begin
by choosing some epistemic subformula ψ of ϕc, which consists of exactly one
epistemic operator, and process it in two stages. First, we modify the valuation
function of Mc such that every state initialising some path or run along which
sub(ψ) holds is labelled with the new atomic proposition psub(ψ), and we replace
with the variable psub(ψ) every occurrence of sub(ψ) in ψ. In the second stage,
we deal with the epistemic operators having in their scopes atomic propositions
only. By modifying the valuation function of Mc we label every state initialising
some path or run along which the modified simple epistemic formula ψ holds with
a new variable pψ. Similarly to the previous stage, we replace every occurrence
of ψ in ϕc with pψ. In the subsequent iterations, we process every remaining
epistemic subformulae of ϕc in the same way until there are no more nested
epistemic operators in ϕc, i.e., we obtain an ELTL formula ϕc, and the model
Mc with the appropriately modified valuation function. Finally, we compute the
set of all reachable states of Mc that initialise at least one path or run along
which ϕc holds (line 13). The correctness of the substitution used in Algorithm 1
is stated by the following proposition:

Proposition 1. Let M = (G, ι,Π, {∼q}q∈A,V) be a model, ϕ an ELTLK
formula, and ρ ∈ Π some path or run with an evaluation position such that
m�ρ length(ρ). We define p ∈ PV such that M,ρ′[m′] |= p iff M,ρ′[m′] |= ϕ for
all ρ′ ∈ Π(ι), where m′ �ρ′ length(ρ′). Then, M,ρ[m] |= Yϕ iff M,ρ[m] |= Yp,
where Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, and q ∈ A, Γ ⊆ A.

Proof. Straightforward from the semantics of ELTLK.

40

Algorithm 1. Computation of [[M,ϕ]]

1: Mc := M , ϕc := ϕ
2: while γ(ϕc) 6= 0 do
3: pick ψ ∈ Y(ϕc) such that γ(ψ) = 1
4: for all g ∈ [[Mc, sub(ψ)]] do
5: VMc(g) := VMc(g) ∪ {psub(ψ)}
6: end for
7: ψ := ψ[sub(ψ)← psub(ψ)]
8: for all g ∈ [[Mc, ψ]] do
9: VMc(g) := VMc(g) ∪ {pψ}

10: end for
11: ϕc := ϕc[ψ ← pψ]
12: end while
13: return [[Mc, ϕc]]

Algorithm 2. BMC algorithm

1: Reach := {ι},New := {ι}
2: while New 6= ∅ do
3: Next := New;

4: if ι ∈ [[M |Reach, ϕ]] then
5: return true
6: end if
7: New := Next \Reach
8: Reach := Reach ∪New
9: end while

10: return false

BMC Algorithm. To perform bounded model checking of an ELTLK formula,
we use Algorithm 2. Given a model M and an ELTLK formula ϕ, the algorithm
checks if there exists a path or run initialised in ι on which ϕ holds, i.e., if

M, ι |=∃ ϕ. For any X ⊆ G by X;
def
= {g′ ∈ G | (∃g ∈ X)(∃ρ ∈ Π(g)) g′ = ρ(1)}

we define the set of the immediate successors of all the states in X. The algorithm
starts with the set Reach of reachable states that initially contains only the
state ι. With each iteration the verified formula is checked (line 4), and the set
Reach is extended with new states (line 8). The algorithm operates on submodels
M |Reach generated by the set Reach to check if the initial state ι is in the set of
states from which there is a path or run on which ϕ holds. The loop terminates if
there is such a path or run in the obtained submodel, and the algorithm returns
true (line 5). The search continues until no new states can be reached from the
states in Reach. When we obtain the set the of reachable states, and a path or
run from the initial state on which ϕ holds could not be found in any of the
obtained submodels, the algorithm terminates returning false.

The correctness of the results obtained by the bounded model checking al-
gorithm is formulated by the following lemma:

Lemma 1. Let M = (G, ι,Π, {∼q}q∈A,V) be a model, ϕ an ELTLK formula,
and ρ ∈ Π a path or run with an evaluation position m such that m�ρ length(ρ).
Then, M,ρ[m] |= ϕ iff exists G′ ⊆ G such that ι ∈ G′, and M |G′ , ρ[m] |= ϕ.

Proof. “⇒” This way the proof is obvious as we simply take G′ = G.
“⇐” This way the proof is more involved. It is by induction on the length of a
formula ϕ. The base case is straightforward, as the lemma follows directly for
the propositional variables and their negations. Assume, the statement holds for
all the proper subformulae of ϕ. Let G′ ⊆ G be a set of states such that M |G′

contains ρ, and (*) M |G′ , ρ[i] |= ϕ, where i ∈ IN.

1. Let ϕ = α ∨ β. By the semantics and the assumption (*), M |G′ , ρ[i] |=
α or M |G′ , ρ[i] |= β. Using the induction hypothesis and the definition of

41

submodel (Def. 4), ρ exists also in the model M , and M,ρ[i] |= α or M,ρ[i] |=
β, thus M,ρ[i] |= α ∨ β.

2. Let ϕ = α ∧ β. By the semantics and the assumption (*), M |G′ , ρ[i] |= α
and M |G′ , ρ[i] |= β. Using the induction hypothesis and the definition of
submodel, ρ exists also in the model M . Therefore, M,ρ[i] |= α and M,ρ[i] |=
β, thus M,ρ[i] |= α ∧ β.

3. Let ϕ = Xα. By the semantics and the assumption (*), length(ρ) > i, and
M |G′ , ρ[i + 1] |= α. Using the induction hypothesis and the definition of
submodel, we get that ρ exists also in M , and M,ρ[i + 1] |= α, therefore
M,ρ[i] |= Xα.

4. Let ϕ = αUβ. By the semantics and the assumption (*), there exists k ≥ i,
such that M |G′ , ρ[k] |= β, and M |G′ , ρ[j] |= α, for all i ≤ j < k. Using the
induction hypothesis and the definition of submodel, we get that ρ exists
also in M . Therefore, from M,ρ[k] |= β, and M,ρ[j] |= α for all i ≤ j < k,
it follows that M,ρ[i] |= αUβ.

5. Let ϕ = αRβ. By the semantics and the assumption (*) we have one or both
of the following cases:

(a) ρ is a path of M |G′ , and M |G′ , ρ[k] |= β for all k ≥ i, then from the defi-
nition of submodel, ρ exists also in M , and ρ ∈ Πω. Using the induction
hypothesis, we have that M,ρ[k] |= β for all k ≥ i. Therefore, it follows
that M,ρ[i] |= αRβ.

(b) There exists k ≥ i such that M |G′ , ρ[k] |= α, and M |G′ , ρ[j] |= β for all
i ≤ j ≤ k. From the definition of submodel, ρ also exists in M , and using
the induction hypothesis we get that M,ρ[k] |= α, and M,ρ[j] |= β for
all i ≤ j ≤ k. Thus, M,ρ[i] |= αRβ.

6. Let q ∈ A, and ϕ = Kqα. By the semantics and the assumption (*), there
exists such a path or run ρ′ in M |G′ that ρ′(k) ∼q ρ(i) for some k ≥ 0, and
M |G′ , ρ′[k] |= α. From the definition of submodel, ρ and ρ′ also exist in M .
Using the induction hypothesis, we get that M,ρ′[k] |= α and ρ′(k) ∼q ρ(i).
Thus, M,ρ[i] |= Kqα.

7. Let Γ ⊆ A, and ϕ = YΓα, where Y ∈ {D,E,C}. By the semantics and the
assumption (*), there exists such a path or run ρ′ in M |G′ that ρ′(k) ∼Y

Γ ρ(i)
for some k ≥ 0, and M |G′ , ρ′[k] |= α. From the definition of submodel, ρ and
ρ′ also exist in M . Using the induction hypothesis, we get that M,ρ′[k] |= α
and ρ′(k) ∼Y

Γ ρ(i). Thus, M,ρ[i] |= YΓα.

Model Checking ELTL. To compute the sets of states corresponding to the
ELTL formulae, needed in Algorithm 1, we use the method described in [4] and
based on checking the non-emptiness of Büchi automata. Given a model M and
an ELTL formula ϕ, we begin with constructing the tableau for ϕ (as described
in [4]), that is then combined with M to obtain their product, which contains
these paths of M where ϕ potentially holds. Next, the product is verified in terms
of the CTL model checking of EGtrue formula under fairness constraints. Those
constraints, corresponding to sets of states, allow to choose only the paths of the
model, along which at least one state in each set representing fairness constraints

42

appears in a cycle. In case of ELTL model checking, fairness guarantees that
ϕUψ really holds, i.e., eliminates the paths where ϕ holds continuously, but
ψ never holds. Finally, we choose only these reachable states of the product
that belong to some particular set of states computed for the formula. The
corresponding states of the verified system that are in this set, comprise the set
[[M,ϕ]], i.e., the reachable states where the verified formula holds. As we are
unable to include more details (due to the page limit), we refer the reader to [4].

The method described above has some limitations when used for BMC, where
it is preferable to detect counterexamples using not only the paths but also the
runs of the submodel. As totality of the transition relation of the verified model is
assumed, counterexamples are found only along the paths of the model. However,
this remains correct even if the final submodel only has the total transition
relation: in the worst case the detection of the counterexample is delayed to the
last iteration, i.e., when all the reachable states are computed. Nonetheless, this
should not keep us from assessing the potential efficiency of our approach.

Model Checking Epistemic Modalities. In order to verify the formulae of
the form Yp, where p ∈ PV, and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, we use the algorithms
described in [22]. The procedures simply follow from the semantics of ELTLK.
The algorithm for CΓ involves a fix point computation, whereas for the remaining
operators the algorithms are based on simple non-iterative computations.

4 Experimental Results

In this section we consider three scalable systems which we use to evaluate the
efficiency of our BDD-based BMC for LTLK over two variants of Interpreted
Systems: IS and IIS. We also compare our results with the ones obtained using
MCK. The tool MCK2 enables fair comparisons for IS semantics, as according
to the manual it supports SAT-based BMC for CTL∗K. Unfortunately, no the-
ory behind this implementation has ever been published. The paper [10], which
describes SAT-based BMC for CTLK, does not discuss how this approach can
be extended to CTL∗K.

The tests have been performed on a computer fitted with Intel Xeon 2 GHz
processor and 4 GB of RAM, running Linux 2.6. Our methods are implemented
with reordering, and with the fixed interleaving order of the BDD variables. The
reordering is performed by the Rudell’s sifting algorithm available in CUDD
library, used for manipulating BDDs.

The specifications for the described benchmarks are given in the universal
form, for which we verify the corresponding counterexample formula, i.e., the
formula which is negated and interpreted existentially. Moreover, for every spec-
ification given, there exists a counterexample. With i(n) and iI(n) we denote the
number of iterations needed by our algorithms for IS and IIS, respectively, to find

2 http://cgi.cse.unsw.edu.au/~mck/mcks/docDownload/manual, version 0.5.1 was
used as the newer 1.0.0 is provided only for 32-bit machines.

43

the counterexample, where n is the scaling parameter. The detailed descriptions
of our experiments together with the specifications for the systems used, can be
found at the web page of Verics.3 The memory and the time consumption are
shown in the respective figures as the functions of the scaling parameter for each
benchmark. Note that the figures are presented in a logarithmic scale.

4.1 Benchmarks

Faulty Generic Pipeline Paradigm (FGPP) (adapted from [19]) consists
of Producer, Consumer, and a chain of n intermediate Nodes transmitting data,
together with a chain of n Alarms enabled when some error occurs. We consider
the following specifications:
ϕ1 = G(ProdSend→ KCKPConsReady)), ϕ2 = G(Problemn → (F(Repairn)∨
G(AlarmnSend))), ϕ3 =

∧n
i=1 G(Problemi → (F(Repairi)∨G(AlarmiSend))),

and ϕ4 =
∧n
i=1 G(KP (Problemi → (F(Repairi) ∨ G(AlarmiSend)))). The for-

mula ϕ1 (i(n) = iI(n) = 2n+ 3) states that if Producer produces a commodity,
then Consumer knows that Producer does not know that Consumer has the
commodity. The formula ϕ2 (i(n) = iI(n) = 2n+ 4) expresses that each time a
problem occurs at node n, then either it is repaired or the alarm of node n rings.
The formula ϕ3 (iI(n) = 8, i(n) = 2n + 4) expresses that each time a problem
occurs on a node, then either it is repaired or the alarm rings. The formula, ϕ4

(iI(n) = 5, i(n) = 8) expresses that Producer knows that each time a problem
occurs on a node, then either it is repaired or the alarm rings.

A faulty train controller system (FTC) (adapted from [9]) consists of a
controller and n trains (for n ≥ 2), one of which is dysfunctional. We consider
the following specifications: ϕ1 = G(InTunnel1 → KTrain1

(
∧n
i=2 ¬InTunneli)),

and ϕ2 = G(KTrain1

∧n
i=1,j=2,i<j ¬(InTunneli ∧ InTunnelj). The formula ϕ1

(iI(n) = 5, i(n) = 8) expresses that whenever a train is in the tunnel, it knows
that the other trains are not. The formula ϕ2 (iI(n) = 5, i(n) = 7) represents
that trains are aware of the fact that they have exclusive access to the tunnel.

Dining Cryptographers (DC) [3] is a scalable anonymity protocol, which
has been formalised and analysed in many works, e.g., [12,15]. We consider
the following specifications: ϕ1 = G(odd ∧ ¬paid1 →

∨n
i=2 K1(paidi)), ϕ2 =

G(¬paid1 → K1(
∨n
i=2 paidi)), ϕ3 = G(odd → C1,...,n¬(

∨n
i=1 paidi)). The for-

mula ϕ1 (iI(n) = 4n + 2, i(n) = 3) expresses that always when the number of
uttered differences is odd and the first cryptographer has not paid for dinner,
then he knows the cryptographer who paid for dinner. The formula ϕ2 (iI(n) = 2,
i(n) = 3) states that it is always true that if the first cryptographer has not paid
for dinner, then he knows that some other cryptographer pays. The formula ϕ3

(iI(n) = 4n+ 2, i(n) = 3) states that always when the number of uttered differ-
ences is odd, then it is common knowledge of all the cryptographers that none
of the cryptographers has paid for dinner.

3 http://verics.ipipan.waw.pl/r/2is

44

4.2 Performance Evaluation

 10

 100

 1000

 10000

 1 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Nodes

Memory usage for FGPP, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n
 s

e
c
.

Number of Nodes

Total time for FGPP, formula 1

 10

 100

 1000

 1 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Nodes

Memory usage for FGPP, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n
 s

e
c
.

Number of Nodes

Total time for FGPP, formula 2

 10

 100

 1000

 10000

 1 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Nodes

Memory usage for FGPP, formula 3

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n
 s

e
c
.

Number of Nodes

Total time for FGPP, formula 3

Comparing IS algorithms, in most cases MCK is better than VerICS-IS, but
remains close when looking at the orders of magnitude. The reason for better
performance of MCK may come from the fact that it is based on the translation

45

 10

 100

 1000

 10000

 1 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Nodes

Memory usage for FGPP, formula 4

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n
 s

e
c
.

Number of Nodes

Total time for FGPP, formula 4

 10

 100

 1000

 10000

 1 10 100 1000

M
e
m

o
ry

 i
n
 M

B

Number of trains

Memory usage for a FTC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 i
n
 s

e
c
.

Number of trains

Total time for a FTC, formula 1

 10

 100

 1000

 10000

 1 10 100 1000

M
e
m

o
ry

 i
n
 M

B

Number of trains

Memory usage for a FTC, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 i
n
 s

e
c
.

Number of trains

Total time for a FTC, formula 2

 10

 100

 1000

 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Cryptographers

Memory usage for DC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n
 s

e
c
.

Number of Cryptographers

Total time for DC, formula 1

46

 10

 100

 1000

 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Cryptographers

Memory usage for DC, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n
 s

e
c
.

Number of Cryptographers

Total time for DC, formula 2

 10

 100

 1000

 10 100

M
e
m

o
ry

 i
n
 M

B

Number of Cryptographers

Memory usage for DC, formula 3

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n
 s

e
c
.

Number of Cryptographers

Total time for DC, formula 3

to SAT, and SAT-based BMC does not need to store the whole examined part
of the state space.

For most of the considered benchmarks the VerICS-IIS method is superior to
the two IS approaches: MCK and VerICS-IS, sometimes even by several orders
of magnitude. This can be observed especially in the case of FTC. However,
in the case of FGPP and ϕ3 with no epistemic modalities, MCK proved to be
more efficient, but for the formula ϕ4 containing the K operator, VerICS-IIS was
superior. This can be justified by the fact that introducing epistemic modalities
partitions the ELTL verification task into several smaller ones.

In the case of IIS, the reordering of the BDD variables does not cause any
significant change of the performance in the case of FGPP and FTC, but for DC
it reduces the memory consumption. Therefore, for IIS the fixed interleaving
order we used can often be considered optimal. The penalty in the verification
time to reorder the variables, in favour of reducing memory consumption, is also
not significant and can be worth the tradeoff. However, in the case of IS the
performance did not change, thus we include only the results for the fixed order
of the variables for VerICS-IS.

It is important to note that from our comparison of [17] it follows that in
the case of IIS, the general performance of BDD-based approach is superior
to the SAT-based one. Therefore, we can conclude now that BMC for LTLK
is less efficient for IS when comparing with IIS. This could be explained by the
different structure of the state space, which for IS is more dense, i.e., more states

47

are explored at every iteration of the BMC algorithm. The case of DC shows
that this factor can be more important than the lengths of the counterexamples,
which can be shorter for IS, or may even be of constant length when scaling the
system.

5 Final Remarks

We have proposed, implemented, and experimentally evaluated our BDD-based
BMC algorithms for LTLK over two variants of Interpreted Systems: standard
and interleaved ones. The experimental results show that the approach based
on the interleaved Interpreted Systems can greatly improve the practical appli-
cability of the bounded model checking method. Although, we have tested only
properties of LTLK, we can expect to obtain similar results for other specifi-
cation formalisms. Moreover, contrary to the SAT-based method of MCK and
of [21], our BDD-based BMC is complete, i.e., it can also be easily used to verify
that existential properties are false in the considered model.

In the future we are going to extend the presented algorithms to handle also
the CTL∗K properties. Since our implementation is in its preliminary stage, we
also need to improve it in many ways, e.g., it should be investigated in the case
of the non-interleaving semantics whether a different strategy for finding good
BDD variables ordering would improve the results.

Our results are preliminary and the comparison is by no means complete. It
ignores the fact that some formulae can give different verification results for each
of the considered semantics, e.g., in the presence of the next-state operator X.
However, we believe our results can be viewed as a justification and a starting
point for further research on the subject.

References

1. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Highly Dependable Software, volume 58 of Advances in Computers.
Academic Press, 2003. Pre-print.

2. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model check-
ing multi-agent programs with CASP. In Proc. of the 15th Int. Conf. on Com-
puter Aided Verification (CAV’03), volume 2725 of LNCS, pages 110–113. Springer-
Verlag, 2003.

3. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65–75, 1988.

4. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In Proc. of the 6th Int. Conf. on Computer Aided Verification (CAV’94), volume
818 of LNCS, pages 415–427. Springer-Verlag, 1994.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, 1995.
7. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.

In Proc. of the 16th Int. Conf. on Computer Aided Verification (CAV’04), volume
3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

48

8. W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
Proc. of the 9th Int. SPIN Workshop (SPIN’02), volume 2318 of LNCS, pages
95–111. Springer-Verlag, 2002.

9. W. van der Hoek and M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

10. X. Huang, C. Luo, and R. van der Meyden. Improved bounded model checking for
a fair branching-time temporal epistemic logic. In Proc. of 6th Int. Workshop on
Model Checking and Artificial Intelligence 2010, LNAI. Springer, 2011.

11. A. V. Jones and A. Lomuscio. Distributed bdd-based bmc for the verification of
multi-agent systems. In AAMAS, pages 675–682, 2010.

12. M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and
M. Szreter. Comparing BDD and SAT based techniques for model checking
Chaum’s dining cryptographers protocol. Fundam. Inform., 72(1-2):215–234, 2006.

13. M. Kacprzak, A. Lomuscio, and W. Penczek. From bounded to unbounded model
checking for temporal epistemic logic. Fundam. Inform., 63(2-3):221–240, 2004.

14. Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu. Partial order reduction
for model checking interleaved multi-agent systems. In AAMAS, IFAAMAS Press.,
pages 659–666, 2010.

15. R. van der Mayden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In Proc. of the 17th IEEE Computer Security Foundations
Workshop (CSFW-17), pages 280–291. IEEE Computer Society, June 2004.

16. A. Mȩski, W. Penczek, and M. Szreter. Bounded model checking linear time and
knowledge using decision diagrams. In Proc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’11), pages 363–375, 2011.

17. A. Mȩski, W. Penczek, M. Szreter, B. Woźna-Szcześniak, and A. Zbrzezny.
Bounded model checking for knowledge and linear time. In Proceedings of the
11th AAMAS. IFAAMAS Press, 2012. To appear.

18. R. van der Meyden and N. V. Shilov. Model checking knowledge and time in
systems with perfect recall. In Proc. of the 19th Conf. on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’99), volume 1738 of
LNCS, pages 432–445. Springer-Verlag, 1999.

19. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697
of LNCS, pages 409–423. Springer-Verlag, 1993.

20. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundam. Inform., 55(2):167–185, 2003.

21. W. Penczek, B. Woźna-Szcześniak, and A. Zbrzezny. Towards SAT-based BMC
for LTLK over interleaved interpreted systems. In Proc. of the Int. Workshop on
Concurrency, Specification and Programming (CS&P’11), pages 565–576, 2011.

22. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by
model checking via OBDDs. Journal of Applied Logic, 5(2):235–251, 2007.

23. K. Su, Abdul Sattar, and Xiangyu Luo. Model checking temporal logics of knowl-
edge via OBDDs. The Computer Journal, 50(4):403–420, 2007.

49

50

Preface of the International Workshop on Petri
Net-based Security (WooPS)

Rafael Accorsi1, Tadao Murata2, and Silvio Ranise3

1 University of Freiburg, Germany

accorsi@iig.uni-freiburg.de
2 University of Illinois at Chicago, USA

murata@uic.edu
3 Fundazione Bruno Kessler, Italy

ranise@fbk.eu

Petri nets provide an expressive and well-studied formalism to specify and rea-
son about security and reliability properties of abstractions/views of modern
applications, such as smart grids and distributed enterprise systems. It is how-
ever unclear how the cornucopia of available techniques (based on Petri nets
and related concurrency models) can provide results of the analysis with su�-
cient precision to increase the con�dence of designers in the overall security of
the new applications. The assessment of these techniques with respect to correct-
ness, computational complexity, and real-world case-studies is indeed mandatory
to signi�cantly advance the state-of-the-art of the emerging research area.

The WooPS session was centered around the study of new methodologies and
analysis techniques at the crossroads of the Petri net and security communities.

Concerning methodologies, in the paper "Analysing SONAR Model Trans-
formations," Köhler-Bussmeier studies the dynamics of organization models, de-
scribed as Petri nets, under model transformations, speci�ed as transitions of a
Petri net. With regard to analysis techniques, in the paper "Inference of Local
Properties in Petri Nets Composed through an Interface," Ferigato and Mangioni
study a notion of visibility of the local states for composition of elementary Petri
nets representing a service provider (defender), a client of the service (attacker),
and the protocol of interaction (interface). A notion of visibility formalizes the
idea that an attacker tries to infer the validity of a local state of the defender
even though only the interface is observable.

We would like to thank the authors of the papers for their e�orts in pro-
ducing stimulating contributions to the WooPS session. We also thank Prof.
Karsten Wolf for his instigating keynote address during the WooPS session.
Finally, thanks to the members of the organizing committees of the 33rd Inter-
national Conference on Application and Theory of Petri Nets and Concurrency
and the 12th International Conference on Application of Concurrency to System
Design to which this event is a�liated.

Rafael Accorsi, Tadao Murata, and Silvio Ranise

51

52

Developing and Integrating Petri net tools - an
Experience Report (Invited Talk)

Karsten Wolf

Universität Rostock
Institut für Informatik

Academic tools are increasingly important outcomes of academic research.
They can be used for proving applicability of theoretical results, for linking
theory and practice, and they can serve as well assessable deliverables of research
projects. The Petri net group in Rostock has a long tradition in developing Petri
net related academic tools. Today, about 20 tools are contributed, developed by
teams working in different cities and countries. Our tools have been integrated
into several general verification frameworks.

In the talk, we would like to give an overview on tool development in Rostock
and discuss our general tool philosophy, including interoperability and integra-
tion. We will also share our experience concerning general issues in academic
tool development as opposed to industrial software engineering. Our examples
will include recent tools such as the Anica tool that checks an information flow
security property on Petri nets.

53

54

Analysing SONAR Model Transformations

Michael Köhler-Bußmeier

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg
koehler@informatik.uni-hamburg.de

Abstract. In this paper we study the space of organisation models that
are reachable via model transformation in our Sonar-framework.
The space of organisation models is defined as a Petri net, where each
reachable marking represents one Sonar-organisation model and each
transitions represent a model transformation.
Keywords: multi-agent systems, organisation centred design, model
transformation, Petri net, Sonar

1 Introduction

In virtual enterprises different partners, called agents, cooperate within an or-
ganisational setting. A major research focus for multi-agent systems (MAS) is
the coordination of self-interested agents. Recent work puts emphasis on the or-
ganisation, that enables the teamwork of agents (cf. [1, 2] for an overview). Team-
work includes aspects like team formation, team planing (distributed problem
solving), and coordinated plan execution.

The interdisciplinary field socionics [3], situated between sociology and com-
puter science, emphasises the interplay of the macro level (i.e. the organisation)
and the micro level (i.e. the agent), i.e. an organisation is not only a passive
structure that provides a guiding frame for the teamwork – with the same right
one could define it the other way around: The organisation is the dynamic entity
that evolves in the context of the interaction of agents. In analogy to the notion
of teamwork we like to coin this dynamics as orgwork.

Our in-depth discussion of the interplay of agents and organisations shows
that both are active entities (cf. [4]), which influence each other at the same
time. The conceptual background is a little bit different from the mainstream
in organisation-centred MAS: While both agree on the fact that organisations
are entities that are not static, but evolve, organisation-centred MAS motivate
this aspect from the desire to allow some kind of adaption at the organisation
level, while in socionics agents and organisations are instantiations of the same
concept, which naturally implies that organisation plan, learn, adapt, etc. like
agents do. Since agents and organisations are essentially the same, we are free
to describe a system either from the agent-perspective, from the organisation-
perspective, or from their interplay-perspective. We will concentrate on the
interplay-perspective in the following, i.e. the orgwork.

55

In this presentation we show how the orgwork is modelled in our Sonar-
framework (short for: Self-Organising Net ARchitecture). The teamwork aspects
of Sonar have been studied in [5]. The orgwork aspects of Sonar are devoted
to distributed model transformations. Note, that in Sonar teamwork and org-
work are entangled, i.e. model transformations are not independent from agent
interactions – they are the other side of the coin. Each teamwork is an orgwork,
as it generates a transformation. From the organisation perspective one could
say that the organisation learns during the model transformation.

We already have a rich theoretical basis for the teamwork, which is based on
Petri nets [6]: Teams are unfoldings of delegation nets, plans are unfoldings of
multi-party workflow nets, etc. In this paper, we demonstrate that model trans-
formations could also be handled within the Petri net theory. For this purpose, we
introduce so called meta-organisation nets. The marking of a meta-organisation
net describes an organisation model, the firing of a meta-transition describes
a model transformation. This might seem a little bit unusual, since most ap-
proaches specify model transformations within a graph rewriting context [7].
Here, we advocate for a Petri net based approach due to the following reasons:
(i) We like to have only one type of formalism in Sonar to obtain an integrated,
lean formal setting and (ii) we like team- and orgwork to be executed by the same
engine (here: Renew). It turns out, that many interesting properties of transfor-
mations could be formulated as natural net properties. Therefore, we could rely
on well established analysis tools to investigate the space of all transformations.

The paper has the following structure: Section 2 introduces the Sonar-
framework. Section 3 presents how the team-/org-work is generated from a
Sonar-model. Analogously, Section 4 defines meta-organisation nets, which are
used to specify the org-work. In Section 5 we define a simple logic to define or-
ganisation policies, i.e. properties, which have to be fulfilled by an organisation
model and have to be preserved by the transformations. We show how meta or-
ganisation nets can be analysed to check properties of the space of organisation
transformations.

2 The SONAR Framework

In this section we give a short introduction into our modelling formalism, called
Sonar. A Sonar-model encompasses (i) a data ontology, (ii) a set of interac-
tion models (called distributed workflow nets), (iii) a model, that describes the
team-based delegation of tasks (called role/delegation nets), (iv) a network of
organisational positions, and (v) transformation rules.

2.1 Distributed Workflows, Roles and Services

In the following we ignore the colour of of workflow tokens and restrict ourselves
to black tokens and skip the discussion of the data ontology. In the following we
fix a set of roles R. A distributed workflow net (Dwfn) D = (P, T, F, r : T → R)
is a multi-party version of the well-known workflow nets [8] where the parties

56

are called roles. Each transition of a distributed workflow net is mapped by r to
a role with the meaning that a transition t can executed only by an agent that
implements the role r(t).

Let R(D) be the set of roles used by D, i.e. R(D) := r(TD). For each
set of roles R ⊆ R(D) we can construct the subnet D[R] = (PR, TR, FR)
of D = (PD, TD, FD) (called the role-component generated by R) by setting
TR := r−1(R), PR := (•TR∪TR

•), and FR := FD∩(PR∪TR)2. All message places
become places at the border of D[R]. Each partition R1, . . . , Rk on the set of
roles in D also decomposes D into its role-components: D = D[R1]‖ . . . ‖D[Rk].
The role-component D[R] defines the service provided by D w.r.t. the roles R.
For singletons D[{r}] we write D[r].

Fig. 1. Refined Distributed Workflow

D[R] ≃ D′[R′] denotes the fact that a component D[R] cannot distinguished
from another component D′[R′] with the same interface. This is formalised as
a bisimulation with respect to the input/output behaviour at the message in-
terface. The Dwfn PC 2 in Figure 1 shows such a refinement, where the role
Consumer of another DFWN PC (not shown here) has been refined by the
interaction of the three roles Consumer1, Decision Maker , and Consumer2.
The fact that the consumer part PC [Consumer] is i/o-bisimlar to the part
PC 2[Consumer1,Decision Maker ,Consumer2] is denoted:

PC [Consumer] ≃ PC 2[Consumer1,Decision Maker ,Consumer2]

Let D be a set of DWF nets. Then, (R, D, ≃) is called a Dwfn repository.

2.2 The Formal Organisation

Assume that A is the set of agents. On the conceptual level we define the tasks
the organisation is responsible for and how they are handled. In Sonar, organ-
isation is a net, where each place is of the form p = taska

D[R], which describes a

57

task for the agent a to establish the service D[R]. Each transition t is either a
delegation, a split, a refinement, or an execution operation (cf. Fig. 2):1

1. Delegate: The task to implement Dwfn D[r] is delegated from agent a to b.
Only the delegation operation delegates the ownership of a task.

2. Split: The Dwfn D[r1, . . . , rn] is split into the component D[r1], . . . , D[rn].
Note, that this operation does not alter the interaction behaviour since
D[r1, . . . , rn] ≃ (D[r1]‖ · · · ‖D[rn]).

3. Refinement: The Dwfn D[r] is replaced by D′[r1, . . . , rn], which has to be
a refinement, i.e. D[r] ≃ D′[r1, . . . , rn] must hold.

4. Execution: The Dwfn D[r] is executed by the agent that is responsible for
the task.

The set of all tasks and operations is defined as follows:

P := {taska
D[R] | D ∈ D ∧ R ⊆ R(D), a ∈ A}

Tdeleg :=
{
d({taska

D[r]}, {taskb
D[r]})

∣∣∣ D ∈ D ∧ r ∈ R(D) ∧ a, b ∈ A ∧ a 6= b
}

Tsplit :=
{
s({taska

D[r1,...,rn]}, {taska
D[r1], . . . , task

a
D[rn]})∣∣ D ∈ D ∧ {r1, . . . , rn} ⊆ R(D) ∧ n > 1 ∧ a ∈ A

}

Trefine :=
{
r({taska

D[r]}, {taska
D′[R]}) | D, D′ ∈ D ∧ D 6= D′ ∧ D[r] ≃ D′[R] ∧ a ∈ A

}

Texec :=
{
e({taska

D[r]}, ∅) | D, D′ ∈ D ∧ a ∈ A
}

Fig. 2. Delegation, Split, Refinement, and Excution

We define T := Tdeleg ∪Tsplit ∪Trefine ∪Texec . Note, that the sets Tdeleg , Tsplit ,
Trefine , and Texec are pairwise disjoint.

Let t = op(X, Y) ∈ T , op ∈ {d, s, r, e}, then we define the flow relation F by
•t = X and t• = Y ,

The mapping α : P → A returns the owner of a task: α(taska
D[R]) := a. For

each t we define its ownership equal to the owner of the place in the preset. Then
all conflicts are agent-internal: ∀p ∈ P : ∀t ∈ p• : α(t) = α(p).
1 This is a slight modification of the definition in [6, 5], which allows that a transition t

is a delegation, split, and refinement at the same time. We have chosen this simplified
version for presentational purposes.

58

The places P and transitions T encode implicitly several aspects: the oper-
ation type, the ownership of tasks, and the agency of operations.

A Sonar-model is stratified in the sense that each node of organisation net
belongs to a specific level n. Assume we have (P, T , F) as given above. We
assume that each Dwfn D ∈ D belongs to exactly one level n = n(D) and for
each p = taska

D[R] ∈ P we set its level to n(p) = n(D). Let Pn be the set of all
place with level n. Furthermore, we assume that for each t ∈ T the level does
not change, i.e. all the places p in •t ∪ t• belong to the same level. We define
the level of t ∈ T as the level of the surrounding places. Let Tn be the set of all
place with level n.

An organisation is a Petri net that contains some transitions of T and for
each transition the complete pre- and postset.

Definition 1. A organisation is a Petri net N = (P, T, F) with T ⊆ T , P =
•T ∪ T •, and F = F ∩ (P ∪ T)2.

The places in P 0 := ◦P := {p ∈ P | •p = ∅} are those tasks that the
organisation is responsible for, i.e. tasks that are generated externally.

Fig. 3. An Example Organisation Net

Figure 3 shows an example organisation net, where the agents (firm A, firm
B etc.) are indicated by the named boxes.

The stratification partitions the sets P and T , i.e. P =
⋃

n∈N Pn and T =⋃
n∈N Tn. Similarily, each organisation N = (P, T, F) is decomposed into N :=⋃
n∈N Nn, where each Nn = (P ∩ Pn, T ∩ Tn, F ∩ (Pn, ∪Tn)2) is the organisation

of level n.
The transitions in T are those operations that are explicitly allowed by the

organisation N . This does not mean that the operations in T \ T are forbidden
– some operations may become allowed whenever the organisation transforms.
To specify which operations are permitted or forbidden we define organisation
policies in Section 5.

59

2.3 Basic Transformations

We define two basic transformations: addt and delt where addt adds the transition
t ∈ T to the organisation N = (P, T, F) provided that the preset of t is already
part of N . Analogously, delt removes t and its postset:

addt(P, T, F) :=

{
(P ∪ t•, T ∪ {t}, F ∪ •t × {t} ∪ {t} × t•) if t 6∈ T ∧ •t ⊆ P

undef. otherwise

delt(P, T, F) :=

{
(P \ t•, T \ {t}, F \ (•t × {t} ∪ {t} × t•)) if t ∈ T

undef. otherwise

Then ATF := {addt, delt | t ∈ T } is the set of all atomic transformations. A
transformation is the composition τ = τ1; · · · ; τn of atomic transformations.

The level of a basic transformation addt or delt is defined as the level of t,
i.e. n(addt) = n(t) and n(delt) = n(t).

We now come to the org-work part: Each transition tD of a Dwfn D is
labelled with a basic transformation: λ(tD) = addt or λ(tD) = delt – or with
λ(tD) = ⊥ to indicate the absence of a transformation. The intended meaning
is that the execution of the Dwfn transition tD also executes the basic trans-
formation λ(tD). We will come back to this point in Section 3.

We require that the transformation inscription of each transition in D has
a level less than the level n(D) of the Dwfn D itself. Therefore, each firing
sequence w = t1 · · · tn of the Dwfn generates a sequence of transformations
λ(w) = λ(t1) · · · λ(tn) and due to the level restriction on the λ(ti), i = 1..n we
obtain the property that the Dwfn transforms only lower organisation levels.

3 Team-Work and Org-Work

In the following we give a short explanation of the teamwork derived from a
Sonar-model: team formation, the team-Dwfn, team planning via negotiation,
and organisational transformations as show in Fig. 4. This is just a short sum-
mary - cf. [5] for details.

The processes described below are implemented by a specific middleware,
called Mulan4Sonar, which is parametrised by a concrete Sonar-model. The
generic part of the Mulan4Sonar-middleware is specified by a high-level Petri
net, namely a reference net. This is beneficial for two reasons: (1) the prototype
directly incorporates the main Petri net structure of the Sonar-model; (2) the
prototype is immediately functional as reference nets are directly executable
using the open-source Petri net simulator Renew [9] and we can easily integrate
the prototype into Mulan [10, 11], our development and simulation system for
MAS based on Java and reference nets.

Team Formation: Processes of the Organisation Net Team formation
for a given task taska

D[R], i.e. the assignment to a to implement D[R], is then
expressed as an execution sequence w from the initial marking m0 = taska

D[R]

60

Fig. 4. Interplay of team- and org-work in Sonar

to the empty marking m = 0, i.e. m0
w−→ 0 assigns an executing agents to each

(sub-)tasks p.
Note, that the following refinement property holds for all task assignments:

Whenever we put a token on the place taska
D[R] then each reachable marking m

describes a refinement of D[R].
If Petri net processes (i.e. partially ordered runs) are used instead of se-

quences, then the net structure of the process can be used as the team’s inter-
action structure (for the formal definitions of “teams-as-processes” cf. [6]). Here,
only maximal processes are considered (i.e. we assume the progress property).

Assume that we have an organisation team OT , i.e. a process of the or-
ganisation net for the initial marking m0 = taska

D[R] together with the process
morphism φ. For each reachable place-cut C of OT define the Dwfn D(C) as
the composition of the role-components of the final transitions:

D(C) := ‖b∈CD(φ(b))[R(φ(b))]

Since each transition in the organisation N actually refines D[R], we obtain that
for each reachable place-cut C in a team OT the distributed workflow net D(C)
is a refinement of D[R]: D[R] ≃ D(C).

The Team-Dwfn Each team OT generates the team-Dwfn D(OT) that is
derived from the executing transitions, which are the maximal transitions in the
process net.

Each group member starts with its individual partial plan, which is an un-
folding of the team-Dwfn D(OT) with the property that all different branches

61

of the unfolding lead to the final state. The set of all partial plans of a workflow
N is denoted PP(N).

Assume that we have the team OT and its team-Dwfn D(OT). From OT
we can deduce which agents implements which role of the team-Dwfn: αOT :
R(D(OT)) → A maps each role r in the team-Dwfn to the agent of the team
that is assigned to r.

Team Planning: Group Plan Negotiation Each team generates a team-
plan via negotiation. In our formal setting, Petri net unfoldings are used since a
compromise can be easily characterised in terms of intersection of Petri nets –
which is not that easy for a sequential formalisation of partial plans.

A team OT defines a tree-like structure, i.e. a team consists of sub-team, etc.
Note, that the same agent can occur several times at different positions within
a team. We denote this tree as nested sets, which we denote by GOT .

Let G be some sub-group, i.e. a subset of GOT . During the negotiation each
group member g ∈ G (which is a group again) recursively calculates its local
partial plan πg. The intersection

⋂
g∈G πg of all these partial plans is not a partial

plan in general: If all group members reach the final state of the workflow via
different processes the intersection does not contain the final state at all.

For each G we define a group-plan πG as a partial-plan with minimal distance
to the intersection

⋂
g∈G πg of all the local plans: Let PP(N, (πg)g∈G, d) denote

the set of all partial plans such that we have to expand the intersection
⋂

g∈G πg

by at most d nodes.
The negotiation protocol is roughly the following: The hierarchical structure

of the team G induces a the set of sub-groups. The negotiation protocol selects
a sub-team G′ and an initial distance d. Then the agents within G′ compute a
non-empty approximating subset of PP(N, (πg)g∈G′ , d). Iteratively, these sets of
group-plans are combined to obtain an approximation for a “bigger” sub-group.
It is allowed to extend the distance d whenever this seems appropriate.

Finally, the group G = GOT is considered and we obtain the team-plan
πOT := πGOT

for the whole team.

Group Plan Effect: Transformations Each group plan πOT induces a trans-
formation λ(πOT) on the organisation. Therefore, we have a dynamics of the
organisation, i.e. org-work.

Each sequence w = t1 · · · tn of transition in the team-Dwfn D(OT) generates
the organisation transformation λ(w) : ORG → ORG:

λ(w) := λ(t1); . . . ; λ(tn) := λ(tn) ◦ · · · ◦ λ(t1)

We have already seen that due to the level restrictions on each λ(t) the trans-
formation λ(w) transforms only lower levels of the organisation.

There is another constraint for transformations that arises from the own-
ership within the team OT : From a given team OT we know the agent a =
αOT (r(tD)) that executes the team-Dwfn transition tD in the team plan. In

62

general, the executor can be different from the owner of a transformation, where
the owner is the agent that owns the manipulated t: α(addt) := α(t) and
α(delt) := α(t). But since agents are autonomous, agents cannot “manipulate”
each other. If one agents likes to transform t (i.e. add or delete it), but does not
own it, it has to negotiate with the owner about it. Therefore, we require that
the executor αOT (r(tD)) of a transformation λ(tD) is also its owner α(λ(tD)):

∀tD ∈ TD : λ(tD) 6= ⊥ =⇒ αOT (r(tD)) = α(λ(tD))

Definition 2. Assume that N is an organisation and OT is a team.
A firing sequence w = t1 · · · tn of the team-Dwfn D(OT) is a team-transformation

if each transformation is executed by the agent that owns it: ∀1 ≤ i ≤ n : λ(tD) 6=
⊥ =⇒ αOT (r(ti)) = α(λ(ti)).

A firing sequence is called applicable to the organisation N if the transfor-
mation λ(w) is defined for N .

We can extend these notions to partially ordered runs of a Dwfn. Whenever
we have two concurrent events e1 and e2 in the run, then we require that the
transformations λ(φ(e1)) and λ(φ(e2)) are independent and owned by the right
agent.

4 Formalisation of Org-Work by Meta-Organisations

The main problem of the negotiation process is to ensure that the transformation
generated by a team plan is applicable to the current organisation. The approach
taken here is to define meta-orgaisations. A meta-organisation net encodes in its
marking the current organisation and can “decide” which transformations (i.e.
addt and delt) are currently applicable. Therefore, a firing sequence of the team-
Dwfn is applicable iff it is enabled in the meta-organisation.

We can guarantee that the transformation generated by the team plan is
applicable to the organisation if we synchronise the team-Dwfn D(OT) with
the meta-organisation N̂P 0 . And during the negotiation, we do not construct a
partial plan for the team D(OT), but for the synchronous product of D(OT)
and the meta-organisation N̂P 0 . Then each team plan (more precisely: the subnet
that is obtained by restricting the process to nodes belonging to the team-Dwfn
D(OT)) fulfils the transformation constraints of Def. 2 by construction.

Here, we see the benefit to have an integrated model for team- and org-work:
Both are Petri nets, which allows a very simple definition of the synchronisation
as a net product.

In the following we define transformations as processes of another Petri net
N̂P 0 , called the meta-organisation. Assume a fixed universe (P, T , F). We also
assume a set of places P 0 ⊆ P that contains all tasks that the organisation is
responsible for.

For each n ∈ N we define the meta-organisation of level n as N̂n = (P̂n, T̂n, F̂n)
to describe the possible transformation processes.

63

– We define the set of meta-places and the set of meta-transitions:

P̂n := {p̂ | p ∈ Pn} ∪ {ont, offt | t ∈ Tn}
T̂n := {activatet, deactivatet | t ∈ Tn}

– The meta-arcs for activatet are defined by:

•activatet := {p̂ | p ∈ •t}∪{offt} and activatet
• := {p̂ | p ∈ •t∪t•}∪{ont}

A token on p̂ is used to “activate” each transformation on t ∈ p•, i.e. each
transition activatet.
Each transition deactivatet reverts the activation transition:

•deactivatet := activatet
• and deactivatet

• := •activatet

– Since all the Pn and Tn are disjoint, so are the meta-organisations N̂n and we
can define their union, too: N̂P 0 :=

⋃
n∈N N̂n :=

(⋃
n∈N P̂n,

⋃
n∈N T̂n,

⋃
n∈N F̂n

)
.

– The initial meta-marking m̂0 marks all meta-places offt and the task places
p̂ that the organisation is responsible for:

m̂0 := {p̂ | p ∈ P 0} ∪ {offt | t ∈ T }

Figure 5. shows the initial fragment of the meta-organisation N̂P 0 for the set
P 0 = {taskO1

PC [Prod,Cons]}.

Fig. 5. Fragment of the Meta-Organisation N̂P0 with P 0 = {taskO1
PC [Prod,Cons]}

The following proposition gives a characterisation of the reachable markings.

Proposition 1. Assume m̂0
ŵ−→ m̂ for some ŵ = t̂1 · · · t̂n.

1. For all t ∈ T the places ont and offt are 1-safe, since m̂(ont) + m̂(offt) = 1.
2. For each p̂ ∈ P̂ we have: m̂(p̂) = 1P 0(p) + |I+(ŵ, p̂)| − |I−(ŵ, p̂)|

where I+(ŵ, p̂) := {i ∈ {1..n} | t̂i = activatet ∧ t ∈ •p}
I−(ŵ, p̂) := {i ∈ {1..n} | t̂i = deactivatet ∧ t ∈ •p} .

64

Induced Organisation The meta-places ont are used to “link” an organisa-
tion and its meta-organisation: We obtain an organisation by selecting those
transitions t that are activated by a token on ont.

Definition 3. Let N̂P 0 be a meta-organisation and m̂ ∈ RS (N̂P 0 , m̂0) a reach-
able marking. The organisation induced by m̂ is N(m̂) := (Pm̂, Tm̂, Fm̂), where
Tm̂ := {t ∈ T | m̂(ont) = 1}, Pm̂ = P 0 ∪ •Tm̂ ∪ Tm̂

•, and Fm̂ = F ∩ (Pm̂ ∪ Tm̂)2.

In Sonar, we use meta sequences ŵ to encode organisations, since each firing
sequence ŵ ∈ T̂ ∗

n starting in m̂0, i.e. m̂0
ŵ−→ m̂, generates an organisation net in

a natural way: N(ŵ) := N(m̂).
The following shows that construction N(·) is injective:

Lemma 1. Let N be an organisation net and N̂P 0 a meta-organisation. When-
ever there is a meta-marking m̂ such that N = N(m̂) holds, then m̂ is uniquely
defined.

Proof. Assume that there are two reachable meta-markings, say m̂1 and m̂2 with
m̂0

ŵ−→ m̂1 and m̂0
ŵ−→ m̂2, that both generate N , i.e. we have: N = N(m̂1) =

N(m̂1).
We know the invariance m̂(ont) + m̂(offt) = 1 for all reachable markings m̂.

Assume that m̂1 and m̂2 differ on some ont/offt pair. Then we have m̂1(ont) = 1
and m̂2(ont) = 0 (or vice versa) and t ∈ TN(m̂1), but t 6∈ TN(m̂2) and therefore
N(m̂1) 6= N(m̂2).

Since m̂1 and m̂2 agree on each ont/offt pair, we know that for each t we
have the same balance in ŵ1 and ŵ2:

|ŵ1|activatet − |ŵ1|deactivatet = |ŵ2|activatet − |ŵ2|deactivatet

Since this implies |I+(ŵ1)| − |I−(ŵ1)| = |I+(ŵ2)| − |I−(ŵ2)|, we know that
1P 0(p) + |I+(ŵ1, p̂)| − |I−(ŵ1, p̂)| = 1P 0(p) + |I+(ŵ2, p̂)| − |I−(ŵ2, p̂)| and by
Prop. 1 we have m̂1(p̂) = m̂2(p̂) for each p̂. 2

The Meta-Organisation as a High-Level Net In Mulan4Sonar we model
the meta organisation as a a high-level Petri net. Figure 6 shows the Renew-
based model for the meta organisation net. The place meta places contains all
tokens of the form p̂. The place actions contains all tokens of the form ont.
Due to the invariant m̂(ont) + m̂(offt) = 1 the marking of offt can represented
implicitly by looking for absent tokens of the form ont. The transition add action
is enabled whenever there is one token p̂ on meta places such that •t = {p} (which
is specified by the inscription act = [type, task, tasks]) and no token of the form
ont on actions. Note, that the arc from actions to add action is an inhibitor arc.
Whenever add action fires, it generates the action, i.e. puts the token ont on
the place actions and foreach p ∈ t• one token p̂ on meta places. Note, that the
arc from add action to meta places is a so called flexible arc, which generates a
multiset of flexible cardinality.

65

Fig. 6. The High-Level Net Variant for the Meta Organisation Net (Fragment)

Induced Transformations Each meta-transition induces a transformation. In
the following we show that for m̂1

ŵ−→ m̂2 the organisation generated from a
meta-marking, i.e. N(m̂2), coincides with the organisation obtained from the
induced transformation, i.e. τ(w)(N(m̂1)).

The transformation induced by the meta-transition t̂ is τt̂, which defined as:

τt̂(N) =

{
N(m̂′), if ∃m̂, m̂′ : m̂ ∈ RS (N̂P 0 , m̂0) ∧ N = N(m̂) ∧ m̂

t̂−→ m̂′

undef., otherwise

Note, that Lemma 1 guarantees that τt̂ is well defined.
We extend the induced transformations to sequences of meta-transitions:

Define τ(t̂1···t̂n) := τt̂1
; . . . ; τt̂n

and τǫ = id .
We can formalise the correspondence of the induced transformations and

atomic transformations by defining the isomorphism h : (T̂ ∪{⊥})∗ → ATF ∗ by

h(activatet) = addt, h(deactivatet) = delt, and h(⊥) = id .

Each meta-sequence ŵ induces a corresponding transformation:

Lemma 2. Let m̂ be a reachable marking. Each meta-sequence ŵ = t̂1 · · · t̂n
induces a transformation τŵ which coincides with h(ŵ) on N(m̂):

m̂
ŵ−→ m̂′ =⇒ τŵ (N(m̂)) = h(ŵ) (N(m̂))

Proof. The general proposition follows by induction over the length over ŵ.
The case n = 0 is clear, since τǫ̂ = id = h(ǫ). The induction step follows
form the definitions of the basic transformations addt and and delt: Whenever
t̂ = activatet, then τt̂ is equivalent to addt and whenever t̂ = deactivatet then τt̂

is equivalent to delt. 2

Conversely, each transformation τ induces a corresponding meta-sequence:

Lemma 3. Let the transformation τ = τ1; . . . ; τn be defined for the organisation
N and let N = N(m̂) for some m̂.

Then τ induces the meta-sequence h−1(τ) and h−1(τ) is enabled in m̂, i.e.

m̂
h−1(τ)−−−−→ m̂′, and the generated organisations are equal: τ(N) = N(m̂′)

66

Proof. Similar to the proof above. 2

The relationship of transformations, organisations, and meta-organisation is
illustrated by the following diagram:

m̂
ŵ−−−−→ m̂′

yN(·)
yN(·)

N = N(m̂)
τŵ−−−−→ N ′ = N(m̂′)

The product D(OT) ⊗αOT
N̂P 0 fuses each team-Dwfn transition tD with

λ(tD) = addt with a copy of the meta-transition activatet and each tD with
λ(tD) = delt with a copy of deactivatet.

5 Analysis of Organisation Transformations

In Sonar, policies are used to describe those properties that have to remain
invariant during reorganisation processes of the model.

The set of atomic propositions is AP = {P[t],O[t],F[t] | t ∈ T }, where P[t]
(O[t], F[t]) means that it is permitted (obligated, f orbidden) to perform the
basic operation t.

A policy Φ is a propositional logic formula with AP as the set of atomic
propositions. The set of all t occurring within the formula is denoted TΦ.

Usually, it is not possible to permit and forbid a at the same time. Analo-
gously, if there is an obligation to do t then t is usually permitted and not for-
bidden. Usually these constraints are encoded inside modal logic and the deontic
qualifiers are modelled as modalities. For simplicity reasons, we use propositional
logics and add a constraint for the truth assignment function instead.

Definition 4. An assignment of a policy Φ is a mapping v : AP → {0, 1} with
the property: v(F[t]) = 1 =⇒ v(P[t]) = 0 and v(O[t]) = 1 =⇒ v(P[t]) = 1 for
all t ∈ T . The set of all assignments is ASSIGN .

We are interested in the fact, whether a organisation is a model for a policy.

Definition 5. An organisation N is a model for a policy Φ (denoted N |= Φ)
whenever we have:

∀v ∈ ASSIGN : v(Φ) = 1 =⇒
(
∀t ∈ TΦ : v(O[t]) = 1 =⇒ t ∈ T

∧ v(P[t]) = 0 =⇒ t 6∈ T
∧ v(F[t]) = 1 =⇒ t 6∈ T

)

When we use a marked meta organisation (N̂P 0 , m̂) instead of N , then t ∈ T
in the definition above has to be replaced by m̂(ont) = 1.

67

Analysis Each organisation transformation has to preserve the organisational
policy, i.e. whenever N |= Φ holds and τ is a transformation, then τ(N) |= Φ
holds, too. Define the set of meta-markings that satisfy a policy Φ as:

SAT (Φ) := {m̂ ∈ RS(N̂P 0 , m̂0) | N(m̂) |= Φ}

Definition 6. The meta-organisation N̂ enforces the policy Φ if SAT (Φ) =
RS(N̂P 0 , m̂0).

But in almost all cases this property does not hold, and this is not always
problematic, since it is not necessary that each N(m̂) satisfy Φ after each step
of the team plan. It is only necessary that each N(m̂) satisfy Φ at the end of
the execution of the team plan.

We could formulate this property as follows: Assume that we have an ini-
tial model N = N(m̂0) that satisfies the policy Φ and the meta-marking m̂ is
reachable, i.e. N1 = N(m̂) might be the result of a transformation. Whenever
N1 does not satisfy the policy, the question arises whether it is possible to reach
a meta-marking m̂′ such that N1 = N(m̂′) satisfies Φ:

∀m̂ ∈ RS(N̂P 0 , m̂0) : ∃m̂′ ∈ RS(N̂P 0 , m̂) : m̂′ ∈ SAT (Φ)

Whenever this is not the case, then we known that there exist some transforma-
tion which should be suppressed in all team-plans, because we can never repair
the situation. If the property holds, we know that each transformation can be
extended to one that satisfies the policy again.

When understood as a question for the meta-organisation the answer is
trivially “yes”, since each transformation in N̂ can be undone ad N̂ is revert-
ible. But of course it is undesired to reach a policy satisfying marking again,
by undoing all transformations. Therefore we exclude some (or all) deactivatet

from the analysis: For N̂ = (P̂ , T̂ , F̂) and Â ⊆ P ∪ T we define the subnet
(N̂ − Â) := (P̂ ∩ B̂, T̂ ∩ B̂, F̂ ∩ B̂2), where B̂ = (P ∪ T) \ Â.

Definition 7. The meta-organisation N̂ is stable w.r.t. the policy Φ if we have
for Â = {deactivatet | t ∈ T }:

∀m̂ ∈ RS(N̂ − Â, m̂0) : ∃m̂′ ∈ RS(N̂ − Â, m̂) : m̂′ ∈ SAT (Φ)

Proposition 2. Assume, that A and D are finite sets.
Given a meta-organisation N̂ , it can be checked using standard model check-

ing techniques, whether the policy is enforced and whether the policy is stable.

Proof. Note, that whenever A and D are finite sets, then N̂ is finite, too, and
by Prop. 1 its state space is finite. Enforcement is a safety property and this can
be checked doing an exhaustive state space exploration.

Stability is a kind of liveness property and can be checked by computing the
strongly connected components (SCC) of the state space and checking whether
each terminal SCC contains an m̂ that satisfies Φ. 2

68

6 Conclusion

In this paper we studied the organisation-oriented perspective of multi-agent
systems and their transformations, which we named org-work as opposed to
team-work.

We defined the dynamics of organisation models in the formalism of meta
nets. This explicit representation of the history of the model transformation
(understood by the meta-marking m̂) allows us a deeper insight in the possible
transformation that can arise as the byproduct of the teamwork.

Since we use the same formalism for team- and org-work, we can mix both
models and obtain an integrated view on the system. The negotiation protocol
directly benefits from this: During the negotiation, we do construct a partial plan
not only for the team D(OT), but for the synchronous product of D(OT) and
the meta-organisation N̂P 0 . This guarantees that the transformation generated
by a team plan π is always applicable to the actual organisation, which is a
non-trivial property to ensure by negotiation.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In Weiß, G., ed.:
Multiagent Systems. MIT Press (1999) 229–330

2. Dignum, V., ed.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global (2009)

3. Malsch, T.: Naming the unnamable: Socionics or the sociological turn of/to dis-
tributed artificial intelligence. Autonomous agents and multi-agent systems 4
(2001) 155–186

4. Köhler, M., Moldt, D., Rölke, H., Valk, R.: Linking micro and macro description
of scalable social systems using reference nets. In Fischer, K., Florian, M., Malsch,
T., eds.: Socionics: Sociability of Complex Social Systems. Volume 3413 of LNAI,
(2005) 51–67

5. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for
organisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. 5460 (2009) 98–114

6. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79 (2007) 415 – 430

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer-Verlag (2006)

8. Aalst, W.v.d.: Verification of workflow nets. In Azeme, P., Balbo, G., eds.: Appli-
cation and theory of Petri nets. Volume 1248 of LNCS (1997) 407–426

9. Kummer, O. et al.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: ATPN 2004. Volume 3099 of LNCS
(2004) 484 – 493

10. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In
Colom, J.M., Koutny, M., eds.: ATPN 2001. Volume 2075 of LNCS (2001) 224–241

11. Cabac, L., Dörges, T., Duvigneau, M., Moldt, D., Reese, C., Wester-Ebbinghaus,
M.: Agent models for concurrent software systems. In Bergmann, R., Lindemann,
G., eds.: MATES’08. Volume 5244 of LNAI (2008) 37–48

69

70

Inference of Local Properties in Petri Nets
Composed through an Interface

Carlo Ferigato1 and Elisabetta Mangioni2

1 Joint Research Centre of the European Commission
via Enrico Fermi, 1, I-21027 Ispra, Italia
carlo.ferigato@jrc.ec.europa.eu

2 DISCo - Università degli Studi di Milano-Bicocca
viale Sarca, 336, I-20126 Milano, Italia

mangioni@disco.unimib.it

Abstract. We study a notion of visibility of the local states of an El-
ementary Petri net obtained by composition through an interface. The
components are three EN systems: the defender, providing a service to
the environment, the attacker, a client of the service, and the interface,
that models the protocol of interaction between the other two nets. In-
tuitively, the definition of visibility is meant to capture the idea that an
attacker tries to infer the validity of a local state of the defender even if
he can observe only the interface and itself. Our analysis is based on the
notion of invariant properties and bisimilarity in Petri nets. We suggest
also a measure of the degree of visibility of local states of the defender
as seen by the attacker.

Keywords: Elementary Net System, composition, invariant

1 Introduction

The object of our study is open since the beginning of Computer Science [6]:
we aim at a structural characterization of the hidden internal states of a system
that become visible after its interaction with a defined subsystem. We assume
to have a high-level system that wants to keep secret its internal local states
from a low-level system interacting with the high-level component through an
interface.

Basically, we explore the consequences of a proposal originally made in [3] for
defining non-interference properties as structural properties by using the local
validity of conditions as observable properties.

The general context of our study is known today in the literature as non-
interference. The notions of opacity and interference between subsystems have
been originally defined formally for process algebras [4]. In the context of Petri
Nets, Busi and Gorrieri [3] applied these notions to Elementary Net Systems and
Best, Darondeau and Gorrieri [2] extended recently the results to unbounded P/
T Systems.

71

In these latter works, non-interference is basically defined as language equiv-
alence. The equivalent languages are, respectively, the one generated by the
restriction of the system to the low-level component alone, and the language
generated by the composition of the low-level component with any high-level
component.

The definition of non interference in terms of languages forces at considering
events as basic observable entities, but this is partly in contradiction with the
traditional view of events in nets as entities observable only indirectly, via the
modifications of their pre- and post-conditions.

Since we consider as basic observables the local properties of systems rep-
resented by conditions, we call the property we describe visibility. In terms of
visibility, two interacting systems can be seen as defender and attacker. The
defender offers a service to the environment and wants to keep secret part of
its local states. The attacker uses the service of the defender and tries to get
information about its internal local states.

We will represent systems with Elementary Net (EN) systems, a basic model
of Petri Nets. The service is modeled by a third EN system called interface. The
interaction among these systems is given by the composition of the defender
and the attacker through the interface. By using standard techniques related to
S-invariants and bisimilarity in Petri Nets, we prove a theorem that allows us to
recognize the places of the interface visible to, at least, one attacker. Moreover, we
discuss the general cases of attackers bisimilar and non bisimilar to the interface.
In the conclusions, we propose a measure of the degree of visibility of conditions
as seen from the attacker.

2 Basic definitions

This section recalls basic definitions about net theory ([10]).

Definition 1. An Elementary Net (EN) system is a quadruple N = (B,E, F,m0),
where B and E are distinct finite sets of conditions and events, F ⊆ (B ×E) ∪
(E ×B) is the flow relation, m0 ⊆ B is the initial case and

1. dom(F) ∪ ran(F) = B ∪ E.
2. ∀e ∈ E, p, q ∈ B : (p, e), (e, q) ∈ F ⇒ p 6= q

The preset of an element x ∈ B∪E is defined by •x = {y ∈ B∪E|(y, x) ∈ F};
the postset of x is given by x• = {y ∈ B ∪ E|(x, y) ∈ F}.

The structure of a net can be represented by a matrixM called the incidence
matrix. In this matrix there is a row for each condition, a column for each event
and the element (k, j) is set to 1 if there is an arc from the event ej to the
condition bk, −1 if there is an arc from bk to ej , 0 otherwise.

The behaviour of EN systems is defined through the firing rule which spec-
ifies when an event can occur, and how event occurrences modify the holding of
conditions. Let N be an EN system, e ∈ E and m ⊆ B. The event e is enabled
at m, denoted m [e〉, if •e ⊆ m and e• ∩m = ∅; the occurrence of e at m leads

72

from m to m′, denoted m [e〉m′, iff m′ = (m \ •e) ∪ e•. Let ε denote the empty
word in E∗. It is possible to extend the firing rule to sequences of events in the
following way:

m [ε〉m
∀e ∈ E,∀w ∈ E∗,m [ew〉m′ = m [e〉m′[w〉m′′

and w is called firing sequence.
A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such

that m0 [w〉m. The set of all reachable markings of N is denoted by [m0〉.
An EN system is 1-live if every event can fire in, at least, one reachable

marking.
Some properties of a net can be studied through the incidence matrix and its

invariants. An S-invariant associates weights to conditions so that the weighted
sum of tokens is the same in all reachable markings.

Definition 2. Let N be a net and let M be its incidence matrix. A vector I :
B → N is an S-invariant iff it is a solution of: IT ◦M = 0.

Similarly, a T -invariant is defined as a vector J : E → N iff it is a solution
of: M ◦ J = 0.

An S-invariant is monomarked iff its coefficients are in {0, 1} and exactly one
condition corresponding to a 1 in the invariant belongs to the initial marking
m0.

In the following, when we write Ni we will refer to an EN system: Ni =
(Bi, Ei, Fi,m

i
0).

Relations between EN systems can be expressed by N -morphisms ([7]), cor-
responding to a form of partial simulation. N̂ -morphisms are a special case of
N -morphisms and will be used in defining the operation of composition.

Definition 3. A N̂ -morphism from N1 to N2 is a pair (β, η), such that:

1. β ⊆ B1 ×B2, and β−1 : B2 → B1 is a total and injective function;
2. η : E1 →∗ E2 is a partial and surjective function;
3. if η(e1) is undefined, then β(•e1•) = ∅;
4. if η(e1) = e2, then β(•e1) = •e2 and β(e1•) = e2

•;
5. ∀(b1, b2) ∈ β : [b1 ∈ m1

0 ⇔ b2 ∈ m2
0].

N̂ -morphisms reflect S-invariants ([1]), but do not preserve them.
We recall an operation of composition (defined in [8]) that composes two

EN systems, N1 and N2, with respect to a third EN system NI called interface
because it expose the protocol of interaction between the two systems. The com-
position is driven by a pair of N̂ -morphisms, (β1, η1) and (β2, η2), respectively
from N1 to NI , and from N2 to NI . In this way, N1 and N2 can be seen as
composed each one by a local component and a component isomorphic to NI .

Definition 4. Let Di = {b ∈ Bi|βi(b) 6= ∅}, and Gi = dom(ηi).
We define N1〈NI〉N2 = N = (B,E, F,m0) as follows:

73

1. B = (B1 \D1) ∪ (B2 \D2) ∪BI ;
2. E = (E1 \G1) ∪ (E2 \G2) ∪ Esync,

where Esync = {〈e1, e2〉|e1 ∈ G1, e2 ∈ G2, η1(e1) = η2(e2)};
3. F is defined by the following clauses:

(a) ∀b ∈ (Bi \Di),∀e ∈ (Ei \ Gi), i = 1, 2 we have (b, e) ∈ F ⇔ (b, e) ∈ Fi
and (e, b) ∈ F ⇔ (e, b) ∈ Fi;

(b) ∀b ∈ (Bi\Di),∀e ∈ Gi,∀ej ∈ E3−i and es = 〈e, ej〉 if i = 1 or es = 〈ej , e〉
if i = 2, we have (b, es) ∈ F ⇔ es ∈ E, (b, e) ∈ Fi and (es, b) ∈ F ⇔
es ∈ E, (e, b) ∈ Fi;

(c) ∀b ∈ BI ,∀e = 〈e1, e2〉 ∈ Esync we have (b, e) ∈ F ⇔ (β−11 (b), e1) ∈
F1, (β

−1
2 (b), e2) ∈ F2 and (e, b) ∈ F ⇔ (e1, β

−1
1 (b)) ∈ F1, (e2, β

−1
2 (b)) ∈

F2;
4. m0 = (m1

0 \D1) ∪ (m2
0 \D2) ∪mI

0.

From this construction it follows immediately that N = N1〈NI〉N2 as above is
an EN system.

The pair (γi, δi), with γi ⊆ B ×Bi and δi : E → Ei defined as:

– γi = {(b, b)|b ∈ Bi \Di} ∪ {(b, β−1i (b))|b ∈ BI},
– ∀e ∈ Ei \Gi : δi(e) = e, δ3−i(e) = undefined,
– ∀〈e1, e2〉 ∈ Esync : δi(〈e1, e2〉) = ei.

is an N̂ -morphism from N = N1〈NI〉N2 to Ni, i = 1, 2.

Informally, the composition creates a new EN system with the original condi-
tions, events and arcs local to the components plus the conditions of the interface
and the Cartesian product of the events to be synchronized. Synchronized events
are connected to the local conditions, if there is an arc in the components between
these objects, and to the conditions of the interface, if there is an arc in both
the components between these events and the inverse-image of the conditions of
the interface.

In Fig. 1 it is shown an example of the two EN systems to be composed and
the interface; in Fig. 2 there is the resulting net. The N̂ -morphisms are defined
by identical labels on conditions and events.

Composition through N̂ -morphisms assure that, if a component N1 is bisim-
ilar to the interface, then the composed net is bisimilar to the other component,
N2 [1].

Bisimulation relations have been introduced as an equivalence notion with
respect to event observation [5]. We define the observability of events of a system
by using a labelling function which associates the same label to different events,
when viewed as equal by an observer, and the label τ to unobservable events.

Definition 5. Let N = (B,E, F,m0) be an Elementary Net System, l : E →
L∪ {τ} be a labelling function where L is the alphabet of observable actions and
τ 6∈ L the unobservable action. Let ε denote the empty word in both E∗ and L∗.
The function l is extended to a homomorphism l : E∗ → L∗ in the following way:

l(ε) = ε

74

(a) N1 (b) NI (c) N2

Fig. 1: The EN systems N1 and N2 being composed through the interface NI

Fig. 2: The resulting EN system N1〈NI〉N2

75

∀e ∈ E,∀w ∈ E∗, l(ew) =
{
l(e)l(w) if l(e) 6= τ

l(w) if l(e) = τ

The pair (N, l) is called Labelled Elementary Net System.
Let m,m′ ∈ [m0〉 and a ∈ L ∪ {ε} then:

– a is enabled at m, denoted m (a〉, iff ∃w ∈ E∗ : l(w) = a and m [w〉;
– if a is enabled at m, then the occurrence of a can lead from m to m′, denoted
m (a〉m′, iff ∃w ∈ E∗ : l(w) = a and m [w〉m′.

We define weak bisimulation as a relation between reachable markings of
Labelled Elementary Net Systems [9].

Definition 6. Let Ni = (Bi, Ei, Fi,m
i
0) be an Elementary Net System for i =

1, 2, with the labelling function li : Ei → L∪ {τ}. Then (N1, l1) and (N2, l2) are
weakly bisimilar, denoted (N1, l1) ≈ (N2, l2), iff ∃r ⊆

[
m1

0

〉
×
[
m2

0

〉
such that:

– (m1
0,m

2
0) ∈ r;

– ∀(m1,m2) ∈ r, ∀a ∈ L ∪ {ε} it holds

∀m′1 : m1 (a〉m′1 ⇒ ∃m′2 : m2 (a〉m′2 ∧ (m′1,m
′
2) ∈ r

and (vice versa)

∀m′2 : m2 (a〉m′2 ⇒ ∃m′1 : m1 (a〉m′1 ∧ (m′1,m
′
2) ∈ r

Such a relation r is called weak bisimulation.

As example, consider the systems N2 and NI of Fig. 1. The observable actions
are the ones on EI . As labelling function for N2 take l2 that maps each event on
the correspondent one in EI but for g0 that is mapped on τ . As labelling function
for NI take the identity function. Now we can write {bI , d2} (post〉 {d1} because
we have {g0, post} ∈ E∗2 such that l2({g0, post}) = post and {bI , d2} [{g0, post}〉 {d1}.

For simplicity, in the remaining part of the paper we will use the term bisim-
ulation instead of weak bisimulation.

3 Visibility

Let us consider two EN systems, the defender ND and the attacker NA, together
with their composition on the interface NI : ND〈NI〉NA as defined above.

In the following definitions, we will use invariants and markings either as
vectors or as characteristic functions: if v is a vector x ∈ v ⇔ v(x) 6= 0. Since
the whole system can be seen as composition of subsystems, we can restrict
every vector to the components belonging to a given subsystem. We will use the
symbol ↓ for such a restriction. If v is a vector related to N , we can divide it in
parts associated to the defender, the interface and the attacker: v↓D , v↓I , v↓I∪A

and v↓A .
We can now define the observability that the attacker has on the markings

of the whole system.

76

Definition 7. The attacker-view of a marking m of the system N is the restric-
tion of the marking on the conditions of NA and NI .

∀m ∈ [m0〉 ,m↓I∪A
= m ∩ (BA ∪BI)

In general, the attacker is able to distinguish only subsets of markings of the
composed system.

Definition 8. We say that two distinct markings m,m′ ∈ [m0〉 are attacker-
view equivalent if m↓I∪A

= m′↓I∪A
.

A marking m ∈ [m0〉 is distinguishable by the attacker if ¬∃m′ ∈ [m0〉 :
m↓I∪A

= m′↓I∪A
.

The attacker has a complete distinguishability of the markings of the whole
system if:

∀m,m′ ∈ [m0〉 ,m↓I∪A
= m′↓I∪A

⇒ m = m′

The interesting cases are the ones in which there is no complete distinguisha-
bility. We define as follows the conditions visible or invisible to the attacker.

Definition 9. Condition p ∈ BD \ BI is invisible from a marking mA ∈
[
mA

0

〉

for an attacker NA, in isolation, iff

∃m,m′ ∈ [m0〉 : m(p) = 0 ∧m′(p) = 1 ∧m↓I∪A
= m′↓I∪A

= mA

Condition p ∈ BD \BI is invisible for NA iff p is invisible for every mA ∈
[
mA

0

〉
.

If a condition is not invisible then we will say that is visible.

We will call SD ⊆ BD \BI the set of invisible conditions computed as in the
procedure reported below for an attacker NA, such that NA is composed with
ND through the interface NI .

We will call S∗D ⊆ BD \ BI the set of invisible conditions for all attacking
net systems NA, such that NA is composed with ND through the interface NI .

3.1 Invisible and visible conditions: results

To determine which conditions are in SD we have to follow this procedure:

– partition the reachable markings of the composed system according to the
markings of the attacker;

– for each marking of the attacker, compute the invisible conditions and
– compute the intersection of the sets of invisible conditions above.

Since the computation of all the markings of a Petri Net is exponential, to
find the set of invisible conditions is an exponential computation too.

Let us explain this procedure by means of the example of Fig. 1. We use the
markings of the composed system, showed in Table 1, and of the attacker, Table
2, to compute SD. Starting by the markings of the attacker N2, let us partition
the markings of the composed system in sets of undistinguishable markings as

77

bI c0N1 c1N1 c2N1 c3N1 c4N1 c5N1 d0N2 d1N2 d2N2

S0 1 0 1 0 0 0 1 0 0 1
S1 0 1 0 0 0 1 0 0 1 0
S2 1 0 1 0 1 0 0 0 0 1
S3 0 0 0 1 0 1 0 0 1 0
S4 1 1 1 0 0 0 0 1 0 0
S5 1 1 1 0 0 0 0 0 0 1
S6 1 0 1 1 0 0 0 1 0 0
S7 1 0 0 0 0 1 1 1 0 0
S8 1 0 1 1 0 0 0 0 0 1
S9 1 0 0 0 0 1 1 0 0 1
S10 1 0 0 0 1 1 0 1 0 0
S11 1 0 0 0 1 1 0 0 0 1
S12 1 0 1 0 0 0 1 1 0 0
S13 1 0 1 0 1 0 0 1 0 0

Table 1: Reachable states of system N1〈NI〉N2 of Fig. 2

bI d0 d1 d2
possible markings of the
composed system conditions invisible

S0A 1 0 0 1 S0, S2, S5, S8, S9, S11 {c0N1, c1N1, c2N1, c3N1, c4N1, c5N1}
S1A 0 0 1 0 S1, S3 {c0N1, c2N1}
S2A 1 1 0 0 S4, S6, S7, S10, S12, S13 {c0N1, c1N1, c2N1, c3N1, c4N1, c5N1}

Table 2: Reachable states of system N2 of Fig. 1c

78

in Table 2. In the same table are as well listed the conditions invisible from each
marking of the attacker; the conditions invisible for N2 are {c0N1, c2N1} given
by the intersection of all of the computed SD sets.

In order to compute S∗D, we should construct every possible attacker com-
patible with the interface NI in respect to the composition operation. This is
obviously impossible and we cannot compute the set of conditions invisible to
every attacker. Nevertheless, we conjecture that the conditions invisible to the
interface (or to an attacker isomorphic to the interface) allow to infer a limit
to the set S∗D. The cases in which the attacker is bisimilar to the interface are
discussed below.

Note that we are not interested in controlling the behaviour of the defender
by imposing a specific marking of the attacker. This situation, at the extreme
consequences, could be seen as a deadlock situation imposed by an attacker
that blocks completely the interface. Consequently, we are not interested in, for
example, a visible condition that is constant in every marking of the composed
system since this would be a situation of (local) deadlock related to an attacker
taking explicit control of the the defender by but not to the concept of visibility.

(a) ND (b) NI (c) NA

Fig. 3: Two EN systems to be composed through the interface NI

Let us now prove the central result. We define a necessary constraint for a
defined attacker NA such that a condition of the defender is not in SD. This
situation happens when a condition of the defender is in a monomarked invari-
ant with a condition of the interface. In this case, it is possible to construct
an attacker (isomorphic to the interface itself) with a marking in which that
condition is visible.

Theorem 1. Let ND, NI be bisimilar EN systems, and (βD, ηD) : ND → NI
an N̂ -morphism. If NI is 1-live and b ∈ BD \ β−1D (BI), i ∈ β−1D (BI) satisfies

79

b, i ∈ ID with ID monomarked S-invariant of ND, then b is visible for each
attacker bisimilar to the interface.

Proof. Consider an attacker isomorphic to the interface, NA = NI . Given that
we consider each attacker bisimilar to the interface, if we prove that this result
hold for the interface, it holds for all these attackers too.

Since S-invariants are reflected, ID is an invariant of the composed net (that
in this case is isomorphic to ND). So, if we can reach a marking in which i = 1
then we are sure that b = 0 and then b is visible. If m0(i) = 1 this is the
marking we are looking for. Suppose m0(i) = 0. Since NI is an EN system,
βD(i) is not isolated. If •βD(i) = ∅, then βD(i) should have at least a post-
event. In this case this post-event is dead while NI is 1-live by hypothesis.
So, the preset of βD(i) is not empty. Given that NI is 1-live, an event in the
preset of βD(i) will fire at some reachable case. Let us call u ∈ E∗I a sequence
of events such that mI

0 [u〉mI
1 and mI

1(βD(i)) = 1. From the assumption that
ND ≈ NI with the labelling function h : ED → EI ∪ {τ} we can deduce that
∃w ∈ E∗D : h(w) = u,mD

0 [w〉mD
1 ,m

D
1 (i) = 1. ut

Fig. 4: The composition of the EN systems of Fig. 3

Note that taking into account an attacker not bisimilar to the interface is not
of interest because this attacker can introduce some restrictions of behaviour,
hence hiding some visible part of the defender. We can see an example of this
case in Fig. 3 where the N̂ -morphisms are implicitly defined by the identical
labels of conditions and events.

If we modify the initial marking m0 by adding a token in condition d1 of
net NA, the attacker becomes bisimilar to the interface. In this case, conditions
c1, c2, c3 and c4 of ND are visible. If we consider the net system as it is, c1 and
c2 are not visible, as we can see in Fig. 4 and Tables 3 and 4.

Asking a defender bisimilar to the interface is reasonable, because the inter-
face is the protocol of interaction exposed by the defender, so we expect that

80

b0 b1 b2 c0ND c1ND c2ND c3ND d0NA d1NA
S0 0 1 0 0 1 0 0 0 0
S1 0 0 1 0 1 0 0 0 0
S2 0 1 0 0 0 1 0 0 0
S3 0 0 1 0 0 1 0 0 0
Table 3: Reachable states of system ND〈NI〉NA of Fig. 4

b0 b1 b2 d0 d1
possible markings of the
composed system invisible conditions

S0A 0 1 0 0 0 S0, S2 {c1ND, c2ND}
S1A 0 0 1 0 0 S1, S3 {c1ND, c2ND}

Table 4: Reachable states of system NA of Fig. 3c

the system respect his own contract. Also the constraint on the liveness of the
interface is reasonable. The only constraint that is not so easy to respect is the
one on the S-invariant, because compute all the invariants of an Elementary Net
is exponential. Nevertheless, a lot of tools compute the invariant for a given net.

3.2 Measuring visibility

We can give a measure of the uncertainty related to visibility. Intuitively, visible
or invisible conditions are opposite ends of some kind of spectrum of visibility
and, in Def. 9, we do not weight the relative persistence of the invisible condition
p in marking m or m′.

For example, in Table 2, attacker case S0A, condition b0N1 is more frequently
un-marked than marked. Consequently, we could consider b0N1 as a random
variable whose average information content — persistence in a given local state
— depends on the chosen marking of the attacker.

Traditionally, entropy is a measure of the uncertainty associated with a ran-
dom variable. Consequently, a measure of the uncertainty of the marking for a
given defender condition in a given attacker marking can be given, as usual in
information science, by using Shannon’s entropy:

the entropy H of a discrete random variable X = {x1, ..., xn} with p denoting
the probability mass function of X is H(X) = −∑n

i=1 p(xi) log2 p(xi).

Obviously, when H(X) = 1 condition X seen as random variable is totally
invisible on the attacker marking considered while when H(X) = 0 it is visible.

For example, with reference to Table 2, let us calculate the entropy of b0N1

seen as variable with possible values in {0, 1} with respect to the attacker
marking S0A. Marking S0A “covers” {S0, S2, S5, S8, S9, S11} and, with reference
to Table 1, we can divide this set in two subsets: one in which b0N1 = 0,
{S0, S2, S8, S9, S11}, and one with b0N1 = 1, {S5}. By plain computation of
the relative frequencies of persistence in a state, the entropy is H(b0N1) =

81

−∑2
i=1 p(xi) log2 p(xi) = −5/6 log2 5/6− 1/6 log2 1/6 = 0, 65. So b0N1 in S0A is

invisible at 65%.

4 Conclusion

We aimed at defining structurally the notion of visibility between composed sub-
systems in order to isolate the unwanted information flows between an hypothet-
ical defender system and an attacker system whose interactions are coordinated
by an interface. The composition of these three subsystems is formally defined in
terms of morphisms. In the context of information science, our work is naturally
placed in the field of non-interference as reported in the introduction.

We managed to use traditional tools in the study of Petri Nets like invari-
ants, for the definition of the properties of our interest. In the context of this
work we did not use T-invariants because their are more related to the concept
of controlling the defender than to the concept of visibility. Unfortunately we
failed in having a full structural description since, for proving theorem 1, we
had to make an hypothesis of bisimulation between the defender and the inter-
face. Nevertheless, we reached a preliminary result in a direction worth to be
explored further. Next steps will be in the direction of a finer characterization
of the statistical dependency between the subsystems, in proving the conjecture
concerning the dependence between all the possible attackers and the interface,
and in using different kinds of morphisms for the definition of the composition
in order to avoid the use of bisimilarity relations in the proofs.

Acknowledgments Work partially supported by MIUR.

References

1. Luca Bernardinello, Elena Monticelli, and Lucia Pomello. On preserving struc-
tural and behavioural properties by composing net systems on interfaces. Fundam.
Inform., 80(1-3):31–47, 2007.

2. Eike Best, Philippe Darondeau, and Roberto Gorrieri. On the decidability of
non interference over unbounded petri nets. In Konstantinos Chatzikokolakis and
Véronique Cortier, editors, SecCo, volume 51 of EPTCS, pages 16–33, 2010.

3. Nadia Busi and Roberto Gorrieri. A survey on non-interference with petri nets. In
J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 328–344. Springer,
2003.

4. Riccardo Focardi and Roberto Gorrieri. Classification of security properties (part
I: Information flow). In Riccardo Focardi and Roberto Gorrieri, editors, FOSAD,
volume 2171 of Lecture Notes in Computer Science, pages 331–396. Springer, 2000.

5. Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

6. Edward F. Moore. Gedanken-experiments on sequential machines. In Claude El-
wood Shannon and John McCarthy, editors, Automata Studies, volume 34 of An-
nals of mathematics studies, pages 129–153. Princeton University Press, 1956.

82

7. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theor. Comput. Sci., 96(1):3–33, 1992.

8. Lucia Pomello and Luca Bernardinello. Formal tools for modular system develop-
ment. In J. Cortadella and W. Reisig, editors, ICATPN, volume 3099 of Lecture
Notes in Computer Science, pages 77–96. Springer, 2004.

9. Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of equivalence
notions for net based systems. In Grzegorz Rozenberg, editor, Advances in Petri
Nets: The DEMON Project, volume 609 of Lecture Notes in Computer Science,
pages 410–472. Springer, 1992.

10. Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 12–121. Springer, 1996.

83

84

Preface

This volume contains the papers presented at CompoNet 2012: second interna-
tional workshop on Petri nets Compositions (and other models of concurrency)
held on June 26th 2012 in Hamburg, Germany as a part of the International
Conference on Applications and Theory of Petri Nets (PETRI NETS 2012).

This workshop aims at offering to researchers, using or developing composi-
tions within their specific Petri net variants or related models of concurrency, a
forum promoting cross-discussion and cross-fertilisation with the hope to enable
the emergence of novel models of Petri nets compositions, dedicated to various
application domains.

We would like to thank the authors of submitted papers for their interest in
CompoNet. We also thank the program committee members and the external
reviewers for their efficient work during the reviewing process. Last but not least,
we thank the authors of the EasyChair conference management system which
made the practical organisation of the reviewing process considerably easier.

June 2012
Hanna Klaudel and Franck Pommereau (PC chairs)

Program committee

Eike Best, Germany
Søren Christensen, Denmark
Raymond Devillers, Belgium
Alain Finkel, France
Ryszard Janicki, Canada
Hanna Klaudel, France (co-chair)
Jetty Kleijn, The Netherlands
Gerald Lüttgen, Germany

Daniel Moldt, Germany
Berndt Müller (Farwer),

United Kingdom
Laure Petrucci, France
Franck Pommereau, France (co-chair)
Wolfgang Reisig, Germany
Natalia Sidorova, The Netherlands
Karsten Wolf, Germany

External reviewers

Marcin Hewelt, Germany Jan Martijn van der Werf,
The Netherlands

85

86

Composition of Elementary Net Systems based
on α-morphisms

Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello

Dipartimento di Informatica, Sistemistica e Comunicazione,
DISCo - Università degli Studi di Milano-Bicocca

viale Sarca, 336, I-20126 Milano, Italia
mangioni@disco.unimib.it

Abstract. In the development of distributed systems a central role is
played by formal tools supporting various aspects of modularity such
as compositionality, refinement and abstraction. One of the main chal-
lenges consists in developing methods allowing to derive properties of
the composed system from properties of the components. In this context
we consider Elementary Net Systems related by morphisms and com-
pose them through an interface. Imposing structural constraints on the
components, we obtain some structural properties of the composed sys-
tem and, requiring additional local behavioural constaints, behavioural
properties.

Keywords: Elementary Net Systems, morphisms, composition

1 Introduction

In the development of distributed systems a central role is played by formal
tools supporting various aspects of modularity such as compositionality, refine-
ment and abstraction. Several formal approaches are available. One of the main
challenges consists in developing languages and methods allowing to derive prop-
erties of the refined or composed system from properties of the components.

In this paper we present a composition operator such that, by imposing on
the components structural constraints and only local behavioural constraints,
the composed system inherits behavioural properties of the components.

We consider systems modelled by State Machine Decomposable Elementary
Net Systems, i.e.: Elementary Net Systems obtained by composing state ma-
chines through synchronized events.

Following the approach proposed in [13, 1, 4, 5], the basic idea consists in
composing two different refinements of a common abstract view, obtaining a
new model which describes the system comprising the details of both operands,
while respecting the same abstract view.

The rules for identifying elements of the nets being composed are expressed
by means of morphisms towards another net system, called interface. The inter-
face can be seen as an abstraction of the whole system, shared by the components
or, alternatively, it can be interpreted as the specification of the communication

87

protocol with which the components agree. In this case, each operand can be
seen as made of the actual, local, component, and of an interface to the rest of
the system. Even if this operation is not a limit in the category of nets here con-
sidered, the composed system results to be related to both the components and
the interface by means of morphisms, and the resulting diagram is commutative.

The use of products in a suitable category of nets as a way to model com-
position by synchronization has been studied by several authors. A variation on
this theme, more similar to ours, proposed by Fabre in [8], applies to safe nets
and is built on the notion of pullback.

Fig. 1: An example of composition based on α-morphisms

Using morphisms to formalize the relation between a refined net and a more
abstract one is not new. The majority of refinement approaches introduced in
Petri net theory are mainly based on transition refinement and, less frequently,

88

on place refinement; see [9] and for a survey [6]. Another survey paper, [12],
describes a set of techniques which allow to refine transitions in Place/transition
nets, so that the relation between the abstract net and its refinement is given
by a morphism. There, the emphasis is on refinement rules that preserve specific
behavioural properties, within the wider context of general transformation rules
on nets.

A very general class of morphisms, interpreted as abstraction of system re-
quirements, with less focus on strict preservation of behavioural properties, is
defined in [7].

The refinement we use in this paper is similar in spirit to the one proposed
in [11]. In that approach, refinement is defined on transition systems, however
it is strictly related to refinement of local states in nets, through the notion of
region.

The morphisms used in this paper, called α-morphisms, can be seen as a
special case of those introduced by Winskel in [17]. Other morphisms in the
same line of Winskel morphisms, are the ones given in [16] and [2].

A simple example shows the main features of our proposal (see Fig. 1). The
interface, NI , is a simple sequence of two events. The two components, N1 and
N2, refine the same local state, b1, each by a subnet, shown on a gray background.
The composed net, N1�NI�N2, contains both refinements of b1, while the rest of
the net, not refined by the components, is taken as it is.

The paper is structured as follows. In Section 2 we collect preliminary defi-
nitions related to Petri nets which are used in the rest of the paper. Section 3
contains the definition of α-morphisms and their properties. Section 4 contains
the definition of �N -morphisms [13] and their properties. Section 5 defines the
composition guided by α-morphisms and the main result of the paper: under
some structural and local behavioural properties the composed net is bisimilar
to its components. Finally, in Section 6 we discuss some critical issues in our
approach. Proofs omitted in this paper can be found in an extended version [3].

2 Preliminary definitions

In this section, we recall the basic definitions of net theory, in particular Ele-
mentary Net Systems [15].

We will use the symbol ↓ to denote the restriction of a function on a subset
of its domain.

2.1 Petri Nets

In net theory, models of distributed systems are based on objects called nets
which specify local states, local transitions and the relations among them. A net
is a triple N = (B, E, F), where B is a set of conditions or local states, E is a
set of events or transitions such that B ∩ E = ∅ and F ⊆ (B × E) ∪ (E ×B) is
the flow relation.

89

We adopt the usual graphical notation: conditions are represented by circles,
events by boxes and the flow relation by arcs. The set of elements of a net will
be denoted by X = B ∪ E; note that we allow nets with isolated elements.

The preset of an element x ∈ X is •x = {y ∈ X|(y, x) ∈ F}; the postset of x
is x• = {y ∈ X|(x, y) ∈ F}; the neighbourhood of x is given by •x• = •x ∪ x•.
These notations are extended to subsets of elements in the usual way.

For any net N we denote the in-elements of N by �N = {x ∈ XN : •x = ∅}
and the out-elements of N by N� = {x ∈ XN : x• = ∅}.

A net is simple if for all x, y ∈ X, if •x = •y and x• = y•, then x = y.

A net N � = (B�, E�, F �) is a subnet of N = (B, E, F) if B� ⊆ B, E� ⊆ E, and
F � = F ∩ ((B�×E�)∪ (E�×B�)). Given a subset of elements A ⊆ X, we say that
N(A) is the subnet of N identified by A if N(A) = (B ∩A, E ∩A, F ∩ (A×A)).

A State Machine is a connected net such that each event e has exactly one
input condition and exactly one output condition: ∀e ∈ E, |•e| = |e•| = 1.

Elementary Net (EN) Systems are a basic system model in net theory. An
Elementary Net System is a quadruple N = (B, E, F, m0), where (B, E, F) is a
net such that B and E are finite sets, self-loops are not allowed, isolated elements
are not allowed, and the initial marking is m0 ⊆ B.

The elements in the initial marking are interpreted as the conditions which
are true in the initial state.

A subnet of an Elementary Net System N identified by a subset of conditions
A and all its pre and post events, N(A ∪ •A•), is a Sequential Component of
N if N(A ∪ •A•) is a State Machine and if it has only one token in the initial
marking.

An Elementary Net System is covered by Sequential Components if every
condition of the net belongs to at least a Sequential Component. In this case we
say that the system is State Machine Decomposable.

The behaviour of Elementary Net Systems is defined through the firing rule,
which specifies when an event can occur, and how event occurrences modify the
holding of conditions, i.e. the state of the system.

Let N = (B, E, F,m0) be an Elementary Net System, e ∈ E and m ⊆ B. The
event e is enabled at m, denoted m [e�, if •e ⊆ m and e•∩m = ∅; the occurrence
of e at m leads from m to m�, denoted m [e�m�, iff m� = (m \ •e) ∪ e•.

Let � denote the empty word in E∗. The firing rule is extended to sequences
of events by m [��m and ∀e ∈ E, ∀w ∈ E∗, m [ew�m� = m [e�m��[w�m�; w is then
called firing sequence.

A subset m ⊆ B is a reachable marking of N if there exists a w ∈ E∗ such
that m0 [w�m. The set of all reachable markings of N is denoted by [m0�.

An Elementary Net System is contact-free if ∀e ∈ E, ∀m ∈ [m0�: •e ⊆ m
implies e• ∩ m = ∅. If an Elementary Net System is covered by Sequential
Components then it is contact-free. An event is called dead at a marking m if it
is not enabled at any marking reachable from m. A reachable marking m is called
dead if no event is enabled at m. An Elementary Net System is deadlock-free if
no reachable marking is dead.

90

2.2 Unfoldings

The semantics of an Elementary Net System can be given as its unfolding. The
unfolding is an acyclic net, possibly infinite, which records the occurrences of its
elements in all possible executions.

Definition 1. Let N = (B, E, F) be a net, and let x, y ∈ X. We say that x and
y are in conflict, denoted by x #N y, if there exist two distinct events ex, ey ∈ E
such that exF ∗x, eyF ∗y, and •ex ∩ •ey �= ∅.

Definition 2. An occurrence net is a net N = (B, E, F) satisfying:

1. if e1, e2 ∈ E, e1
• ∩ e2

• �= ∅ then e1 = e2;
2. F ∗ is a partial order,
3. for any x ∈ X, {y : yF ∗x} is finite;
4. #N is irreflexive,
5. the minimal elements with respect to F ∗ are conditions.

A branching process of N is an occurrence net whose elements can be mapped
to the elements of N .

Definition 3. Let N = (B, E, F,m0) be an Elementary Net System, and Σ =
(P, T, G) be an occurrence net. Let π : P ∪ T → B ∪ E be a map.

The pair (Σ,π) is a branching process of N if:

– π(P) ⊆ B, π(T) ⊆ E;
– π restricted to the minimal elements of Σ is a bijection on m0;
– for each t ∈ T , π restricted to •t is injective and π restricted to t• is injective;
– for each t ∈ T , π(•t) = •(π(t)) and π(t•) = (•π(t)).

The unfolding of an Elementary Net System N , denoted by Unf (N), is the
“maximal” branching process of N , namely the unique branching process such
that any other branching process of N is isomorphic to a subnet of Unf (N). The
map associated to the unfolding will be denoted u and called folding.

3 A class of morphisms

In the rest of the paper, we consider the class of State Machine Decomposable
Elementary Net Systems (SMD-EN Systems).

In this section we give the formal definition of α-morphisms for this class of
systems, and present some of their properties, particularly with respect to the
preservation of both structural and behavioural properties, as formally intro-
duced in [4].

We start by giving the formal definition of a general morphism and then
present the more specific restrictions.

Definition 4. Let Ni = (Bi, Ei, Fi, m
i
0) be a SMD-EN System, for i = 1, 2. An

ω-morphism from N1 to N2 is a total surjective map ϕ : X1 → X2 such that:

91

1. ϕ(B1) = B2;
2. ϕ(m1

0) = m2
0;

3. ∀e1 ∈ E1, if ϕ(e1) ∈ E2, then ϕ(•e1) = •ϕ(e1) and ϕ(e1
•) = ϕ(e1)

•;
4. ∀e1 ∈ E1, if ϕ(e1) ∈ B2, then ϕ(•e1

•) = {ϕ(e1)};

We require that the map is total and surjective because N1 refines the ab-
stract model N2, and any abstract element must be related to its refinement.

In particular, a subset of nodes can be mapped on a single condition b2 ∈ B2,
in this case, we will call bubble the subnet identified by this subset N1(ϕ

−1(b2));
if more than one element is mapped on b2, we will say that b2 is refined by ϕ.
As example, we can see in Fig. 1 the refinement of condition b1 of NI with the
bubble enclosed in the shaded oval on N1.

The additional constraints listed in the next definition will be explained below
through simple examples.

Definition 5. Let Ni = (Bi, Ei, Fi, m
i
0) be a SMD-EN System, for i = 1, 2.

An α-morphism from N1 to N2 is an ω-morphism with the following additional
constraints:

5. ∀b2 ∈ B2:
(a) N1(ϕ

−1(b2)) is an acyclic net;
(b) ∀b1 ∈ �N1(ϕ

−1(b2)), ϕ(•b1) ⊆ •b2 and (•b2 �= ∅ ⇒ •b1 �= ∅);
(c) ∀b1 ∈ N1(ϕ

−1(b2))
�, ϕ(b1

•) = b2
•;

(d) ∀b1 ∈ ϕ−1(b2) ∩B1,
(b1 �∈ �N1(ϕ

−1(b2)) ⇒ ϕ(•b1) = {b2}) and (b1 �∈ N1(ϕ
−1(b2))

� ⇒
ϕ(b1

•) = {b2});
(e) ∀b1 ∈ ϕ−1(b2) ∩ B1, there is a Sequential Component NSC of N1 such

that b1 ∈ BSC and ϕ−1(•b2
•) ⊆ ESC .

(a) Pre events of an in-condition (b) Post events of an out-condition

Fig. 2: Pre and post event of a bubble

As we can see in Fig. 2a and 2b, in-conditions and out-conditions have dif-
ferent constraints, 5b and 5c respectively. As required by 5c, we do not allow
that choices, which are internal to a bubble, constrain a final marking of that
bubble: i.e., each out-condition of the bubble must have the same choices of the

92

condition it refines. Instead, pre-events do not need this strict constraint (5b):
hence it is sufficient that pre-events of any in-condition are mapped on a subset
of the pre-events of the condition it refines. For example, in this particular case,
we know that the choice between e1 and f1 of Figure 2a is made before the bub-
ble, and this is implied also by the requirement 5e) on Sequential Components.
Moreover, the conditions that are internal to a bubble must have pre-events and
post-events which are all mapped to the refined condition b2, as required by 5d.

By 5e, events in the neighbourhood of a bubble, as well as their images, can
not be concurrent. However, within a bubble there can be concurrent events. By
the combined effect of 5a-5e, in any execution, when a post-event of a bubble
fires, in the next marking no local state within the bubble will be marked.

The α-morphisms are closed by composition, the identity function on X is an
α-morphism, and the composition is associative. Hence, the family of SMD-EN
Systems together with α-morphisms forms a category.

We now list some properties of α-morphisms which have been proved in [4].
Given an α-morphism ϕ : N1 → N2 we can say that:

p1 the partition of the nodes of N1 induced by ϕ can be lifted to a net structure:
the class of nodes mapped to a place b becomes a place, while the class of
nodes mapped to an event e becomes an event; the flow relation is defined
in the obvious way. The resulting net is isomorphic to N2;

p2 firing an output event of a bubble empties the bubble: Let e1 ∈ E1, b2 ∈ B2:
e1 ∈ ϕ−1(b2

•); m1, m
�
1 ∈

�
m1

0

�
: m1 [e1�m�

1, then m�
1 ∩ ϕ−1(b2) = ∅;

p3 no input event of a bubble is enabled whenever a token is within the bubble:
Let e1 ∈ E1, b2 ∈ B2: e1 ∈ ϕ−1(•b2); m1, m

�
1 ∈

�
m1

0

�
: m1 [e1�m�

1 then
m1 ∩ ϕ−1(b2) = ∅;

p4 sequential components are reflected in the sense that the inverse image of a
sequential component is covered by sequential components. Sequential com-
ponents are not preserved;

p5 ϕ preserves reachable markings:
If m1 ∈

�
m1

0

�
and m1 [e�m�

1 in N1 then ϕ(m1) ∈
�
m2

0

�
and

– if ϕ(e) ∈ E2 then ϕ(m1) [ϕ(e)�ϕ(m�
1) else

– (if ϕ(e) ∈ B2 then) ϕ(m1) = ϕ(m�
1).

Stronger properties hold under additional constraints. Given an α-morphism
ϕ : N1 → N2, and a condition b2 ∈ B2 with its refinement N1(ϕ

−1(b2)), we define
two new SMD-EN Systems. The first one, denoted S1(b2), contains (a copy of)
the subnet N1(ϕ

−1(b2)), its pre and post events in E1 and two new conditions:
bin
1 , which is pre of all the pre events, and bout

1 , which is post of all the post-events.
The initial marking of S1(b2) will be {bin

1 } or, if there are no pre events, the initial
marking of the bubble in N1. The second system, denoted S2(b2), contains b2,
its pre- and post-events and two new conditions: bin

2 , which is pre of all the
pre-events, and bout

2 , which is post of all the post-events. The initial marking of
S2(b2) will be {bin

2 } or, if there are no pre events, the initial marking of b2. Define
ϕS as a map from S1(b2) to S2(b2), which restricts ϕ to the elements of S1(b2),
and extends it with ϕS(bin

1) = bin
2 and ϕS(bout

1) = bout
2 . Note that S1(b2) and

93

S2(b2) are SMD-EN Systems and that ϕS is an α-morphism. Let Unf (S1(b2))
be the unfolding of S1(b2), with folding function u : Unf (S1(b2))→ S1(b2).

Consider the following additional constraints:

c1 the initial marking of each bubble is at the start of the bubble itself; formally:
for each b2 ∈ B2 one of the following conditions hold
– ϕ−1(b2) ∩m1

0 = ∅ or
– if •b2 �= ∅ then there is e1 ∈ ϕ−1(•b2) such that ϕ−1(b2) ∩m1

0 = e1
• or

– if •b2 = ∅ then ϕ−1(b2) ∩m1
0 = �ϕ−1(b2);

c2 any condition is refined by a subnet such that, when a final marking is
reached, this one enables events which correspond to the post-events of the
refined condition, i.e.:
ϕS ◦ u is an α-morphism from Unf (S1(b2)) to S2(b2);

c3 different bubbles do not “interfere” with each other:
we say that two bubbles interfere with each other when their images share,
at least, a neighbour.

The first condition assures that the initial marking of a bubble, if present, is in
the initial conditions of the bubble and is generated by one of the pre-events, if
there are some of them. The second condition is necessary to give to each final
marking of a bubble the same choices that the abstract condition has. The third
one is not restrictive since the refinement of two interfering conditions can be
done in two different steps.

Under c1, c2, and c3, the following properties can be proved [4]:

p6 reachable markings of N2 are reflected:
for all m2 ∈

�
m2

0

�
, there is m1 ∈

�
m1

0

�
such that ϕ(m1) = m2;

p7 N1 and N2 are weakly bisimilar:
by using ϕ, define two labelling functions such that E2 are all observ-
able, i.e.: l2 is the identity function, and the invisible events of N1 are the
ones mapped to conditions; then (N1, l1) and (N2, l2) are weakly bisimilar
(N1, l1) ≈ (N2, l2).

For a definition of weak bisimulation of EN Systems see [14].

4 Relations with �N -morphisms

The ω and α-morphisms here defined are related to �N -morphisms, introduced
in [13] and studied in [5], that are a restriction of N -morphisms defined in [10].

Here, we are interested in pointing out the precise relation, because we will
apply to α-morphisms some results previously shown for �N -morphisms.

First, let us recall the definition of �N -morphisms.

Definition 6. Let Ni = (Bi, Ei, Fi, m0) be an EN system for i = 1, 2.

A �N -morphism from N1 to N2 is a pair (β, η), where:

1. β ⊆ B1 ×B2 and β−1 : B2 → B1 is a total and injective function;

94

2. η : E1 →∗ E2 is a partial and surjective function;
3. if η(e1) is undefined, then β(•e1) = ∅ = β(e1

•);
4. if η(e1) = e2, then β(•e1) = •e2 and β(e1

•) = e2
•;

5. ∀(b1, b2) ∈ β : [b1 ∈ m1
0 ⇔ b2 ∈ m2

0].

In order to compare ω- and α-morphisms with �N -morphisms, we need some
auxiliary notions. Given an ω-morphism ϕ from N1 to N2, we say that N1 is
canonical with respect to ϕ if, for each bubble induced by ϕ, it contains a local
state corresponding to the image of the bubble.

Definition 7. Let ϕ : X1 → X2 be an ω-morphism from N1 to N2. N1 is
canonical with respect to ϕ if for each b2 ∈ B2, there exists a unique b1 ∈
ϕ−1(b2) ∩B1 satisfying:

– b1 ∈ m1
0 ⇔ b2 ∈ m2

0;
– •b1 = ϕ−1(•b2);
– b1

• = ϕ−1(b2
•).

In this case, b1 is said to be the representation of b2, denoted rN1(b2). We de-
fine the subnet of a bubble, obtained by removing the representation: N−rep

1 (b2) =
N1(ϕ

−1(b2) \ {rN1
(b2)}).

If N1 is not canonical, it is always possible to construct its unique canonical
version, NC

1 , either by adding the missing representations (and marking them as
their images) or by deleting multiple representations. The corresponding mor-
phism, ϕC , coincides with ϕ, plus the mapping of new conditions on the corre-
sponding conditions of N2. It is easy to verify that the canonical version of a
system, with respect to an α-morphism to another SMD-EN System, is unique
up to isomorphisms.

We have proved in [4] that ϕC is an ω-morphism from NC
1 to N2. Here, we

need to prove that, if ϕ is an α-morphism, then ϕC is also an α-morphism, as
needed in Section 5.

Proposition 1. Let ϕ : N1 → N2 be an α-morphism, then ϕC is an α-morphism
from NC

1 to N2.

Given an ω-morphism from N1 to N2, take NC
1 , N2 and ϕC . Now, restrict ϕC

to all the nodes of NC
1 that are not in a bubble N−rep

1 (b2) for some b2 ∈ B2 and

call it (ϕC)rep: this is a �N -morphism.

Proposition 2. ((ϕC)rep ↓ BC
1 , (ϕC)rep ↓ EC

1) is a �N -morphism.

Every α-morphism is obviously an ω-morphism. Adding the representation
for each condition of N2 does not modify its behaviour, because of the con-
straint on sequential components. Hence, the results achieved here hold for α-
morphisms. In this sense, we consider them as a special case of �N -morphisms.

The converse is not true, as shown in Fig. 3, where an �N -morphism from N1

to N2 is given by identical names of elements; it is easy to see that there is no
α-morphism from N1 to N2, since there is no way to map b3 and b5.

95

Fig. 3: An example of �N -morphism which is not an α-morphism

�N -morphisms are suitable to drive an operation of composition of nets. Let
N1 and N2 be a pair of EN Systems, each one related to another EN System,
called interface NI , by �N -morphisms, (βi, ηi). We can see NI as the protocol
of the interaction between them. The morphisms are surjective so that each
system cannot ignore a part of the protocol. The composition of N1 and N2 on
the interface NI , denoted N = N1�NI�N2, is given by the union of the local
part of each system Ni and the common part corresponding to the protocol.
The composition induces �N -morphisms, (β�

i, η
�
i), from the composed system to

its components.
This composition has several properties, proved in [5], which will be used

later and which we informally resume here:

n1 if the components reflect the sequences of the interface, the composed net
reflects the sequences of the two components;

n2 if one component is weakly bisimilar to the interface, then the composed net
is weakly bisimilar to the other component.

In particular, n2 says that if a component is bisimilar to the interface, then
only the other component can add behavioural constraints to the composed
system.

5 Composition based on α-morphisms

In this section, we define a way of composing SMD-EN systems, in a similar way
as in [5], but based on α-morphisms.

The starting point is a set of three SMD-EN systems; one of them, NI , plays
the role of an interface between the other two, N1 and N2. A pair of α-morphisms,
one from N1 to NI , the other from N2 to NI , determine how the two components
refine the local states of the interface, and which events in the two components
have to synchronize.

The crucial point in the definition concerns the choice of synchronizing events.
Suppose that the morphisms onto the interface map bubbles A1 and A2 to the

96

same local state b (where Ai is taken in Ni). Then, the representations of A1 and
A2 are local states which are identified in composing the two nets. This implies
that any event in N1 which puts a token in the representation of A1 must be
synchronized with any event doing the same in the representation of A2. This
explains the definition of the sets Esync, below.

It is assumed that N1, N2 and NI are disjoint and that N1 and N2 are
canonical with respect to the corresponding morphisms.

Definition 8. Let Ni = (Bi, Ei, Fi, m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi.

We define N = N1�NI�N2 = (B, E, F, m0) such that

B =
�

bI∈BI

BBubble(bI) E =

� �

eI∈EI

Esync(eI)

�
∪
� �

bI∈BI

EBubble(bI)

�

F =
�

bI∈BI

�
F (bI) ∪ FBubble(bI)

�

Where:

Esync(eI) = {e = �e1, e2� : e1 ∈ E1, e2 ∈ E2,ϕ1(e1) = eI = ϕ2(e2)}

Let bI ∈ BI :

Bubble(bI) = ((BN−rep
1 (bI) ∪ {bI} ∪BN−rep

2 (bI)),

(EN−rep
1 (bI) ∪ EN−rep

2 (bI)),

(FN−rep
1 (bI) ∪ FN−rep

2 (bI)))

F (bI) = •F (bI) ∪ F •(bI)

Let e = �e1, e2� ∈
�

eI∈•bI
Esync(eI),

•F (bI) = {(e, b) : b ∈ �Bubble(bI), (e1, b) ∈ F1} ∪
{(e, bI)} ∪
{(e, b) : b ∈ �Bubble(bI), (e2, b) ∈ F2}

Let e = �e1, e2� ∈
�

eI∈bI
• Esync(eI),

F •(bI) = {(b, e) : b ∈ Bubble(bI)
�, (b, e1) ∈ F1} ∪

{(bI , e)} ∪
{(b, e) : b ∈ Bubble(bI)

�, (b, e2) ∈ F2}

97

Note that in order to simplify the notation, N1�NI�N2 does not refer to
the morphisms ϕi. By construction, N = N1�NI�N2 as defined above is an
EN System. Moreover, it is covered by sequential components. To see this, take
b ∈ B. If b ∈ BI , then b belongs to a sequential component in NI , and all
the conditions in this component are also in N , and these, together with their
neighbourhood, identify a sequential component in N . If b ∈ Bi, then b belongs
to a sequential component in Ni, and all the conditions in this component have
a corresponding condition in N . It is easy to check that these, together with
their neighbourhood, identify a sequential component in N .

We now define a map ϕ�
i from N onto Ni, and we will show in Theorem 1

that it is an α-morphism.

Definition 9. Define ϕ�
i as follows, for each x ∈ X:

ϕ�
i(x) =

x, if x ∈ Xi

rNi(x), if x ∈ BI

rNi(ϕ3−i(x)), if x ∈ B3−i

ei, if x = �e1, e2�
rNi

(ϕ3−i(x)), if x ∈ E3−i

Theorem 1. The map ϕ�
i is an α-morphism from N = N1�NI�N2 to Ni, i =

1, 2.

By construction we get the following result:

Proposition 3. The system N = N1�NI�N2 is canonical with respect to ϕ�
1 and

to ϕ�
2.

These results say that the composed system refines both the components,
as well as the interface. For each abstract condition there is a corresponding
condition in the composed system.

NI

N1

ϕ1

������������
N2

ϕ2

������������

N1�NI�N2

ϕ�
1

������������

ϕ�
2

������������

To show that the diagram above commutes, we prove that the operation
essentially coincides with the composition based on �N -morphisms. Since in that
case the diagram commutes, the same holds for α-morphisms.

The following proposition is the direct consequence of the definitions of com-
position.

98

Proposition 4. Let Ni = (Bi, Ei, Fi, m
i
0) be an SMD-EN System for i = 1, 2, I.

Let ϕi, with i = 1, 2, be an α-morphism from Ni to NI . Let Ni be canonical with
respect to ϕi. Let Nα = N1�NI�αN2 = (B, E, F, m0) be the composition of N1

and N2 using ϕ1 and ϕ2. Let ϕ�
i be the α-morphism from N to Ni created by the

composition operation.

Now, consider the �N -morphism ((ϕi)
rep ↓ Bi, (ϕi)

rep ↓ Ei). Let N
�N =

N1�NI� �NN2 = (B, E, F,m0) be the composition of N1 and N2 using ((ϕ1)
rep ↓

B1, (ϕ1)
rep ↓ E1) and ((ϕ2)

rep ↓ B2, (ϕ2)
rep ↓ E2). Let (β�

i, η
�
i) be the �N -

morphism from N to Ni created by the composition operation.

The systems Nα and N
�N are isomorphic, β�

i = (ϕ�
i)

rep ↓ Bi and η�i =
(ϕi)

rep ↓ Ei.

The diagram in Fig. 1 is an example of composition which is not a pull-
back diagram. It is still an open problem whether, in general, the diagram of a
composition operation is a pushout.

Fig. 4: An example of composition based on α-morphisms

99

From results in Section 3 and 4 we can derive a property valid for composition
based on α-morphisms. We know that, if N1 is weakly bisimilar to NI then N
is weakly bisimilar to N2. By p7 we can check weak bisimilarity between N1

and NI using c1, c2 and c3. These constraints are either structural or locally
behavioural, while, in the case of �N -morphisms, checking bisimilarity must be
made globally. Fig. 4 shows an example in which N1 and N2 are weakly bisimilar
to NI . Hence N1�NI�N2 is weakly bisimilar to N1, N2 and NI .

6 Conclusions

We have proposed a way to compose State Machine Decomposable EN Systems,
by identifying elements of the components. The identification is ruled by mor-
phisms from the components to a net, which can be seen as an interface or as a
common abstraction of the overall system.

We have proved that α-morphisms can be seen as a particular case of �N -
morphisms [5] and that, composing two systems using α-morphisms or using
�N -morphisms, we obtain isomorphic systems.

Here, we have looked at the properties of the composed net which can be
deduced from properties of the components. In particular, the constraints of α-
morphisms allow to check bisimilarity between a component and the interface by
using only structural and local behavioural constraints. By a property holding
also in the case of �N -morphisms, this can be lifted to bisimilarity between the
composed net and the components.

We plan to explore the extension of these ideas to P/T nets and to colored
nets that can be unfolded to State Machine Decomposable EN Systems.

Acknowledgments

Work partially supported by MIUR.

References

1. Marek A. Bednarczyk, Luca Bernardinello, Benôıt Caillaud, Wies�law Paw�lowski,
and Lucia Pomello. Modular system development with pullbacks. In Wil M. P.
van der Aalst and Eike Best, editors, ICATPN, volume 2679 of Lecture Notes in
Computer Science, pages 140–160. Springer, 2003.

2. Marek A. Bednarczyk and Andrzej M. Borzyszkowski. On concurrent realization
of reactive systems and their morphisms. In Hartmut Ehrig, Gabriel Juhás, Julia
Padberg, and Grzegorz Rozenberg, editors, Unifying Petri Nets, volume 2128 of
Lecture Notes in Computer Science, pages 346–379. Springer, 2001.

3. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Composition of el-
ementary net systems based on α-morphisms. Internal report (2012), available at
http://www.mc3.disco.unimib.it/pub/bmp2012-compo.pdf.

4. Luca Bernardinello, Elisabetta Mangioni, and Lucia Pomello. Local state refine-
ment on elementary net systems: an approach based on morphisms. In Proc.
Workshop PNSE 2012, Hamburg 2012.

100

5. Luca Bernardinello, Elena Monticelli, and Lucia Pomello. On preserving structural
and behavioural properties by composing net systems on interfaces. Fundam. In-
form., 80(1-3):31–47, 2007.

6. Wilfried Brauer, Robert Gold, and Walter Vogler. A survey of behaviour and
equivalence preserving refinements of Petri nets. Advances in Petri Nets 1990,
pages 1–46, 1991.

7. Jörg Desel and Agathe Merceron. Vicinity respecting homomorphisms for ab-
stracting system requirements. Transactions on Petri Nets and Other Models of
Concurrency, 4:1–20, 2010.

8. Eric Fabre. On the construction of pullbacks for safe Petri nets. In Susanna
Donatelli and P. S. Thiagarajan, editors, ICATPN, volume 4024 of Lecture Notes
in Computer Science, pages 166–180. Springer, 2006.

9. Claude Girault and Rüdiger Valk. Petri nets for systems engineering - a guide to
modeling, verification, and applications. Springer, 2003.

10. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theor. Comput. Sci., 96(1):3–33, 1992.

11. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems and refinement. Acta Inf., 29(6/7):555–578, 1992.

12. Julia Padberg and Milan Urbásek. Rule-based refinement of Petri nets: A survey. In
Hartmut Ehrig, Wolfgang Reisig, Grzegorz Rozenberg, and Herbert Weber, editors,
Petri Net Technology for Communication-Based Systems, volume 2472 of Lecture
Notes in Computer Science, pages 161–196. Springer, 2003.

13. Lucia Pomello and Luca Bernardinello. Formal tools for modular system develop-
ment. In Jordi Cortadella and Wolfgang Reisig, editors, ICATPN, volume 3099 of
Lecture Notes in Computer Science, pages 77–96. Springer, 2004.

14. Lucia Pomello, Grzegorz Rozenberg, and Carla Simone. A survey of equivalence
notions for net based systems. In Grzegorz Rozenberg, editor, Advances in Petri
Nets: The DEMON Project, volume 609 of Lecture Notes in Computer Science,
pages 410–472. Springer, 1992.

15. Grzegorz Rozenberg and Joost Engelfriet. Elementary net systems. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Petri Nets, volume 1491 of Lecture Notes
in Computer Science, pages 12–121. Springer, 1996.

16. Walter Vogler. Executions: A new partial-order semantics of Petri nets. Theor.
Comput. Sci., 91(2):205–238, 1991.

17. Glynn Winskel. Petri nets, algebras, morphisms, and compositionality. Inf. Com-
put., 72(3):197–238, 1987.

101

102

Deciding the Precongruence for Deadlock
Freedom Using Operating Guidelines

Richard Müller1,2 and Christian Stahl2

1 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
richard.mueller@informatik.hu-berlin.de

2 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

c.stahl@tue.nl

Abstract. In the context of asynchronously communicating and dead-
lock free services, the refinement relation of services has been formalized
by the accordance preorder. A service Impl accords with a service Spec
if every controller of Spec—that is, every environment that can inter-
act with service Spec without deadlocking—is a controller of Impl . The
procedure to decide accordance of two services uses that the set of con-
trollers of a finite-state service has a finite representation, called operating
guideline. Recently, it has been shown that the accordance preorder is
not a precongruence and thus the decision procedure based on operating
guidelines cannot be used. In this paper, we adapt the results on op-
erating guidelines to the precongruence setting : We define an operating
guideline that represents all controllers of a service w.r.t. the accordance
precongruence and show how this refinement relation of two services can
be decided based on their operating guidelines.

1 Introduction

Service-oriented computing (SOC) [6] aims at building complex systems by ag-
gregating less complex, independently-developed building blocks called services.
A service is an autonomous system that has an interface to interact with other
services via asynchronous message passing. Designing a system in such a way
allows for rapidly adjusting it to prevalent needs. Services sometimes need to be
replaced—for example, when new features have been implemented or bugs have
been fixed. This requires a notion of service refinement, which should, according
to the idea of SOC, respect compositionality : If a service Impl refines a service
Spec, then any environment that can correctly interact with Spec can also cor-
rectly interact with Impl . We refer to such an environment as a controller of
Impl and Spec, respectively. Compositionality is crucial, because organizations
usually do not know the services of other organizations involved in the system.

The absence of deadlocks is a commonly agreed minimal requirement for the
behavioral correctness of a service-oriented system. Stahl et al. [7] formalized
the replacement (or refinement) relation in the context of deadlock freedom
by the accordance preorder. The decision procedure uses that, for finite-state

103

services with bounded buffers, the set of controllers has a finite representation,
the operating guideline [4] of the service. The decision procedure in [7] has two
inherent characteristics: First, the interior of a service must be bounded when
considered in isolation. Second, it allows for two possibly different bounds: one
for the buffers and one for the interior of a service.

Recently, Stahl and Vogler [8] introduced a modified accordance relation
which differs from the original accordance relation in two ways: First, the mod-
ified accordance relation has been proven to be a precongruence w.r.t. service
composition; that is, it respects compositionality. Second, the modified accor-
dance relation is more uniform than the original accordance relation in [7]: Stahl
and Vogler [8] do not require the interior of a service to be bounded when con-
sidered in isolation and prescribe only one bound for the buffers and for the
interior of a service rather than possible different bounds as in [7].

t3a

p4

p5

t4

(a) Open net Spec

t3a

p4

(b) Open net Impl

t1 a

p1

p2

(c) Open net N1

t1 a

p1

p2

t2

p3

(d) Open net N2

Fig. 1. Open net Impl accords with open net Spec but not vice versa.

We illustrate the difference between the accordance relation in [7] and the
precongruence in [8] with an example: Figure 1 depicts four services modeled
as open nets. As shown in [8], open net Impl accords with open net Spec for a
bound b = 1 if we consider the precongruence, but Spec does not accord with
Impl . To see this, consider the open net N1 in Fig. 1(c) and compose N1 with
Spec and Impl by merging the common interface places a. The composition of
Impl and N1 has only one reachable marking, [p1, p2, p4], in which transition
t3 is continuously enabled. Thus, the composition is deadlock free and N1 is
a controller of Impl . Now consider the composition of Spec and N1. It has a
reachable marking where p2 contains two tokens. Thus, the composition is not
1-bounded and N1 is not a controller (for a bound of 1) of Spec. Similarly, open

104

net N2 in Fig. 1(d) is a controller of Impl but not a controller of Spec (for a
bound of 1), because p3 is unbounded in the composition of Spec and N2.

However, applying the decision procedure in [7] based on operating guidelines,
Spec and Impl are even accordance equivalent (assuming a single bound for the
interface and the interior); that is, every controller of Impl—like the open net
N1 or N2—is also a controller of Spec. The cause for this result is that [7] does
not consider N1 and N2, because their interiors are not 1-bounded.

So the example shows, if we assume a single bound for the interface and the
interior of a service, then the accordance precongruence implies accordance but
not the other way around. The reason is that the precongruence is more uniform
and considers a more general notion of a service. If we consider different bounds
for the interface and the interior of a service, then both refinement relations are
incomparable.

Stahl and Vogler [8] presented a procedure to decide the accordance pre-
congruence, but they also showed that the accordance precongruence cannot be
decided using the procedure in [7] based on operating guidelines without adap-
tation. In this paper, we present an operating guideline representing the set of
all controllers in the precongruence setting of [8] and show how this operating
guideline can be used to decide accordance of two services. Our motivation for
adapting the theory of operating guidelines from the setting of [7] to the setting
of [8] is twofold: First, we want to present the theory for deciding accordance
using operating guidelines such that the existing implementation in the tool
Cosme [5] can be reused and that the technique can also be applied in the pre-
congruence setting. Second, operating guidelines have proved their usefulness
also in other applications than deciding accordance, including service correction
[3], test case generation [1], and instance migration [2]. As the more general
notion of a controller is advantageous also for those applications, extending the
theory on operating guidelines is natural.

This paper is organized as follows: Section 2 introduces open nets, our formal
model for services, and gives some background information. Section 3 introduces
operating guidelines and adapts the matching technique to the modified accor-
dance relation. Section 4 decides the precongruence for deadlock freedom using
operating guidelines. We close with a discussion of related work and a conclusion
in Sect. 5.

2 Preliminaries

This section provides the basic notions, such as Petri nets, open nets for modeling
services, and open net environments for describing the behavior of open nets.

For two sets A and B, let A � B denote the disjoint union; writing A � B
expresses the implicit assumption that A and B are disjoint. Let IN denote the
non-negative integers, and let IN+ denote the positive integers. For a set A, let
P(A) denote the powerset of A, and let |A| denote the cardinality of A.

105

2.1 Petri Nets

As a basic model, we use place/transition Petri nets extended with a set of final
markings and transition labels.

Definition 1 (net). A net N = (P, T, F, mN ,Ω) consists of

– a finite set P of places,
– a finite set T of transitions such that P and T are disjoint,
– a flow relation F ⊆ (P × T) � (T × P),
– an initial marking mN , where a marking is a mapping m : P → IN, and
– a set Ω of final markings.

A labeled net N = (P, T, F, mN ,Ω,Σin ,Σout , l) is a net (P, T, F, mN ,Ω) to-
gether with an alphabet Σ = Σin �Σout of input actions Σin and output actions
Σout and a labeling function l : T → Σ � {τ}, where τ represents an invisible,
internal action.

In this paper, we only treat labeled nets where, for every transition t, the
label l(t) of t is either τ or t itself.

Introducing net N implicitly introduces its components P, T, F, mN ,Ω; the
same applies to nets N �, N1, etc. and their components P �, T �, F �, mN � ,Ω�, and
P1, T1, F1, mN1

,Ω1, respectively—and it also applies to other structures later on.
Graphically, a circle represents a place, a box represents a transition, and

the directed arcs between places and transitions represent the flow relation. A
marking is a distribution of tokens over the places. Graphically, a black dot
represents a token. Transition labels beside τ are written into the respective
boxes.

Let x ∈ P � T be a node of a net N . As usual, •x = {y | (y, x) ∈ F} denotes
the preset of x and x• = {y | (x, y) ∈ F} the postset of x. We canonically extend
the notion of a preset/postset to sets of nodes. We interpret presets and postsets
as multisets when used in operations also involving multisets. A marking is a
multiset over the set P of places; for example, [p1, 2p2] denotes a marking m
with m(p1) = 1, m(p2) = 2, and m(p) = 0 for p ∈ P \ {p1, p2}. For n ∈ IN, a
place p ∈ P and a set M of markings over P , M(p) = n denotes that for all
m ∈ M , m(p) = n. We define + and − for the sum and the difference of two
markings and =, <, >,≤,≥ for comparison of markings in the standard way. We
canonically extend the notion of a marking of N to supersets Q ⊇ P of places;
that is, for a mapping m : P → IN, we extend m to the marking m : Q → IN
such that for all p ∈ Q \ P , m(p) = 0. Analogously, a marking can be restricted
to a subset Q ⊆ P of the places of N .

The behavior of a net N relies on the marking of N and changing the marking
by the firing of transitions of N . A transition t ∈ T is enabled at a marking m,

denoted by m
t−→ , if for all p ∈ •t, m(p) > 0. If t is enabled at m, it can fire,

thereby changing the marking m to a marking m� = m− •t + t•. The firing of t

is denoted by m
t−→ m�; that is, t is enabled at m and firing it results in m�. The

behavior of N can be extended to sequences: m1
t1−−→ . . .

tk−1−−−→ mk is a run of

106

N if for all 0 < i < k, mi
ti−→ mi+1. A marking m� is reachable from a marking

m if there exists a (possibly empty) run m1
t1−−→ . . .

tk−1−−−→ mk with m = m1 and

m� = mk; for v = t1 . . . tk, we also write m1
v−→ mk. Marking m� is reachable if

mN = m. The set MN represents the set of all reachable markings of N .
In the case of labeled nets, we lift runs to traces: If m1

v−→ mk and w is
obtained from v by replacing each transition by its label and removing all τ
labels, we write m1

w
==⇒ mk and refer to w as a trace. As usual, ε denotes the

empty trace. The reachability graph RG(N) of net N has the reachable markings

MN as its nodes and a t-labeled edge from m to m� whenever m
t−→ m� in N . In

the case of a labeled net, each edge label t is replaced by l(t).
Finally, we introduce b-boundedness and deadlock freedom of nets. A marking

m of net N is b-bounded for a bound b ∈ IN+, if m(p) ≤ b for all p ∈ P . Net N is
b-bounded if every reachable marking is b-bounded. The set M b

N represents the
set of all reachable b-bounded markings of N . A reachable marking m /∈ Ω of N
is a deadlock if no transition t ∈ T of N is enabled at m. If N has no deadlock,
then it is deadlock free.

2.2 Open Nets and Open Net Behavior

Like Lohmann et al. [4] and Stahl et al. [7], we model services as open nets [9,4],
thereby restricting ourselves to the communication protocol of a service. In the
model, we abstract from data and identify each message by the label of its mes-
sage channel. An open net extends a net by an interface. An interface consists
of two disjoint sets of input and output places corresponding to asynchronous
input and output channels. In the initial marking and the final markings, inter-
face places are not marked. An input place has an empty preset, and an output
place has an empty postset.

Definition 2 (open net). An open net N is a tuple (P, T, F, mN ,Ω, I, O) with

– (P � I �O, T, F, mN ,Ω) is a net,
– for all p ∈ I �O, mN (p) = 0 and Ω(p) = 0,
– the set I of input places satisfies •I = ∅, and
– the set O of output places satisfies O• = ∅.

If I = O = ∅, then N is a closed net. Open net N is sequentially communicating
if each transition is connected to at most one interface place I � O. The inner
net inner(N) results from removing the interface places and their adjacent arcs
from N . Two open nets are interface equivalent if they have the same sets of
input and output places.

Graphically, we represent an open net like a net with a dashed frame around
it. The interface places are depicted on the frame. Later, we consider the be-
havior of an open net, which is basically its reachability graph. To simplify the
labeling of transitions connected to interface places, we only consider sequen-
tially communicating nets. That way, each transition is labeled by a single label

107

b

...

a

...

y

x

(a) Open net L

y

...

x

...

d

c

(b) Open net R

y

x

...

d

c

...

b

...

a

...

(c) Open net L⊕R

b

...

a

...

y

x tx

ty
ta

tb

x

y

a

b
(d) Labeled net env(L)

y

...

x

...

d

c tc

td
tx

ty

c

d

x

y
(e) Labeled net env(R)

Fig. 2. Schematic example of open nets, open net composition, and their environment.

rather by a set of labels. This restriction is not significant as every open net can
be transformed into an equivalent sequentially communicating open net [4].

For the composition of open nets, we assume that the sets of transitions are
pairwise disjoint and that no internal place of an open net is a place of any other
open net. In contrast, the interfaces intentionally overlap. We require that all
communication is bilateral and directed ; that is, every shared place p has only
one open net that sends into p and one open net that receives from p. We refer to
open nets that fulfill these properties as composable. We compose two composable
open nets N1 and N2 by merging shared interface places and turn these places
into internal places; see Fig. 2(a) and 2(b) for a schematic example of open nets
and their composition. The definition of composable thereby guarantees that an
open net composition is again an open net (possibly a closed net).

Definition 3 (open net composition). Open nets N1 and N2 are compos-
able if (P1 � T1 � I1 � O1) ∩ (P2 � T2 � I2 � O2) = (I1 ∩ O2) � (I2 ∩ O1).
The composition of two composable open nets N1 and N2 is the open net
N1 ⊕N2 = (P, T, F, mN ,Ω, I, O) where

– P = P1 � P2 � (I1 ∩O2) � (I2 ∩O1),
– T = T1 � T2,
– F = F1 � F2,
– mN = mN1

+ mN2
,

– I = (I1 � I2) \ (O1 �O2),
– O = (O1 �O2) \ (I1 � I2), and
– Ω = {m1 + m2 | m1 ∈ Ω1, m2 ∈ Ω2}.

To define the behavior of an open net N , we consider its environment env(N).
The net env(N) is a net that can be constructed from N by adding to each

108

interface place p ∈ I �O a p-labeled transition tp in env(N). The net env(N) is
just a tool to define our characterizations and prove our results. Intuitively, one
can understand the construction as translating the asynchronous interface of N
into a buffered synchronous interface (with unbounded buffers) described by the
transition labels of env(N).

Definition 4 (open net environment). The environment of an open net N
is the labeled net env(N) = (P � I �O, T � T �, F � F �, mN ,Ω, I, O, l) where

– T � = {tx | x ∈ I �O} is the set of interface transitions,
– F � = {(tx, x) | x ∈ I} � {(x, tx) | x ∈ O}, and

– l(t) =

�
τ, t ∈ T

x, tx ∈ T �.

We refer to a transition from T as internal transition. A marking m of env(N)
is stable if at most internal transitions of env(N) are enabled at m.

Figures 2(d) and 2(e) show the environments of the open nets L and R from
Fig. 2(a) and 2(b). A transition label is depicted inside a transition with bold
font to distinguish it from the transition’s identity.

The behavior of an open net N can now be defined by the reachability graph
RG(env(N)) of its environment. As we are interested in finite-state services, we
always define the behavior of an open net with regard to a bound b. As soon as b
is violated, we can stop the computation of the behavior in this state; however,
we keep this state to identify the bound violation.

Definition 5 (open net behavior). Let b ∈ IN+. The b-behavior behb(N) of
an open net N is the reachability graph of env(N) where we remove all outgoing
edges from every non-b-bounded node (thereby removing unreachable nodes and
edges too).

Clearly, the b-behavior of an open net N has at most (b+2)(|P |+|I|+|O|) states.
Figure 3 depicts the environment net of open net N2 and its behavior beh1(N2).

Recall that transitions t1 and t2 are labeled τ . Every leaf in beh1(N2) violates
the bound and has thus no successor.

We interpret behb(N) as a labeled automaton with input and output labels.

Definition 6 (automaton). An automaton A = (Q, E, qA,Σin ,Σout) consists
of

– a finite set Q of states,
– an edge relation E ⊆ Q×

�
Σin � Σout � {τ}

�
×Q,

– an initial node qA, and
– an alphabet Σ = Σin � Σout of input labels Σin and output labels Σout .

A is deterministic if no node has two outgoing edges with the same label.

We compare two automata with a simulation relation, thereby treating τ as
an ordinary action.

109

t1
a

p1

p2

t2

p3

ta
a

(a) Labeled net env(N2)

[p1]

[p1,a]

[p2] [p1,2a]

[p2,p3] [p2,a]

a

!

!

a

a

[p2,p3,a] [p2,2a]

[p2,2p3,a] [p2,p3,2a]

[p2,2p3] [p2,p3,a]

! a ! a

a!

[p2,2p3,a] [p2,p3,2a]

! a

(b) Behavior beh1(N2)

Fig. 3. Constructing the 1-behavior of open net N2.

Definition 7 (simulation relation). Let A and B be two automata with label
set Σ = Σin � Σout . Then � ⊆ QA ×QB is a simulation of A by B if

– (qA, qB) ∈ �, and

– for every (p, q) ∈ �, x ∈ Σ � {τ}, p� ∈ QA such that p
x−→ p� in A, there

exists q� ∈ QB such that q
x−→ q� in B and (p�, q�) ∈ �.

Simulation � is minimal if for every simulation �� of A by B, � ⊆ ��.

For all automata A and B where B is deterministic, the minimal simulation
relation of A by B is uniquely defined.

3 Operating Guidelines

In this section, we formally define the notion of a controller of an open net N
and present a finite representation of all controllers of N , the operating guideline
of N .

The composition of a service C with a service N shall be deadlock free; that
is, if the composition gets stuck, then it is in a final state. As we are interested in
finite-state services, the composition must be bounded. A service C guaranteeing
these two requirements can be seen as a controller of the service N .

Definition 8 (b-controller). Let b ∈ IN+. An open net C is a b-controller of
an open net N if the composition N ⊕ C is a closed net, deadlock free, and
b-bounded.

110

A b-operating guideline OGb(N) of a service N describes how another service
C should successfully communicate with N . Technically, it characterizes the pos-
sibly infinite set of b-controllers of N in a finite manner. Because a b-controller of
N provides suitable inputs for N and accepts its outputs, OGb(N) interchanges
the inputs and outputs of N . The structure of OGb(N) is an automaton where
a Boolean formula is attached to each state. The structure is the behavior of a
b-controller that exhibits the behavior of every b-controller of N ; the formula of
a state indicates which combinations of outgoing edges must be present in any
b-controller. Thus, a literal of such a Boolean formula is a transition label of N
or the literal final , specifying that N is in a final state. That way, we can employ
simulation for comparing the behavior of an open net with OGb(N) later on.

Definition 9 (annotated automaton). An annotated automaton (Q, E, qA,
Σin ,Σout ,φ) is an automaton (Q, E, qA,Σin ,Σout) whose nodes q ∈ Q are anno-
tated with a Boolean formula φ(q) over Σin � Σout � {final}.

To construct OGb(N), we calculate the b-behavior behb(N) of N and make
the automaton deterministic by constructing the powerset automaton. A state
of OGb(N) contains a set of markings of env(N); we refer to it as a node.
These markings can be reached by firing internal transitions of env(N). An edge
connects two nodes of OGb(N), thereby referring to an interface transition of
env(N) (i.e., the environment takes a token from an output place or produces a
token on an input place of N). A b-controller cannot know which marking m of
a node Q net env(N) might be in, but it has to avoid a deadlock and a bound
violation in any case; the formula φ(Q) describes how to do this. The literals of
φ are I �O� {final}. Recall that nonstable markings have an internal transition
enabled and, thus, are not deadlocks; all internal transitions remain in the same
node. As a consequence, φ(Q) is a conjunction indexed by all stable markings
m ∈ Q. Every conjunct is a disjunction of the following propositional atoms:
final if m is a final marking, x ∈ I if Q

x−→ (i.e., x does not lead to a bound
violation in any case), and x ∈ O if tx is enabled at m (i.e., if in marking m, net
N has already produced a message on output place x). Hence, the formulae are

in conjunctive normal form (CNF) without negation. Here, Q
x−→ means that

Q has an outgoing x-labeled edge.

Definition 10 (b-operating guideline). Let b ∈ IN+. The b-operating guide-
line of an open net N is the annotated automaton OGb(N) = (Q, E, Q0,Σin ,Σout ,φ),
where

– Q = P(M b
env(N)) is a set of nodes,

– E = {(Q, x, Q�) ∈ Q× I �O ×Q | Q� = {m� | ∃m ∈ Q : m
x

==⇒ m�}}
� {(Q, τ, Q) | Q ∈ Q} is a set of edges,

– Q0 = {m� | menv(N)
ε

=⇒ m�} ∩ P(M b
env(N)) is the initial node,

– Σin = O are the input labels,

– Σout = I are the output labels, and

111

– φ associates to each Q ∈ Q a Boolean formula with propositional atoms
taken from I �O � {final} such that

φ(Q) =
�

m:m∈Q∧m is stable

�
ψ1(m) ∨ ψ2(m)

�
with

ψ1(m) =
�

x:x∈I∧Q
x−→

x ∨
�

x:x∈O∧m
tx−−→

x

ψ2(m) =

�
final , if m ∈ Ωenv(N),

false, otherwise.

Clearly, OGb(N) is finite and deterministic by construction; if Q0 = ∅, then
the b-operating guideline of N does not exist. We refer to Q ∈ Q with Q = ∅ as
the empty node and denote it by Q∅. Intuitively, the empty node Q∅ refers to
markings which are unreachable in env(N).

We proceed with a short complexity analysis. Let b ∈ IN+ and N be an open
net. Let further x = |M b

env(N)| denote the cardinality of the set of reachable, b-

bounded markings of env(N), and let k = |I�O| denote the size of the interface.
The powerset construction may yield, in worst case, 2x nodes of OGb(N). The
formula φ(Q) of a node Q has at most x·(k+1) literals. As calculating the formula
of a node can be done during the construction, OGb(N) can be computed in time
and space proportional to O(2x · x · (k + 1)).

[p4]

a

!

!"#$

Q0

Q

(a) OG1(Impl)

[p4],
[p5,a]

[p5]

a

!

!"#$

!
a

Q0

Q

Q1

(b) OG1(Spec)

Fig. 4. Operating guidelines of open nets Impl and Spec. The annotation of all nodes
is true, which we omitted.

Figure 4 depicts the 1-operating guidelines for open nets Spec and Impl . All
nodes of OG1(Impl) and OG1(Spec) have the same annotation, true3, thus we
omitted them. For OG1(Impl), we have Q0 = {[p4]}. A 1-controller can receive

3 An annotation is a formula over I � O � {final}; true and false are also Boolean
formulae.

112

message a, but Impl will never send this message. Thus, there is an a-labeled
edge from Q0 to the empty node Q∅. In Q∅, every action can occur, because the
empty node refers to markings which are unreachable in env(Impl).

We determine if an open net C is a b-controller of an open net N by matching
its b-behavior behb(C) with the b-operating guideline OGb(N) of N . To this end,
we need to check whether C and N are composable, the behavior of C can be
mimicked by OGb(N) (by checking a simulation relation), and every state m of
behb(C) satisfies the Boolean formula in the corresponding node Q of OGb(N).
State m satisfies φ(Q) if either a correct combination of interface transition of
env(C) is enabled at m such that N ⊕ C remains b-bounded or m is a final
marking and env(N) is in a final marking, too (i.e., φ(Q) contains the literal
final).

Definition 11 (matching). Let b ∈ IN+ and let N and C be composable open
nets. Then behb(C) matches with OGb(N) if

1. The input (output) labels of behb(C) are the input (output) labels of OGb(N).
2. There exists a minimal simulation relation � of behb(C) by OGb(N) such

that
(a) if [m, Q] ∈ � with m not b-bounded in env(C), then Q = Q∅, and
(b) if [m, Q] ∈ � with m stable in env(C), then φ(Q) evaluates to true,

written m |= φ(Q), for the following assignment β:

– β(c) = true if c �= final and m
c−→ in behb(C),

– β(c) = true if c = final and m ∈ Ωenv(C), and
– β(c) = false, otherwise.

Consider again open net N2, which is a 1-controller of Impl . Automaton
beh1 (N2) in Fig. 3(b)) matches with OG1 (Impl) (Fig. 4(a)). The simulation
relation relates state [p1] with Q0 and all other states of beh1 (N2) with Q∅. The
annotations trivially evaluate to true. Open net N2 is not a 1-controller of Spec
and beh1 (N2) does not match with OG1 (Spec): The simulation relation relates
state [p2, 2p3] with node Q1, thereby violating item 2(a) of Def. 11.

With the next theorem, we show that the b-operating guideline of an open
net N characterizes the set of b-controllers of N .

Theorem 12 (b-controllability vs. matching). Let b ∈ IN+. For composable
open nets N and C, C is a b-controller of N iff behb(C) matches with OGb(N).

Proof. (⇒): Let C be a b-controller of N . Then item (1) of Def. 11 holds because
C and N are composable and N ⊕ C is a closed net.

Suppose a simulation relation � of behb(C) by OGb(N) does not exist. Then

there exists (m, Q) ∈ � and m
x−→ in behb(C) but Q � x−→ in OGb(N) by Def. 7.

By Def. 10, Q
x−→ Q� and there exists a marking of env(N) in Q� that violates

bound b and, therefore, Q� has been removed from OGb(N). As the respective
trace to Q� is also a trace in behb(C), there is a corresponding marking in MN⊕C

that violates the bound, and we have a contradiction to our assumption. Thus,
� exists, and � is even minimal as OGb(N) is deterministic by Def. 10.

113

To show item (2a) of Def. 11, assume (m, Q) ∈ �, with m is not b-bounded,

and Q �= Q∅. There exists v ∈ (I �O)∗ with menv(C)
v

=⇒ m in env(C) by Def. 5

and menv(N)
v

=⇒ m� in env(N) by Def. 10. As a consequence, we find a corre-
sponding marking in MN⊕C that is not b-bounded; thus, we have a contradiction
to our assumption and conclude Q = Q∅.

To show item (2b) of Def. 11, let (m, Q) ∈ � such that m is stable in env(C).
We show for each m� ∈ Q with m� is stable in env(N) that m |= ψ1(m

�)∨ψ2(m
�).

If m + m� ∈ ΩN⊕C , then m ∈ Ωenv(C) and ψ2(m
�) = final , thus m |= ψ2(m

�) by
Def. 11. Assume m+m� /∈ ΩN⊕C . Then C can either produce a token on a place
i ∈ IN or consume a token from a place o ∈ ON , because N ⊕ C is deadlock

free by assumption. In the former case, we have m
i−→ in behb(C), and Q

i−→ as
N ⊕ C is b-bounded. Thus, m |= ψ1(m

�) by Def. 11. In the latter case, we have

m
o−→ in behb(C), and m� to

−−→ . Thus, m |= ψ1(m
�) by Def. 11.

(⇐): Let � be a minimal simulation of behb(C) by OGb(N). We have to show
that N ⊕ C is a closed net, deadlock free, and b-bounded.

N ⊕ C is a closed net because of item (1) in Def. 11. Next, we show that
N ⊕ C is b-bounded. Let m (m�) be a marking of C (N) such that m + m� is
a reachable marking of N ⊕ C that violates the bound. Let v denote the trace
of env(C) that corresponds to the run from mC to m. As � exists, v is also a
trace in OGb(N) and so it is in env(N). By the construction of OGb(N), the
corresponding markings in env(N) do not violate the bound, so it suffices to
assume that m violates the bound in env(C). Then, (m, Q) ∈ � with Q = Q∅
by assumption. However, this implies that m + m� is not reachable in MN⊕C ,
which is a contradiction to our assumption. Thus, N ⊕ C is b-bounded.

Finally, we show that N ⊕ C is deadlock free. Let m (m�) be a marking of
C (N) such that m + m� is a reachable marking of N ⊕ C. Marking m is also a
state in behb(C). From the existence of � we conclude that there exists a node Q
of OGb(N) with (m, Q) ∈ �. Further, we have m� ∈ Q; otherwise, N ⊕ C is not
b-bounded. Assume m is stable in env(C) and m� is stable in env(N); otherwise,
m + m� is no deadlock of N ⊕ C by Def. 4. Then m |= ψ1(m

�) ∨ ψ2(m
�) by

assumption. If m |= ψ1(m
�), then there exists x ∈ (I�O) with m

x−→ in behb(C)
by Def. 11. The corresponding transition is also enabled in N ⊕C; thus, m+m�

is no deadlock. If m |= ψ2(m
�), then m ∈ Ωenv(C) by Def. 11 and m� ∈ Ωenv(N)

by Def. 10. Thus, m + m� ∈ ΩN⊕C by Def. 3 and m + m� is no deadlock of
N ⊕ C. ��

The minimal simulation relation of behb(C) by OGb(N) can be computed in
time and space proportional to O(|behb(C)|·|OGb(N)|). Together with the anno-
tation check, matching behb(C) with OGb(N) has a complexity of O(|behb(C)| ·
|OGb(N)| · 2k+1), whereas k = |I � O| denotes the size of the interface. Conse-
quently, checking whether an open net is a b-controller is decidable.

Theorem 13 (decidability of b-controllability). Checking whether an open
net is a b-controller of another open net= is decidable for every b ∈ IN+.

114

4 Accordance

An algorithm to decide accordance for two open nets Spec and Impl must decide
whether every controller of Spec is also a controller of Impl . As an open net has
potentially infinitely many controllers, we must check inclusion of two infinite
sets. Because the set of all controllers of an open net can be represented in a
finite manner using the operating guideline, we may use the operating guidelines
of Spec and Impl to decide that Impl accords with Spec.

The b-accordance relation has been defined by Stahl and Vogler [8] and they
showed that it is a precongruence for composition operator ⊕ and therefore
supports compositional reasoning.

Definition 14 (b-accordance). Let b ∈ IN+. For interface equivalent open
nets Impl and Spec, Impl b-accords with Spec, denoted by Impl �b

acc Spec, if for
all open nets C hold: C is a b-controller of Spec implies C is a b-controller of
Impl .

We show that deciding accordance of Impl and Spec reduces to checking that
the operating guideline of Spec simulates the operating guideline of Impl and
that the corresponding formulae of related states imply each other.

Definition 15 (b-refinement). Let b ∈ IN+. For interface equivalent open nets
Impl and Spec, OGb(Impl) b-refines OGb(Spec), denoted by OGb(Impl) �b

ref

OGb(Spec), if there exists a minimal simulation � of OGb(Spec) by OGb(Impl)
such that for each pair of nodes (Q, Q�) ∈ �:

1. Q = Q∅ implies Q� = Q∅
�, and

2. the formula φOGb(Spec)(Q)⇒ φOGb(Impl)(Q
�) is a tautology.

The first item is crucial; otherwise, we could have a b-controller of Spec that
is not a b-controller of Impl because it violates the bound only in the composition
with Impl (the respective state is not reachable in the composition with Spec).

Consider Fig. 4. OG1(Impl) 1-refines OG1(Spec), but OG1(Spec) does not 1-
refine OG1(Impl): Node Q∅ of OG1(Impl) is related with node Q1 of OG1(Spec),
thereby violating item (1) of Def. 15.

The next theorem justifies that refinement of operating guidelines and accor-
dance coincide.

Theorem 16 (b-accordance vs. b-refinement). Let b ∈ IN+. For inter-
face equivalent open nets Impl and Spec, Impl �b

acc Spec iff OGb(Impl) �b
ref

OGb(Spec).

Proof. Let OGb(Spec) = (Q, E, Q0,Σin ,Σout ,φ) and OGb(Impl) = (Q�, E�, Q�
0,

Σin ,Σout ,φ
�) be the operating guidelines of open nets Spec and Impl , respec-

tively.
(⇒): Let Impl �b

acc Spec. Consider an open net C whose behavior behb(C) is
isomorph to the underlying automaton of OGb(Spec) and that has a final state
if literal final occurs in the annotation of the respective node. Clearly, C is a

115

b-controller of Spec and of Impl . Thus, by Definition 11, there exists a minimal
simulation relation of behb(C) by OGb(Impl), and hence there is a minimal
simulation relation � of OGb(Spec) by OGb(Impl).

Let Q ∈ Q, and let β be an arbitrary assignment to literals occurring in
φ(Q) with β evaluates φ(Q) to true. Remove from the underlying automaton
of OGb(Spec) and node Q all outgoing, x-labeled edges where β(Q)(x) is false.
By Definition 11, the corresponding automaton still matches with Spec and thus
with Impl . Let Q� ∈ Q� with (Q, Q�) ∈ �. Using Definition 11 again, we can
see that β satisfies φ�(Q�) as well. Thus, φ(Q) ⇒ φ�(Q�) is a tautology, for all
(Q, Q�) ∈ �.

Assume now that Q = Q∅. A b-controller C of Spec could be in a marking
m that violates bound b, and m is related with Q∅. By assumption, C is a b-
controller of Impl and hence we conclude that for all Q� ∈ Q�, (Q∅, Q�) in the
simulation relation of OGb(Spec) by OGb(Impl) implies Q� = Q∅

� (as otherwise
Impl ⊕ C is not b-bounded).

(⇐): Let OGb(Impl) �b
ref OGb(Spec) and C be a b-controller of Spec. We

have to show that C is b-controller of Impl , too.
By Definition 11, there exists a minimal simulation relation �behb(C),OGb(Spec)

of behb(C) by OGb(Spec) and, by assumption, we also have a minimal simula-
tion relation �OGb(Spec),OGb(Impl) of OGb(Spec) by OGb(Impl). As simulation is
transitive we conclude that �behb(C),OGb(Impl) is a simulation relation of behb(C)
by OGb(Impl). Relation �behb(C),OGb(Impl) is even a minimal simulation relation,
because the underlying automata of OGb(Spec) and OGb(Impl) are deterministic
by construction.

By assumption, behb(C) matches with OGb(Spec); that is, for all markings m
with (m, Q) ∈ �behb(C),OGb(Spec) and m is stable in env(C), m satisfies φ(Q). In
addition, we know φ(Q)⇒ φ�(Q�), for all (Q, Q�) ∈ �OGb(Spec),OGb(Impl). Hence,
m satisfies φ(Q�), for all (m, Q�) ∈ �behb(C),OGb(Impl).

Suppose there exists a marking m of C that is not b-bounded. Then, by Defi-
nition 11, for all Q ∈ Q, (m, Q) ∈ �behb(C),OGb(Spec) implies Q = Q∅. By assump-
tion, for each pair of nodes (Q, Q�) ∈ �OGb(Spec),OGb(Impl), Q = Q∅ implies Q� =
Q∅

�; thus, we conclude (m, Q�) ∈ �behb(C),OGb(Impl) implies Q� = Q∅
�. ��

We proceed with a short complexity analysis. Let b ∈ IN+, and let Impl
and Spec be interface equivalent open nets. A minimal simulation relation of
OGb(Impl) by OGb(Spec) can be computed in time and space proportional to
O(|OGb(Impl)| · |OGb(Spec)|). Let k = |I � O| denote the size of the interface.
Then, checking whether Impl b-refines Spec has a complexity of O(|OGb(Impl)| ·
|OGb(Spec)| · 2k+1). So checking b-accordance is decidable.

Theorem 17 (decidability of b-accordance). Checking b-accordance of two
open nets is decidable for every b ∈ IN+.

5 Conclusion

We have investigated the accordance precongruence of services. A service Impl
accords with a service Spec if every controller of Spec (i.e., every service that

116

deadlock freely communicates with Spec) is also a controller of Impl . We have
presented a novel way to decide accordance. To this end, we used the notion
of an operating guideline [4], which represents all controllers of a service in a
finite manner. We have adapted the procedure of checking whether a service is a
controller of an a given service and is, thus, contained in the operating guideline.
In addition, we have also adapted the procedure for deciding accordance [7] for
two services Spec and Impl based on their operating guidelines.

In contrast to [4], we considered controllers with unbounded interior. This
caused the adaptation of the techniques introduced in [4,7], because we need to
distinguish whether a controller can potentially violate the bound in the com-
position or not. The definition of matching (see Def. 11) extends the respective
definition in [4] by item 2(a), where we require that states, in which the con-
troller violates the bound, are not reachable in the composition. Similar, item
(1) in the definition of operating guideline refinement (see Def. 15) extends the
respective definition in [7]. Also here, we assign a more prominent role to the
empty node: The new accordance check has to distinguish whether an input is
enabled in the empty node or in another true annotated node—that is, whether
the input is enabled in a reachable state or not.

In ongoing work, we aim to study efficient procedures to decide accordance
for stricter termination criteria than deadlock freedom, including responsiveness
[10] (i.e., controllers either terminate or have the possibility to communicate)
and weak termination (i.e., the service has always the possibility to terminate).

References

1. Kaschner, K.: Conformance testing for asynchronously communicating services. In:
ICSOC 2011. LNCS, vol. 7084, pp. 108–124. Springer (2011)

2. Liske, N., Lohmann, N., Stahl, C., Wolf, K.: Another approach to service instance
migration. In: ICSOC 2009. pp. 607–621. LNCS 5900, Springer-Verlag (2009)

3. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: BPM 2008. pp. 132–147. LNCS 5240, Springer-Verlag
(2008)

4. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: ICATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer (2007)

5. Lohmann, N., Wolf, K.: Compact representations and efficient algorithms for op-
erating guidelines. Fundam. Inform. 107, 1–19 (2011)

6. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson (2007)
7. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with

operating guidelines. In: ToPNoC II. pp. 172–191. LNCS 5460, Springer (2009)
8. Stahl, C., Vogler, W.: A trace-based service semantics guaranteeing deadlock free-

dom. Acta Informatica 49(2), 69–103 (2012)
9. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets,

LNCS, vol. 625. Springer (1992)
10. Vogler, W., Stahl, C., Müller, R.: A trace-based semantics for responsiveness. In:

ACSD 2012. IEEE Computer Society (2012), to appear

117

118

Compositional analysis of modular Petri nets
using hierarchical state space abstraction

Yves-Stan Le Cornec

IBISC, University of Évry, 23 bd de France, 91037 Évry, France
yves-stan.lecornec@ibisc.univ-evry.fr

Abstract. We propose an approach to perform efficient model-checking
of µ-calculus formulae on modular Petri nets. Given a formula ϕ, each
module can be analysed separately, possibly yielding a conclusion about
the truth value of ϕ on the global system. When no conclusion can be
drawn locally, a minimal state space preserving ϕ is computed for the
module and can be incrementally composed with others, thus enabling
for hierarchical analysis of a modular Petri net in a bottom-up fashion.

1 Introduction

State space explosion is a well known problem when dealing with model-checking
of large systems. One way to address this problem in the context of Petri nets
is modularity : a large Petri net is decomposed into subsystems which are then
synchronised on shared places or transitions [2]. When only transitions are shared
across sub-systems, like in [6], one way to alleviate state space explosion is to
build a modular state space that consists of the state space of its subsystems (i.e.,
its modules) and a synchronisation graph of them. This is usually a much smaller
object than the state space of the full Petri net (i.e., with all modules combined).

In this paper, we propose another way to analyse modular Petri nets when
the goal is to model-check properties expressed as modal µ-calculus formulae,
i.e., to verify whether the state space of a modular Petri net is a model for
a given formula ϕ. Our approach allows to analyse modules independently of
each other. When the formula depends only on one module, only this particular
module needs to be analysed. When the formula depends on several modules,
each can be processed separately and its state space minimised before being
combined with the others, i.e., we compute a smaller transition system that is
equivalent to the initial one with respect to the formula ϕ. This minimisation
is an extension to the modal µ-calculus of the approach defined in [1] for CTL.
Furthermore, our approach is fully compositional: on the one hand, the seman-
tics of any composition of modules is equivalent to the synchronised product
of the individual semantics of each module; on the other hand, minimisation of
the semantics preserves the truth value of ϕ. So, a system composed of several
modules can be decomposed into an arbitrary hierarchy forming a tree in which
each leaf is a module and each internal node corresponds to the composition of
the modules below it. Analysis can be performed by traversing this tree bottom-
up in such a way that, at each node, we consider a particular subsystem whose

119

semantics can be computed and analysed so that, either we can raise some global
conclusion about the truth of ϕ, or we can minimise the semantics (which will
be reused at the upper level) while preserving the truth of ϕ. This approach
leaves a lot of room to define strategies to choose an optimal order of analysis of
modules in order to minimise the amount of work necessary to bring the conclu-
sion. The current paper concentrates on defining the analysis method, this kind
of optimisations being left to future work.

The rest of the paper is organised as follows. In the next section, we recall
main definitions about modular Petri nets and define the semantics in terms of
labelled transition systems. Next, we define the modal µ-calculus logic and its
semantics. Section 4 forms the core of our contribution, defining the formula-
dependent abstraction and giving the main results that enable hierarchical anal-
ysis and abstraction. For readability, proofs are moved in the appendix, after a
conclusion section with perspectives.

2 Modular Petri nets

In the following, we consider place/transitions nets for simplicity, but a general-
isation to high-level Petri nets (in particular to coloured Petri nets) is straight-
forward because our work is based on the labelled transitions systems used for
the Petri nets semantics. To start with, let us recall the definition of Petri nets
to fix the notations.

Definition 1. A Petri net N
df
= (P, T, W) is a tuple such that:

– P is the finite set of places;
– T is the finite set of transitions, such that P ∩ T = ∅;
– W is a multiset over (P × T) ∪ (T × P) defining the arcs weights;

For t ∈ T , we denote by •t (resp., t•) the multiset over P such that for all
s ∈ P , •t(s)

df
= W (s, t) (resp., t•(s)

df
= W (t, s)).

A marking M of N is a multiset over P indicating how many tokens each
place holds. A transition t is enabled at marking M iff •t ≤ M , in which case
the firing of t yields a new marking M � df

= M − •t + t•. This is denoted by
M [t�M �, moreover, we denote by [M� the smallest set containing M such that
if M � ∈ [M� and M � [t�M �� then M �� ∈ [M�. We assume that [M� is finite.

Our definition of modular Petri nets is adapted from [6]. We use here non-
disjoint sets of transitions instead of explicit transitions fusion sets to define
the transitions shared across modules. This especially means that we would
have to make copies of a transition in order to model a choice between different
synchronizations.

Definition 2. A modular Petri net is a collection of modules (N1, . . . Nn) where
each Ni is a Petri net (Pi, Ti, Wi), and such that the Pi’s are pairwise disjoint.
Transitions that belong to only one Ti are called local while those shared among
at least two Ti’s are called fused. Such a modular net is equivalent to a flat Petri

120

net obtained as the component-wise union of its modules. Because this union is
commutative and associative, we shall use a binary notation for it: N1⊕· · ·⊕Nn.

Example 1. Figure 1 shows two modules which are part of a modular Petri net.
Transition f3 is assumed to be fused with another module not shown here. �

•a

b

c

d

e

f

gl1

l2 f1

f2

l3

l5

l4

• •

h i
j k

l

f2 f1

f3

Fig. 1. Two modules part of a modular Petri net.

The semantics of Petri nets and modular Petri nets can be defined in terms
of labelled transitions systems (LTS).

2.1 LTS semantics of Petri nets and modular Petri nets

A LTS is a tuple S
df
= (Q, q0, A, R, L) where Q is a set of states, q0 ∈ Q is the

initial state, A is the set of actions used as transition labels, R ⊆ Q × A × Q
is the set of transitions and L is a labelling of states with Boolean formulae on
propositional variables from a set V. A transition (q, a, q�) ∈ R is usually denoted
by q

a−−−−−−−−→ q�.

Definition 3. The LTS semantics of a Petri net N
df
= (P, T, W) initially marked

by M0 is the LTS �N� df
= (Q, q0, A, R, L) such that: Q

df
= [M0�; q0

df
= M0; A

df
= T ;

R
df
= {M

t−−−−−−−−→M � | M [t�M �}; and L(M)
df
=

�
M(p)>0 p=M(p) with V df

= {p=k|p ∈
P, k ∈ N+}.

In this definition, states are labelled by a conjunction of propositional vari-
ables of the form s=k denoting the number of tokens in each non void place.
This choice is arbitrary and can be changed in many ways, this will not affect
the current work as long as we are able to evaluate atomic formulae. In order to
bring modularity at the semantics level, we shall partition A as Aloc�Afus corre-
sponding respectively to the local and fused transitions of a modular Petri net.

Example 2. Figure 2 shows the LTS semantics of the modules from example 1.�

Definition 4. The modular LTS semantics of a modular Petri net (Ni)1≤i≤n,
where Ni

df
= (Pi, Ti, Wi) for all i, is a collection of LTS (Qi, q0i, Ai, Ri, Li)1≤i≤n

where each Ai is partitioned as Aloc
i �Afus

i such that, for 1 ≤ i ≤ n:

– (Qi, q0i, Ai, Ri, Li) = �Ni� is the LTS semantics of Ni considered alone;
– Aloc

i
df
= Ri \ �

j �=i Rj and Afus
i

df
= Ai \ Aloc

i .

121

a 1

b2 b ∧ c 3

c ∧ d ∧ e 7

c ∧ d ∧ f

8

c ∧ d ∧ g 9

d ∧ e 4

d ∧ f5

d ∧ g 6

e10

f

11

g

12

f1
f2

l3

l4

l5

l3

l4

l5

l3

l4

l5

l2 l1

f1

l 4

h ∧ i 1

j2 h ∧ k 3

f2 f1

f3

Fig. 2. LTS semantics of the modules from figure 1. For the left LTS, we have Aloc df
=

{l1, l2, l3, l4} and Afus df
= {f1, f2}; for the right LTS we have Aloc df

= ∅ and Afus df
=

{f1, f2, f3}. As there is at most one token per place, we write a instead of a = 1.

The collection of LTS obtained from a modular Petri net can be transformed
into a single LTS by taking the synchronised product of its components, where
synchronisation takes place on the fused transitions, which is the usual definition
of a n-ary synchronised product. We denote by x[i] the i-th component of a tuple
x and by x[i ← yi] the tuple x in which the i-th component has been replaced
by yi, this latter notation is naturally extended to the replacement of several
components.

Definition 5. Let (Si)1≤i≤n be the LTS semantics of a modular Petri net with
Si

df
= (Qi, q0i, Ai, Ri, Li) and Ai

df
= Aloc

i � Afus
i , the synchronised product of the

Si’s, is the LTS (Q, q0, A, R, L) defined by:

– Q
df
=

�
1≤i≤n Qi;

– q0
df
= (q01, . . . , q0n);

– A
df
=

�
1≤i≤n Ai;

– R is the smallest subset of Q×A×Q such that x
a−−−−−−−−→ y ∈ R iff either

• it exists i such that a ∈ Aloc
i , x[i]

a−−−−−−−−→ yi ∈ Ri and y = x[i← yi],
• or, for all i such that a ∈ Afus

i , we have x[i]
a−−−−−−−−→ yi ∈ Ri and y = x[i←

yi].
– for all x ∈ Q, L(x)

df
=

�
1≤i≤n Li(x[i]).

Because this product is associative and commutative, we shall also use a binary
notation for it: S1 ⊗ · · ·⊗ Sn.

In the definition of R above, the first point corresponds to the cases where a
module evolves on a local transition. So only one component of the compound
state evolves. The second point corresponds to the firing of a fused transition,
in which case all the modules sharing this transition must simultaneously fire
and the corresponding components of the compound state will simultaneously
evolve. Notice that, by definition of a fused transition, if a ∈ Afus

i for some i,

122

then there exists at least one j �= i such that a ∈ Afus
j also (otherwise, we would

have a ∈ Aloc
i).

From the definitions above, it immediately follows that the synchronised
product of the LTS semantics of a modular Petri net is equivalent to the LTS
semantics of the flat Petri net.

Theorem 1. Let (Ni)1≤i≤n be a modular Petri net. We have

�N1 ⊕ · · ·⊕Nn� ∼ �N1�⊗ · · ·⊗ �Nn�

where ∼ denotes the isomorphism of LTS. ��

Because of this, we can define the notation �N1, . . . , Nn� df
= �N1�⊗ · · ·⊗�Nn�.

These notations are intended to put into light a first level of compositionality.
For example, consider a modular Petri net (N1, . . . , N5). It is possible to see it
as, e.g., three subsystems (N1, N2), (N3, N4) and N5 and to compute �N1, N2�⊗
�N3, N4�⊗ �N5�, just like if we would have considered (N1⊕N2, N3⊕N4, N5) as
the initial system, which is also equivalent to (N1⊕N2)⊕(N3⊕N4)⊕(N5). So we
can decompose a modular Petri net into a hierarchy and compute the semantics
at any level of this hierarchy. This is the first step towards full compositionality;
the next step will be to introduce LTS minimisation with respect to a µ-calculus
formula in order to be able to apply minimisation hierarchically.

3 The modal µ-calculus

The modal µ-calculus (or simply µ-calculus) is a temporal logic that encom-
passes widely used logics such as, in particular, CTL* (and thus also LTL and
CTL) [5]. A µ-formula is derived from the following grammar, where B is a
Boolean formula, X is a propositional variable and α is a set of actions:

ϕ ::= B | ¬ϕ | ϕ ∨ ϕ | �α�ϕ | µX.ϕ | X

Moreover, in a formula µX.ϕ, ϕ must be positive in the variable X, i.e., every
free occurrence of X must be in the scope of an even number of negations ¬.

A formula ϕ is evaluated over a LTS S
df
= (Q, A, R, L) and can be seen as a

function of its free variables to 2Q. In particular, if ϕ is a closed formula then it
is a function with no arguments that returns the subset of Q where ϕ holds. In
formula µX.�a�X ∨ B, the sub-formula �a�X ∨ B defines a function that, given
X ⊆ Q, returns the states y such that either y

a−−−−−−−−→ x for some x ∈ X, or B
holds on y. From this point of view, µX.ϕ is the least fixed point of function ϕ.
More generally, the semantics ϕN of ϕ over S is defined as follows:

– B holds in every state whose label implies B: BS df
= {x ∈ Q | L(x)⇒ B};

– ϕ1 ∨ ϕ2 holds in every state where ϕ1 or ϕ2 holds: (ϕ1 ∨ ϕ2)
S df

= ϕS
1 ∪ ϕS

2 ;
– ¬ϕ holds in every state where ϕ does not: (¬ϕ)S df

= Q \ ϕS ;
– �α�ϕ holds in every state where a transition labelled by a ∈ α leads to a

state where ϕ holds: (�α�ϕ)S df
= {x ∈ Q | ∃y ∈ ϕS , ∃a ∈ α, x

a−−−−−−−−→ y ∈ R};

123

– µX.ϕ is the least fixed point of function ϕ: (µX.ϕ)S df
=

�
ρ∈2Q∧ϕ(ρ)⊆ρ ρ;

– XS df
= X, can be seen as the identity function.

For closed formulae, ϕS is a subset of Q, which can be equivalently seen as the
image of a function with no arguments. But for formulae with free variables, ϕS is
a function exactly like ϕ is and the above definition can be read as transformation
of functions. For instance, for a ϕ with a single free variable X, the definition of
(¬ϕ)S can be reformulated as (¬ϕ)S(X)

df
= Q\ϕS(X). Note that, to simplify the

definitions in the sequel, we have considered α as a set of actions in �α� instead
of as a single action as more usual. Moreover, because the semantics of a formula
is a set of states, we may use one or the other form interchangeably.

The effective construction of µX.ϕ is made inductively by defining 0X.ϕ
df
= ∅,

and nX.ϕ
df
= ϕ[X ← (n − 1)X.ϕ] where ϕ[X ← Y] denotes ϕ in which variable

X is substituted by Y everywhere. Knaster-Tarski’s theorem ensures that there
exists k ∈ N such that kX.ϕ = µX.ϕ. Indeed, ϕ is a monotonous function over a
complete lattice, and thus the set of its fixed-points is also a complete lattice [8].

Example 3. Let us consider the LTS from the left of figure 2 and the formula
µX.(�A�X ∨ d) (which means that the module can reach a state where place d
is marked). We can compute the least fixed-point of ϕ df

= �A�X ∨ d as follows:

– 0X.ϕ
df
= ∅

– 1X.ϕ
df
= ϕ(0X.ϕ) = (�A�X)(∅) ∪ d() = ∅ ∪ {4, 5, 6, 7, 8, 9}

– 2X.ϕ
df
= (�A�X)(1X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = {2, 3, 4, 5, 6, 7, 8, 9}

– 3X.ϕ
df
= (�A�X)(2X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = {1, 2, 3, 4, 5, 6, 7, 8, 9}

– 4X.ϕ
df
= (�A�X)(3X.ϕ) ∪ {4, 5, 6, 7, 8, 9} = 3X.ϕ �

To write formulae more comfortably, we can use the following operators:

– ϕ1 ∧ ϕ2
df
= ¬(¬ϕ1 ∨ ¬ϕ2);

– [α]ϕ
df
= ¬�α�¬ϕ, which yields ([α]ϕ)S df

= {x ∈ Q | ∀y ∈ ϕS , x
a−−−−−−−−→ y ∈ T};

– νX.ϕ
df
= ¬µX.¬ϕ[X ← ¬X] is the greatest fixed-point of ϕ.

Finally, for q ∈ Q, we write S, q |= ϕ iff q ∈ ϕS , and S |= ϕ iff S, q0 |= ϕ.

4 Formula-dependent abstraction

In this section, we introduce an operation �S�ϕ that, given the LTS S of a module
and a formula ϕ, returns a LTS, (usually) smaller that S without changing the
truth of ϕ, neither over S, nor over the global system (i.e., S synchronised
with the LTS of the other modules). To do so, we define an equivalence relation
(initially between states of a same LTS, then extended to LTS), denoted by ∼ϕ,
that preserves the truth value of ϕ on the global system and is a congruence
with respect to synchronised product ⊗.

Let S = (q0, Q, A, R, L) with A
df
= Aloc �Afus be the LTS of a module, q ∈ Q

a state, and ϕ a formula. Let also Ex be the actions appearing in ϕ but not in
A, which corresponds to the context of S, i.e., the other modules. To start with,

124

we define the set Passϕ such that if q ∈ Passϕ then ϕ is necessarily true on any
bigger system in which S is a module in state q. Similarly, we define Failϕ such
that if q ∈ Failϕ then ϕ is necessarily false on any bigger system encompassing
S in state q. We shall write Passϕ(S) or Failϕ(S) when the LTS of interest needs
to be precised. We say that formula ϕ can be evaluated on a state q belonging
to S if q ∈ Passϕ ∪ Failϕ, which is denoted by ϕ ? |=S, q. This means that we can
conclude about the truth of ϕ in state q independently of the context in which
S may be embedded as a module. Similarly, ϕ can be evaluated on S if it can
be evaluated it on its initial state, which is denoted by ϕ ? |=S.

The definition below is made with respect to a context Σ that is a map from
the free variables of a formula to sets of states (when needed, Σ may be seen
as a set of pairs). For a formula ϕ that contains free variables X1, . . . , Xn that
do not appear in the environment Σ, PassΣ,ϕ is the function (x1, . . . , xn) �→
PassΣ∪{(Xi,xi)|1≤i≤n},ϕ.

Definition 6. Let ϕ be a formula and S
df
= (q0, Q, A, R, L) with A

df
= Aloc �Afus

be a LTS. We set Passϕ
df
= Pass∅,ϕ and Failϕ

df
= Fail∅,ϕ, where Pass∅,ϕ and Fail∅,ϕ

are functions defined inductively on the syntax of ϕ:

– PassΣ,X df
= Σ(X);

– PassΣ,B df
= {x ∈ Q | L(x)⇒ B};

– PassΣ,¬ϕ df
= FailΣ,ϕ;

– PassΣ,ϕ1∨ϕ2 df
= PassΣ,ϕ1 ∪ PassΣ,ϕ2 ;

– PassΣ,�α�ϕ df
= (�α ∩Aloc�X)(PassΣ,ϕ);

– PassΣ,µX.ϕ df
= µX.Passϕ.

– FailΣ,X df
= Σ(X);

– FailΣ,B df
= PassΣ,¬B;

– FailΣ,¬ϕ df
= PassΣ,ϕ;

– FailΣ,ϕ1∨ϕ2 df
= FailΣ,ϕ1 ∩ FailΣ,ϕ2 ;

– FailΣ,�α�ϕ df
= ([α \ Ex]X)(FailΣ,ϕ) ∩ F , where F

df
= Q if A ∩ Ex = ∅ and

F
df
= FailΣ,ϕ otherwise;

– FailΣ,µX.ϕ df
= νX.FailΣ,ϕ.

Together with Passϕ and Failϕ, we aim to define ∼ϕ as a relation between
the states such that if x ∼ϕ y, then, in a larger system embedding S, formula
ϕ does not allow to distinguish the states embedding x or y. (Thus it will be
possible to reduce S by merging these two states.) In order to compute relation
∼ϕ we define FΣ,ϕ and build Fϕ

df
= F∅,ϕ.

The computation of F∅,ϕ described in definition 7, yields a triple (p, f, r)
such that at the end of computation, p = Passϕ,f = Failϕ and r

df
=∼ϕ (this is

not necessarily the case at every step). The rules used to build F∅,ϕ, as shown
in exemple 4, operate on elements from Q × Q × Q2. As in the definitions of
Pass and Fail, if ϕ contains free variables X1, . . . , Xn which do not appear in the
environment Σ, then FΣ,ϕ is the function (x1, . . . , xn) �→ FΣ∪{(Xi,xi)|1≤i≤n},ϕ.
However unlike in the previous definition, environment Σ now takes values from
Q×Q×Q2. We also define Σp and Σf as the projections of Σ on its first and
second components, i.e., the smallest environments such that if (X, (p, f, r)) ∈ Σ,
then (X, p) ∈ Σp and (X, f) ∈ Σf .

125

Definition 7. Let ϕ be a formula and S
df
= (Q, A, R, L) with A

df
= Aloc �Afus be

a LTS. FΣ,ϕ is defined recursively on the syntax of ϕ as follows:

1. FΣ,B df
= (PassΣ,B , FailΣ,B , {(x, y) | (L(x)⇒ B)⇔ (L(y)⇒ B)}).

2. FΣ,¬ϕ1
df
= FΣ,¬(FΣ,ϕ1)

with FΣ,¬(p, f, r)
df
= (f, p, r).

3. FΣ,ϕ1∨ϕ2
df
= FΣ,∨(FΣ,ϕ1 , FΣ,ϕ2)

with FΣ,∨((p1, f1, r1), (f2, p2, r2))
df
= (p1 ∪ p2, f1 ∩ f2, r1 ∩ r2).

4. FΣ,�α�ϕ1
df
= FΣ,�α�(FΣ,ϕ1)

with FΣ,�α�(p, f, r)
df
= (PassΣ

p,�α�X(p), FailΣ
f ,�α�X(f), r�) where (x, y) ∈ r� iff

(x, y) ∈ r and either
(a) x ∈ PassΣ

p,�α�X(p) and y ∈ PassΣ
p,�α�X(p),

(b) or, x ∈ FailΣ
f ,�α�X(f) and y ∈ FailΣ

f ,�α�X(f),
(c) or, we have

i. for every a ∈ α ∩ Afus, if x
a−−−−−−−−→ x� ∈ R and x� /∈ f then it exists

y
a−−−−−−−−→ y� ∈ R such that (x�, y�) ∈ r,

ii. and, for every a ∈ α∩Afus, if y
a−−−−−−−−→ y� ∈ R and y� /∈ f then it exists

x
a−−−−−−−−→ x� ∈ R such that (x�, y�) ∈ r,

iii. and, for every a ∈ α∩Aloc, if x
a−−−−−−−−→ x� ∈ R and x� /∈ f then it exists

y
a�
−−−−−−−−→ y� ∈ R such that a� ∈ α ∩Aloc and (x�, y�) ∈ r,

iv. and, for every a ∈ α∩Aloc, if y
a−−−−−−−−→ y� ∈ R and x� /∈ f then it exists

x
a�
−−−−−−−−→ x� ∈ R such that a� ∈ α ∩Aloc and (x�, y�) ∈ r.

5. FΣ,X df
= Σ(X).

6. FΣ,µX.ϕ1 is the fixed-point reached by iterating function FΣ,ϕ1 starting from
(PassΣ

p,µX.ϕ1 ,FailΣ
f ,µX.ϕ1 , r0) with (x, y) ∈ r0 iff either

(a) x ∈ PassΣ
p,µX.ϕ1 and y ∈ PassΣ

p,µX.ϕ1 ,
(b) or x ∈ FailΣ

f ,µX.ϕ1 and y ∈ FailΣ
f ,µX.ϕ1 ,

(c) or x, y ∈ Q \ (FailΣ
f ,µX.ϕ1 ∪ PassΣ

p,µX.ϕ1).

With regard to ∼ϕ, this definition can be intuitively understood as follows:

1. The labels of two equivalent states must be identical with respect to the
atomic formulae which appear in B.

2. The relations corresponding to a formula and to its negation are the same.
3. Two equivalent states must be equivalent on both sub-formulae.
4. When ϕ involves the next states through �α�, two equivalent states x and y

must be equivalent w.r.t. the sub-formula and either
(a) both x and y ensure that ϕ globally holds,
(b) or, both x and y ensure that ϕ does not hold globally,
(c) or,

i. if from x we can reach x� through a fused transition, then this must
be possible from y through the same action, reaching a state y� equiv-
alent to x�.Note that we only have to consider the x� which are not
in the Fail set of the sub-formula,

ii. and the same thing symmetrically for y.

126

iii. moreover, if from x we can reach x� (which does not belong to the
Fail set of the sub-formula) through a local action, then this must be
possible from y through the same or another local action from the
set α, reaching a state y� equivalent to x�,

iv. and the same thing symmetrically for y.
5. The value of X is fetched from the environment (by construction, we are

always have every free variable in the environment).
6. Function FΣ,ϕ1 is repeatedly applied starting from the greatest relation

for which PassΣ,µX.ϕ1 and FailΣ,µX.ϕ1 are equivalence classes. Each iter-
ation (which is a composition of the previous rules) will then differenti-
ate some states until we reach a fixed-point. This necessarily occurs be-
cause, for any relation r, we have FΣ,ϕ1(PassΣ

p,µX.ϕ1 , FailΣ
p,µX.ϕ1 , r) =

(PassΣ
p,µX.ϕ1 , FailΣ

p,µX.ϕ1 , r�) with r� ⊆ r. So we always eventually reach
a fixed-point when applying FΣ,ϕ1 repeatedly while computing FΣ,µX.ϕ1 .

Definition 8. Let ϕ be a closed formula, ∼ϕ is defined as the third component
returned by Fϕ.

Example 4. Let ϕ df
= B1 ∨ �α�B2 for some Boolean formulae B1 and B2. As

defined above, we can compute

FB1∨�α�B2 = F∅,∨(F∅,B1 , F∅,�α�(F∅,B2)) = (Passϕ, Failϕ,∼ϕ) �
The next lemma states that we have indeed defined an equivalence relation.

This equivalence is defined within the context of a single LTS, this can be gen-
eralised to compare two LTS.

Lemma 1. Relation ∼ϕ as defined above is indeed an equivalence relation.

Definition 9. Let ϕ be a formula, and S1 and S2 be two LTS whose initial states
are q0,1 and q0,2 respectively. S1 is equivalent to S2 w.r.t. ϕ, which is denoted by
S1 ∼ϕ S2, iff q0,1 ∼ϕ q0,2 in S defined as the component-wise disjoint union of
S1 and S2.

Using relation ∼ϕ we define the reduction of a LTS by merging its equivalent
states, which is done by considering the quotient set of Q by ∼ϕ.

Definition 10. Let S
df
= (Q, q0, A, R, L) be a LTS with A

df
= Aloc � Afus, and

ϕ be a formula. The reduction of S w.r.t. ϕ, denoted by �S�ϕ, is the LTS
(Q�, q�0, A

�, R�, L�) such that:

– Q� df
= Q/∼ϕ is the quotient set of Q by ∼ϕ;

– q�0
df
= [q0]ϕ is the equivalence class containing q0;

– A� is exactly A and is partitioned the same way;
– R� df

= {(c1, a, c2) ∈ Q� ×A� ×Q� | ∃q1 ∈ c1, ∃q2 ∈ c2, (q1, a, q2) ∈ R};
– L�(c)

df
=

�
q∈[c]ϕ

L(q).

We now introduce several properties of the definitions above, progressively
leading to our main compositionality result. First, we state that Pass and Fail
effectively allow to locally conclude about the global truth value of a formula.

127

Lemma 2. Let S
df
= S1 ⊗ · · · ⊗ Sn be a product LTS and x

df
= (x1, . . . , xn) one

of its states.

1. If xi ∈ Passϕ(Si) for some 1 ≤ i ≤ n, then x ∈ Passϕ(S).
2. If xi ∈ Failϕ(Si) for some 1 ≤ i ≤ n, then x ∈ Failϕ(S).

Then, we state that ∼ϕ correctly captures the states that are equivalent
w.r.t. the capability to evaluate locally the global truth of ϕ. Moreover, it also
preserves the truth value of ϕ.

Theorem 2. Let S be a LTS, ϕ a formula, and x and y two states of S such
that x ∼ϕ y. If ϕ ? |=S, x, then ϕ

? |=S, y and S, x |= ϕ⇔ S, y |= ϕ.

Corollary 1. Let ϕ be a formula, and S1 and S2 two LTS such that S1 ∼ϕ S2.
If ϕ ? |=S1 then ϕ

? |=S2 and S1 |= ϕ⇔ S2 |= ϕ.

Moreover, the reduction w.r.t ϕ yields a LTS that is equivalent to the original
one. Then, we state the consistency of reduction �S�ϕ w.r.t. the synchronised
product, which allows to extend the previous lemma to compound LTS. Finally,
this reduction is a congruence for the product of LTS, which means that we can
replace any LTS of a product by the corresponding reduced LTS while preserving
the equivalence relation.

Lemma 3. Let S be a LTS and ϕ a formula, we have: S ∼ϕ �S�ϕ.

Theorem 3. Let S
df
= S1 ⊗ · · · ⊗ Sn be a product LTS, x

df
= (x1, . . . , xn) and

y
df
= (y1, . . . , yn) two of its states, and ϕ a formula. If xi ∼ϕ yi for all 1 ≤ i ≤ n

then x ∼ϕ y.

Corollary 2. S1 ⊗ · · ·⊗ Sn ∼ϕ �S1�ϕ ⊗ · · ·⊗ �Sn�ϕ
Combining these results with theorem 1, we can perform modular analysis with
hierarchical reductions. Indeed, given a formula ϕ and a modular Petri net
(N1, . . . , Nn), let us define �Ni�ϕ

df
= ��Ni��ϕ, we have:

�N1 ⊕ · · ·⊕Nn� ∼ �N1�⊗ · · ·⊗ �Nn� ∼ϕ �N1�ϕ ⊗ · · ·⊗ �Nn�ϕ
Furthermore, lemma 2 tells us that we can stop building the system as soon as
we find a sub-system on which the formula can be evaluated, i.e., as soon as
ϕ

? |=�Ni�ϕ for some i, because the truth value of that formula over the global
system will be the same as over this sub-system. Finally, because modules can
be freely associated and commuted, we can conduct the analysis hierarchically,
reducing at each level and possibly stopping before the whole system semantics
is constructed.

Example 5. Let us consider again the example 2 (and figure 2) and check that
we can reach a state where the property h ∧ d is true, that is expressed in µ-
calculus as µX.(�A�X∨ (h∧d)). Remember that we assumed there exists a third
module synchronised over f3. We will see that in this case, analysing the first
two modules is sufficient to prove the property.

128

¬d 1

¬d 2

d3 ¬d 4

l1, l2

f1 f2

l3, l4, l5 l3, l4, l5

h

1

¬h2 h 3

f2 f1

f3

¬d, h 1

¬d ∧ h 2

d ∧ h3 ¬d ∧ ¬h 4

l1, l2

f1 f2

l3, l4, l5 l3, l4, l5, f3

Fig. 3. Left and middle: the semantics of modules from Example 1 reduced w.r.t.
µX.(�A�X ∨ (h ∧ d)). For clarity, only labels involving d and h have been displayed,
a label such as ¬x denotes a real label where x is not involved and thus implies ¬x.
Right: the synchronised product of the two LTS on the left.

We begin by reducing the first LTS w.r.t. the formula. We are in case 6 of def-
inition 7, PassµX.(�A�X∨(h∧d)) = ∅ (we can never conclude without knowing the
value of h which is and external variable) and FailµX.(�A�X∨(h∧d)) = {10, 11, 12}
(we know that from these states we can only access states where d is false). We
now apply function F�A�X∨(h∧d) repeatedly starting from:

– (p0, f0, r0)
df
= (∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}) where r0

is given as the set of its equivalence classes instead of as a set of pairs, which
is more compact;

– F�A�X(p0, f0, r0) = (∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2, 3}, {4, 5, 6, 7, 8, 9}})
and Fh∧d df

= (∅, {10, 11, 12}, {{10, 11, 12}, {1, 2, 3, 4, 5, 6, 7, 8, 9}}) so we have
(p1, f1, r1)

df
= F�A�X∨(h∧d)(p0, f0, r0) = (∅, {10, 11, 12}, {{10, 11, 12}, {1}, {2,

3}, {4, 5, 6, 7, 8, 9}})
– (p2, f2, r2)

df
= F�A�X∨(h∧d)(p1, f1, r1) = (p1, f1, r1) (We have reached the

fixed-point so we can use r1 to build the reduced LTS from figure 3)

Doing the same with the second LTS, we get the reduced LTS depicted in
figure 3. Their product is depicted on the right of the same figure. To compose
this product with the rest of the system, we shall first try to minimise it. Doing
so, we also compute PassµX.�A�X∨(h∧d), obtaining set {1, 2, 3} that contains the
initial state of the graph. Therefore we know that the formula is true over the
global system and we can stop the analysis. �

5 Conclusion

We have shown that it is possible to define the semantics of a modular Petri
net as a hierarchical composition of the semantics of its modules taken in any
order. At each step, a subset of modules is considered, and its semantics can be
computed and analysed with respect to a modal µ-calculus formula ϕ. Possibly,
this allows to draw a conclusion about the truth value of ϕ on the whole system
without the need to consider the rest of the system. If no conclusion can be

129

drawn at this step, a minimised semantics can be computed for the subset of
modules at hand, and reused for the sequel of the hierarchical analysis.

In [4], the authors define the decomposition of a Petri net according to a
formula and the verification of this formula in a compositional way. Moreover,
[3] makes use of the modular description of a system to reduce it hierarchically.
The main difference with our work is that they both consider abstractions that
preserve every formula from LTL\X in which chosen actions appear. Our ap-
proach only preserves one formula from the µ − calculus so, on the one hand,
we can express more properties, and on the other hand, targeting a particu-
lar formula let us expects better reductions. But, as a consequence, we have to
recompute the abstraction for each new formula. However more thoroughgoing
comparisons remain to be done. In [7], the author considers the incremental
construction of Petri nets through refinements (of transitions, places and place
types), also allowing for incremental state space construction. Properties may
be verified at an intermediary step avoiding to construct the fully refined state
space. However, these properties are not expressed as logic formulae but are
classical Petri net properties (deadlock, home state, etc.).

Future work will address the question of finding a good order for conducting
such a hierarchical analysis, in order to minimise the computational effort needed
to obtain a result. In particular, it is not clear if we should start by combining
strongly connected modules with the aim of obtaining good reductions at the
beginning, or if we should instead prefer the modules the most involved in the
formula of interest. Another prospect is to find the best form for the formula we
want to verify, in order too increase the efficiency of the reduction. Since we re-
quire equivalent states to be equivalent on every sub-formula, if we can minimize
the number of sub-formulae then we are likely to compute a better reduction.
For instance formula �a�true ∨ �b�true is equivalent to �a, b�true. However if one
state only has one outgoing transition labelled by a, and another state only has
one outgoing transition labelled by b, they will be equivalent w.r.t. the second
formula but not w.r.t. the first one.

So we believe that the current paper defines a framework that is suitable to
perform hierarchical analysis, but also that it is the starting point of a lot more
work to find suitable strategies for efficient analysis.

References

1. A. Aziz, T. Shiple, V. Singhal, R. Brayton, and A. Sangiovanni-Vincentelli. Formula-
dependent equivalence for compositional ctl model checking. Formal Methods in
System Design, 21(2):193–224, 2002.

2. S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer
Journal, 43(3):224–242, 2000.

3. K. Klai and L. Petrucci. Modular construction of the symbolic observation graph. In
Application of Concurrency to System Design, 2008. ACSD 2008. 8th International
Conference on, pages 88–97. IEEE, 2008.

4. K. Klai, L. Petrucci, and M. Reniers. An incremental and modular technique for
checking ltl\ x properties of petri nets. Formal Techniques for Networked and Dis-
tributed Systems–FORTE 2007, pages 280–295, 2007.

130

5. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, 1983.

6. C. Lakos and L. Petrucci. Modular analysis of systems composed of semiautonomous
subsystems. In proc. of ACSD’04. IEEE Computer Society Press, 2004.

7. G. Lewis. Incremental specification and analysis in the context of coloured Petri
nets. PhD thesis, University of Tasmania, 2002.

8. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific journal
of Mathematics, 5(2):285–309, 1955.

A Proof of theorem 2

Theorem 2 can be rewritten using the property P defined, for any (p, f, r) ∈
2Q × 2Q × 2Q×Q, by P(p, f, r) holds iff (r \ (Q \ p)2 ⊆ p2 and r \ (Q \ f)2 ⊆ f2).

We want to prove that for any formula ϕ, we have P(Fϕ). Let us show that
this property is true for every base case and that it is preserved by the rules
used for building Fϕ.
Case FΣ,B. Take (x, y) in ∼B . We know that L(x)⇒ B ⇔ L(y)⇒ B . Then,

– if x (wlog) belongs to PassΣ
p,B then L(x)⇒ B is true, and so is L(y)⇒ B

which means that y is in PassΣ
p,B .

– if x belongs to FailΣ
f ,B then L(x) ⇒ B is false, and so is L(y) ⇒ B which

means that y is in FailΣ
f ,B .

Case FΣ,¬. Take (p, f, r) such that P(f, p, r). We then have P(FΣ,¬(p, f, r))
because FΣ,¬(p, f, r) = (f, p, r).

Case FΣ,∨. Take (p1, f1, r1) and (p2, f2, r2) such that P(p1, f1, r1) and P(p2,
f2, r2). We have FΣ,∨((p1, f1, r1), (p2, f2, r2)) = (p1 ∪ p2, f1 ∩ f2, r1 ∩ r2).

– for the first case we have (r1∩r2)\(Q\(p1∪p2))
2 = (r1∩r2)\((Q\p1)

2∩(Q\
p2)

2) = (r1∩r2)\(Q\p1)
2∪(r1∩r2)\(Q\p2)

2 ⊆ r1\(Q\(p1))
2∪r2\(Q\(p2))

2 ⊆
p2
1 ∪ p2

2 ⊆ (p1 ∪ p2)
2

– and for the second case (r1∩r2)\(Q\(f1∩f2))
2 = (r1∩r2)\(Q\f1∪Q\f2)

2 ⊆
(r1∩ r2)\ ((Q\f1)

2∪ (Q\f2)
2) ⊆ (r1∩ r2)\ (Q\f1)

2∩ (r1∩ r2)\ (Q\f2)
2 ⊆

r1 \ (Q \ f1)
2 ∩ r2 \ (Q \ f2)

2 ⊆ f2
1 ∩ f2

2 ⊆ (f1 ∩ f2)
2

Case FΣ,�α�. Take (p, f, r) verifying P and note (p�, f �, r�)
df
= FΣ,�α�(p, f, r).

Then take (x, y) ∈ r�.

– If x ∈ PassΣ
p,�α�(p).

Exists x� ∈ p and a ∈ α ∩Aloc such that x
a−−−−−−−−→ x�.

Because (x, y) belongs to r�, we have y
a�
−−−−−−−−→ y� and (x�, y�) ∈ r. Since we

know that P(p, f, r), y� belongs to p too and y to PassΣ
p,�A�(p).

– If x ∈ FailΣ
f ,�α�(f).

• If x is in f then so is y because P(p, f, r) and r� ⊆ r. This is needed
when α ∩ Ex �= ∅.

131

• For all y
a−−−−−−−−→ y� with a in α we have x

a�
−−−−−−−−→ x� with a� in α and (x�, y�)

in r. Because x ∈ FailΣ
f ,�α�(f) this means that every x� is in f . Then so

is every y�, and finally y ∈ FailΣ
f ,�A�(f).

Case FΣ,X . We only put in the environment values verifying P (see next
case).
Case FΣ,µX.ϕ1 .

– (PassΣ,µX.ϕ1 , FailΣ,µX.ϕ1 , r0) with (x, y) ∈ r0 iff
1. x ∈ PassΣ

p,µX.ϕ1 and y ∈ PassΣ
p,µX.ϕ1 or

2. x ∈ FailΣ
f ,µX.ϕ1 and y ∈ FailΣ

f ,µX.ϕ1 or
3. both x and y belong to Q \ (FailΣ

f ,µX.ϕ1 ∪ PassΣ
p,µX.ϕ1)

verify P.
– FΣ,ϕ1 is a composition of the above functions, so it preserves proposition P.

B Proof of theorem 3

Let S
df
=

�
i∈I Si be a LTS , ϕ a formula and Σi environments we denote by

πϕ the product relation of the ∼Σi,ϕ
Si

, i.e., (x, y) is in πϕ iff (xi, yi) is in ∼Σi,ϕ
Si

for all i ∈ I. Let us define the property Pπ((p, f, r),Σ, {Σi|i ∈ I},ψ) which
means: p = PassΣ

p,ψ, f = FailΣ
f ,ψ and πψ ⊆ r. We show that every base case

verify this property and that the various rules preserve it. The part of the prop-
erty about Pass and Fail can almost be obtained by construction so we do not
explicitly mention it in this proof.
Case FΣ,B. Take (x, y) in πP . For all i in I we have the following property:
Li(xi)⇒ B ≡ Li(yi)⇒ B. Now, we know that

�
I Li(xi)⇒ B ≡ �

I Li(yi)⇒ B
and therefore (x, y) ∈∼Σ,B . So we have Pπ(FΣ,B ,Σ, {Σi|i ∈ I}, B).
Case FΣ,¬. Take (p, f, r) such that Pπ((p, f, r),Σ, {Σi|i ∈ I},ϕ1). We have
Pπ(F¬(p, f, r),Σ, {Σi|i ∈ I}, ¬ϕ1) because F¬(p, f, r) = (f, p, r) and (Pass¬Ψ ,
Fail¬Ψ ,π¬Ψ) = (FailΨ , PassΨ ,πΨ)

Case FΣ,∨. For any formulae ϕ1 and ϕ2, for any (p1, f1, r1) and (p2, f2, r2)
such that Pπ((p1, f1, r1),Σ, {Σi|i ∈ I},ϕ1) and Pπ((p2, f2, r2),Σ, {Σi|i ∈ I},
ϕ2), we have Pπ(FΣ,∨((p1, f1, r1), (p2, f2, r2)),Σ, {Σi|i ∈ I},ϕ1 ∨ ϕ2) because
FΣ,∨((p1, f1, r1), (p2, f2, r2)) = (p1∪p2, f1∩f2, r1∩r2) and (Passϕ1∨ϕ2 , Failϕ1∨ϕ2 ,
πϕ1∨ϕ2) = (Passϕ1 ∪ Passϕ2 , Failϕ1 ∩ Failϕ2 ,πϕ1 ∩ πϕ2)

Case FΣ,�α�. Take (p, f, r) such that Pπ((p, f, r),Σ, {Σi|i ∈ I},ϕ1).
Let us consider (x, y) in π�A�ϕ1 , it is indeed true that (x, y) ∈ πϕ1 . We now

have take into account three different possibilities.

– If exists i such that xi and yi are in Pass
Σp

i ,�A�ϕ1

i then x and y are in
PassΣ

p,�A�ϕ1 .
– The same goes for Fail.
– In the third case:

132

• Let us consider any x
a−−−−−−−−→ x� such that x� �∈ FailΣ

f ,ϕ1 and exists i ∈ I
such that a ∈ α ∩Afus

i , and let’s show that exists y� such that y
a−−−−−−−−→ y�

and (x�, y�) ∈ πϕ1 .
For every i in I:
∗ If a is in Afus

i : We have x[i]
a−−−−−−−−→ x�[i]. Because (x[i], y[i]) is in

∼Σ,�A�ϕ1

i and x�[i] �∈ Fail
Σf

i ,ϕ1

i , there exists y�
i such that y[i]

a−−−−−−−−→ y�
i

and (x�[i], y�
i) ∈∼Σi,ϕ1

i

∗ If a is not in Afus
i : We have x�[i] = x[i]. Let’s define y�

i
df
= y[i]; we

then have (x�[i], y�
i) ∈∼Σi,ϕ1

i because (x�[i], y�
i) ∈∼

Σi,�A�ϕ1

i

Now if y�[i]
df
= y�

i for all i, then y
a−−−−−−−−→ y� and (x�, y�) ∈ πϕ1 .

• Let us consider any x
a−−−−−−−−→ x� such that x� �∈ FailΣ

f ,ϕ1 and exists i ∈ I
such that a ∈ α ∩ Aloc

i . Let’s show that exists a� ∈ α ∩ Ain and y� such

that y
a�
−−−−−−−−→ y� and (x�, y�) ∈ πϕ1 .

∗ We know that we have x[i]
a−−−−−−−−→ x�[i], and a� ∈ (Aloc

i ∩ α) such that

y[i]
a�
−−−−−−−−→ y�

i and (x�[i], y�
i) ∈∼Σ,ϕ1

i

∗ For j �= i, we define y�
j

df
= y[j]

Now if y�[i]
df
= y�

i for all i, we have y
a�
−−−−−−−−→ y� with a� ∈ (Aloc ∩ α) and

(x�, y�) ∈ πϕ1 .

For any of these cases, (x, y) belongs to the third component of FΣ,�α�(p, f, r)
so we have Pπ(FΣ,�α�(p, f, r),Σ, {Σi|i ∈ I}, �α�ϕ1)

Case FΣ,X . We only put in the environment values which verify Pπ(Σ, {Σi|i ∈
I}, X).
Case FΣ,µX.ϕ1 .

– Let us show that if (x, y) is in πµX.ϕ1 and one of them is in PassΣ
p,µX.ϕ1

(resp FailΣ
f ,µX.ϕ1) then so is the other. This means that we have the prop-

erty Pπ((p0, f0, r0),Σ, {Σi|i ∈ I}, µX.ϕ1), where (p0, f0, r0) is the the start-
ing point of the iteration. In order to do this we build the tuple (p, f, r) by
iterating FΣ,ϕ1 starting from (∅, Q, Q2). We then have p = PassΣ

p,µX.ϕ1 ,
f = FailΣ

f ,µX.ϕ1 and r ⊇ πµX.ϕ1 (This is the same proof we are currently
doing, but with an easier base case). We can reuse the proof of theorem 2
(similarly, only the base case is different) to show that if (x, y) ∈ r and one
of them is in PassΣ

p,µX.ϕ1 (resp FailΣ
f ,µX.ϕ1) then so is the other. So the

property Pπ(Σ0(X),Σ0, {Σ0
i |i ∈ I}, X) is true with:

• Σ0 df
= Σ[X ← (p0, f0, r0)] and

• Σ0
i

df
= Σi[X ← (PassΣi,µX.ϕ1 , FailΣi,µX.ϕ1 ,∼Σi,µX.ϕ1

i)] for all i.

– Fϕ1 is a composition of the previous functions. Therefore if the property
Pπ(Σn(X),Σn, {Σi|i ∈ I}, X) is true, then we have Pπ(FΣ

n,ϕ1 ,Σn, {Σi|i ∈
I},ϕ1) , which can be rewritten as Pπ(Σn+1(X),Σn+1, {Σi|i ∈ I}, X) where
Σn+1 = Σn[X ← FΣ

n,ϕ1]. By recurrence, the property is true for any n.

133

