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Abstract. We follow the hypothesis that intentional reasoning is a form
of logical reasoning sui generis by its double nature: temporal and de-
feasible. Then we briefly describe a formal framework that deals with
these topics and we study the metalogical properties of its notion of in-
ference. The idea is that intentional reasoning can be represented in a
well-behaved defeasible logic and has the right to be called logical rea-
soning since it behaves, mutatis mutandis, as a logic, strictly speaking,
as a non-monotonic logic.
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1 Introduction

The relationship between philosophy and computer science is very profound and
unique [23]. Not only because these disciplines share some common historical
data –like Leibniz’s mathesis universalis [8]– and interesting anecdotes –like
the correspondence between Newell and Russell [11]–, but more importantly
because from the constant dialog that occurs within these disciplines we gain
useful hypothesis, formal methods and functional analysis that may shed some
light about different aspects of the nature of human behavior, specially under a
cognitive schema. The cognitive schema we follow is the BDI model (that stands
for Beliefs, Desires and Intentions) as originally exposed by Bratman [4] and
formally developed by Rao and company [21,22]. The general aspect we study is
the case of the non-monotonicity of intentional reasoning.

There is no doubt that reasoning using beliefs and intentions during time
is a very common task, done on a daily basis; but the nature and the status
of such kind of reasoning, which we will be calling intentional, are far from
being clear and distinct. However, it would be blatantly false to declare that
this study is entirely new, for there are recent efforts to capture some of these
ideas already [13,16,19]. But, in particular, we can observe, on one side, the case
of BDI logics [22,24] in order to capture and understand the nature of intentional
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reasoning; and on the other side, the case of defeasible logics [20] to try to catch
the status of non-monotonic reasoning.

The problem with these approaches, nevertheless, is that, in first place, hu-
man reasoning is not and should not be monotonic [18], and thus, the logical
models should be non-monotonic, but the BDI techniques are monotonic; and
in second place, intentional states should respect temporal norms, and so, the
logical models need to be temporal as well, but the non-monotonic procedures
do not consider the temporal or intentional aspect. So, in the state of the art, de-
feasible logics have been mainly developed to reason about beliefs [20] but have
been barely used to reason about temporal structures [14]; on the other hand,
intentional logics have been mostly used to reason about intentional states and
temporal behavior but most of them are monotonic [7,21,24].

Under this situation our main contribution is a brief study of the nature and
status of intentional reasoning following the hypothesis that intentional reasoning
is a form of logical reasoning sui generis by its temporal and defeasible nature
and we suggest that intentional reasoning has the right to be called logical since
it behaves, mutatis mutandis, as a logic. In particular, this study is important
by its own sake because defeasible reasoning has certain patterns of inference
and therefore the usual challenge is to provide a reasonable description of these
patterns. Briefly, the idea is that if monotony is not a property of intentional
reasoning and we want to give an adequate description of its notion of inference,
then we must study the metalogical properties of intentional inference that occur
instead of monotony. Because once monotonicity is given up, a very organic
question about the status of this kind of reasoning emerges: why should we
consider intentional reasoning as an instance of a logic bona fide?

This paper is organized in the next way. In Section 2 we briefly expose what
is understood as intentional reasoning. In Section 3 is our main contribution and
finally, in Section 4 we sum up the results obtained.

2 Intentional reasoning

Two general requirements to be checked out while developing a logical framework
are material and formal adequacy [1]. Material adequacy is about capturing an
objective phenomenon. Formal adequacy has to do with the metalogical proper-
ties that a notion of logical consequence satisfies. The nature of intentional rea-
soning is related to a material aspect, while its status is directly connected with
a formal one. During this study, due to reasons of space, we will focus mainly on
the latter in order to argue that intentional reasoning can be modelled in a well-
behaved defeasible logic, given that a well-behaved defeasible logic has to satisfy
conditions of Supraclassicality, Reflexivity, Cut and Cautious Monotony [12].

But just to give some pointers about material adequacy, let us consider the
next example for sake of explanation: assume there is an agent that has an in-
tention of the form on(X,Y ) ← put(X,Y ). This means that, for such an agent
to achieve on(a, b) it typically has to put a on b. If we imagine such an agent
is immersed in a dynamic environment, of course the agent will try to put, typ-
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ically, a on b; nevertheless, a rational agent would only do it as long as it is
possible; otherwise, we would say the agent is not rational. Therefore, it results
quite natural to talk about some intentions that are maintained typically but not
absolutely if we want to guarantee some level of rationality. And so, it is reason-
able to conclude that intentions –in particular policy-based intentions [4]–, allow
some form of defeasible reasoning [13] that must comply with some metalogical
properties. But before we explore such properties, let us review some previous
details.

The current logical systems that are used to model intentional reasoning are
built in terms of what we call a bratmanian model. A bratmanian model is a
model that i) follows general guidelines of Bratman’s theory of practical reason-
ing [4], ii) uses the BDI architecture [21] to represent data structures and iii)
configures notions of logical consequence based on relations between intentional
states. There are several logics based upon bratmanian models, but we consider
there are, at least, two important problems with the usual logics [7,22,24].

For one, such logics tend to interpret intentions as a unique fragment –usually
represented by an opertator INT–, while Bratman’s original theory distinguished
three classes of intentions: deliberative, non-deliberative and policy-based. In
particular, policy-based intentions are of great importance given their structure
and behavior: they have the structure of complex rules and behave like plans.
This remark is important for two reasons: because the existing formalisms, de-
spite of recognizing the intimate relationship between plans and intentions, seem
to forget that intentions behave like plans; and because the rule-like structure
allows us to build a more detailed picture of the nature of intentional reasoning.

But the bigger problem is that these systems do not quite recognize that
intentional reasoning has a temporal and defeasible nature. Intuitively, the idea
is that intentional reasoning is temporal because intentions and beliefs are dy-
namic data structures, i.e., they change during time; but is also defeasible, be-
cause if these data structures are dynamic, their consequences may change. The
bratmanian model we propose tries to respect this double nature by following
the general guidelines of Bratman’s theory of practical reasoning [4], so we dis-
tinguish functional (pro-activity, inertia, admissibility), descriptive (partiality,
dynamism, hierarchy) and normative (internal, external consistency and coher-
ence) properties that configure a notion of inference. To capture this notion
of inference in a formal fashion the next framework is proposed in terms of
AgentSpeak(L)[3] (see Appendix):

Definition 1 (Non-monotonic intentional framework) A non-monotonic inten-
tional framework is a tuple 〈B, I, FB , FI ,`, |∼ ,a, ∼| ,�〉 where:

– B denotes the belief base.
– I denotes the set of intentions.
– FB ⊆ B denotes the basic beliefs.
– FI ⊆ I denotes the basic intentions.
– ` and a are strong consequence relations.
– |∼ and ∼| are weak consequence relations.
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– �⊆ I2 s.t. � is acyclic.

The item B denotes the beliefs, which are literals. FB stands for the beliefs
that are considered as basic; and similarly FI stands for intentions considered
as basic. Each intention φ ∈ I is a structure te : ctx← body where te represents
the goal of the intention –so we preserve proactivity–, ctx a context and the rest
denotes the body. When ctx or body are empty we write te : > ← > or just te.
Also it is assumed that plans are partially instantiated.

Internal consistency is preserved by allowing the context of an intention de-
noted by ctx(φ), ctx(φ) ∈ B and by letting te be the head of the intention. So,
strong consistency is implied by internal consistency (given that strong consis-
tency is ctx(φ) ∈ B). Means-end coherence will be implied by admissibility –the
constraint that an agent will not consider contradictory options– and the hier-
archy of intentions is represented by the order relation, which we require to be
acyclic in order to solve conflicts between intentions. And with this framework
we can arrange a notion of inference where we will say that φ is strongly (weakly)
derivable from a sequence ∆ if and only if there is a proof of ∆ ` φ (∆ |∼ φ).
And also, that φ is not strongly (weakly) provable if and only if there is a proof
of ∆ a φ (∆ ∼| φ), where ∆ = 〈B, I〉.

2.1 The system NBDICTL
AS(L)

We start with CTLAgentSpeak(L) [15] as a logical tool for the formal specifica-
tion (similar approaches have been accomplished for other programming lan-
guages [9]). Of course, initially, the approach is similar to a BDICTL system
defined after BKD45DKDIKD with the temporal operators: next (©), eventu-
ally (♦), always (�), until (U), optional (E), inevitable (A), and so on, defined
after CTL∗ [6,10].

Syntax of BDICTL
AS(L) CTLAgentSpeak(L) may be seen as an instance ofBDICTL.

The idea is to define some BDICTL semantics in terms of AgentSpeak(L) struc-
tures. So, we need a language able to express temporal and intentional states.
Thus, we require in first place some way to express these features.

Definition 2 (Syntax of BDICTLAS(L)) If φ is an AgentSpeak(L) atomic formula,

then BEL(φ), DES(φ) and INT(φ) are well formed formulas of BDICTLAS(L).

To specify the temporal behavior we use CTL∗ in the next way.

Definition 3 (BDICTLAS(L) temporal syntax) Every BDICTLAS(L) formula is a state
formula s:

– s ::= φ|s ∧ s|¬s
– p ::= s|¬p|p ∧ p|Ep|Ap| © p|♦p|�p|p U p
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Semantics of BDICTL
AS(L) Initially the semantics of BEL, DES and INT is

adopted from [2]. So, we assume the next function:

agoals(>) = {},

agoals(i[p]) =

{
{at} ∪ agoals(i) if p = +!at : ct← h,
agoals(i) otherwise

which gives us the set of atomic formulas (at) attached to an achievement goal
(+!) and i[p] denotes the stack of intentions with p at the top.

Definition 4 (BDICTLAS(L) semantics) The operators BEL, DES and INT are de-

fined in terms of an agent ag and its configuration 〈ag, C,M, T, s〉:

BEL〈ag,C,M,T,s〉(φ) ≡ φ ∈ bs

INT〈ag,C,M,T,s〉(φ) ≡ φ ∈
⋃
i∈CI

agoals(i) ∨
⋃

〈te,i〉∈CE

agoals(i)

DES〈ag,C,M,T,s〉(φ) ≡ 〈+!φ, i〉 ∈ CE ∨ INT(φ)

where CI denotes current intentions and CE suspended intentions.

And now some notation: we will denote an intention φ with head g by φ[g].
Also, a negative intention is denoted by φ[gc], i.e., the intention φ with ¬g as the
head. The semantics of this theory will require a Kripke structure K = 〈S,R, V 〉
where S is the set of agent configurations, R is an access relation defined after
the transition system Γ and V is a valuation function that goes from agent
configurations to true propositions in those states.

Definition 5 Let K = 〈S, Γ, V 〉, then:

– S is a set of agent configurations c = 〈ag, C,M, T, s〉.
– Γ ⊆ S2 is a total relation such that for all c ∈ Γ there is a c′ ∈ Γ s.t.

(c, c′) ∈ Γ .
– V is valuation s.t.:

- VBEL(c, φ) = BELc(φ) where c = 〈ag, C,M, T, s〉.
- VDES(c, φ) = DESc(φ) where c = 〈ag, C,M, T, s〉.
- VINT(c, φ) = INTc(φ) where c = 〈ag, C,M, T, s〉.

– Paths are sequences of configurations c0, . . . , cn s.t. ∀i(ci, ci+1) ∈ R. We use
xi to indicate the i-th state of path x. Then:

S1 K, c |= BEL(φ)⇔ φ ∈ VBEL(c)
S2 K, c |= DES(φ)⇔ φ ∈ VDES(c)
S3 K, c |= INT(φ)⇔ φ ∈ VINT(c)
S4 K, c |= Eφ⇔ ∃x = c1, . . . ∈ K|K,x |= φ
S5 K, c |= Aφ⇔ ∀x = c1, . . . ∈ K|K,x |= φ
P1 K, c |= φ⇔ K,x0 |= φ where φ is a state formula.
P2 K, c |=©φ⇔ K,x1 |= φ.
P3 K, c |= ♦φ⇔ K,xn |= φ for n ≥ 0
P4 K, c |= �φ⇔ K,xn |= φ for all n
P5 K, c |= φ U ψ ⇔ ∃k ≥ 0 s.t. K,xk |= ψ and for all j, k, 0 ≤ j < k|K, cj |= φ

or ∀j ≥ 0 : K,xj |= φ
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A notion of inference comes in four cases: if the sequence is ∆ ` φ, we say φ is
strongly provable; if it is ∆ a φ we say φ is not strongly provable. If is ∆ |∼ φ
we say φ is weakly provable and if it is ∆ ∼| φ, then φ is not weakly provable.

Definition 6 (Proof) A proof of φ from ∆ is a finite sequence of beliefs and
intentions satisfying:

1. ∆ ` φ iff
1.1. �A(INT(φ)) or
1.2. �A(∃φ[g] ∈ FI : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) ` ψ[g′])

2. ∆ |∼ φ iff
2.1. ∆ ` φ or
2.2. ∆ a ¬φ and

2.2.1. ♦E(INT(φ) U ¬BEL(ctx(φ))) or
2.2.2. ♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′]) and

2.2.2.1. ∀γ[gc] ∈ I, γ[gc] fails at ∆ or
2.2.2.2. ψ[g′] � γ[gc]

3. ∆ a φ iff
3.1. ♦E(INT(¬φ)) and
3.2. ♦E(∀φ[g] ∈ FI : ¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ[g′])

4. ∆ ∼| φ iff
4.1. ∆ a φ and
4.2. ∆ ` ¬φ or

4.2.1. �A¬(INT(φ) U ¬BEL(ctx(φ))) and
4.2.2. �A(∀φ[g] ∈ I : ¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) ∼| ψ[g′]) or

4.2.2.1. ∃γ[gc] ∈ I s.t. γ[gc] succeds at ∆ and
4.2.2.2. ψ[g′] 6� γ[gc]

3 Formal adequacy

Once monotonicity is given up a very intuitive question arises: why should we
consider intentional reasoning as an instance of a logic bona fide? We indirectly
answer this question by arguing that intentional reasoning under this bratmanian
model has some good properties.

3.1 Consistency

We suggest a square of opposition in order to depict logical relationships of
consistency and coherence.

Proposition 1 (Subalterns1) If ` φ then |∼ φ.

Proof. Let us assume that ` φ but not |∼ φ, i.e., ∼| φ. Then, given ` φ we have
two general cases. Case 1: given the initial assumption that ` φ, by Definition 6
item 1.1, we have that �A(INT(φ)). Now, given the second assumption, i.e., that
∼| φ, by Definition 6 item 4.1, we have a φ. And so, ♦E(INT(¬φ)), and thus, by
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the temporal semantics, we get ¬φ; however, given the initial assumption, we
also obtain φ, which is a contradiction.

Case 2: given the assumption that ` φ, by Definition 6 item 1.2, we have
that ∃φ[g] ∈ FI : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) ` ψ[g′]. Now, given the second
assumption, that ∼| φ, we also have a φ and so we obtain ♦E(∀φ[g] ∈ FI :
¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ), and thus we can obtain ∀φ[g] ∈ FI :
¬BEL(ctx(φ)) ∨ ∃ψ[g′] ∈ body(φ) a ψ) which is ¬(∃φ[g] ∈ FI : BEL(ctx(φ)) ∧
∀ψ[g′] ∈ body(φ) ` ψ[g′]). �

Corollary 1 (Subalterns2) If ∼| φ then a φ.

Proposition 2 (Contradictories1) There is no φ s.t. ` φ and a φ.

Proof. Assume that there is a φ s.t. ` φ and a φ. If a φ then, by Definition 6
item 3.1, ♦E(INT(¬φ)). Thus, by proper semantics, we can obtain ¬φ. However,
given that ` φ it also follows that φ, which is a contradiction. �

Corollary 2 (Contradictories2) There is no φ s.t. |∼ φ and ∼| φ.

Proposition 3 (Contraries) There is no φ s.t. ` φ and ∼| φ.

Proof. Assume there is a φ such that ` φ and ∼| φ. By Proposition 1, it follows
that |∼ φ, but that contradicts the assumption that ∼| φ by Corollary 2. �

Proposition 4 (Subcontraries) For all φ either |∼ φ or a φ.

Proof. Assume it is not the case that for all φ either |∼ φ or a φ. Then there
is φ s.t. ∼| φ and ` φ. Taking ∼| φ it follows from Corollary 1 that a φ. By
Proposition 2 we get a contradiction with ` φ. �

These propositions form the next square of opposition where c denotes con-
tradictories, s subalterns, k contraries and r subcontraries.

` φ < k > ∼| φ

s
∨

c

>
<

s
∨

|∼ φ
∨

<
<

r > a φ
∨>

Proposition 1 and Corollary 1 represent Supraclassicality; Proposition 2 and
Corollary 2 stand for Consistency while the remaining statements specify the
coherence of the square, and thus, the overall coherence of the system.

Consider, for example, a scenario in which an agent intends to acquire its
PhD, and we set the next configuration ∆ of beliefs and intentions: FB = {>},
B = {scolarship}, FI = {research : > ← >}, I = {phd : > ← thesis, exam;
thesis : scolarship ← research; exam : > ← research}. And suppose we send
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the query: phd? The search of intentions with head phd in FI fails, thus the
alternative ` φ[phd] does not hold. Thus, we can infer, by contradiction rule
(Proposition 2), that it is not strongly provable that phd, i.e., that eventually in
some state the intention phd does not hold. Thus, the result of the query should
be that the agent will get its PhD defeasibly under the ∆ configuration. On the
contrary, the query research? will succedd as ` φ[research], and thus, we would
say research is both strongly and weakly provable (Proposition 1).

3.2 Soundness

The framework is Sound with respect to its semantics.

Definition 7 (Satisfaction) A formula φ is true in K iff φ is true in all config-
urations σ in K. This is to say, K |= φ⇔ K,σ |= φ for all σ ∈ S.

Definition 8 (Run of an agent in a model) Given an initial configuration β, a

transition system Γ and a valuation V , Kβ
Γ =

〈
SβΓ , R

β
Γ , V

〉
denotes a run of an

agent in a model.

Definition 9 (Validity) A formula φ ∈ BDICTLAS(L) is true for any agent run in

Γ iff ∀Kβ
Γ |= φ

By denoting (∃Kβ
Γ |= φ U ¬BEL(ctx(φ)))∨ |= φ as |≈ φ, and assuming

|= φ ≥ |≈ φ and ≈| φ ≥=| φ, a series of translations can be found s.t.:

` φ > ∀Kβ
Γ |= φ > |= φ

|∼ φ >
>

|≈ φ
∨

And also for the rest of the fragments:

∼| φ > ∃Kβ
Γ |= ¬φ ∧ ∀K

β
Γ |= ¬(φ U ¬BEL(ctx(φ))) > ≈| φ

a φ >
>

=| φ
∨

Proposition 5 The following relations hold:

a) If ` φ then |= φ b) If |∼ φ then |≈ φ

Proof. Base case. Taking ∆i as a sequence with i = 1.
Case a) If we assume ` φ, we have two subcases. First subcase is given by Def-

inition 6 item 1.1. Thus we have �A(INT(φ)). This means, by Definition 5 items
P4 and S5 and Definition 4, that for all paths and all states φ ∈ CI ∨CE . We can
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represent this expression, by way of a translation, in terms of runs. Since paths
and states are sequences of agent configurations we have that ∀Kβ

Γ |= φ, which
implies |= φ. Second subcase is given by Definition 6 item 1.2, which in terms of
runs means that for all runs ∃φ[g] ∈ FI : BEL(ctx(φ))∧∀ψ[g′] ∈ body(φ) ` ψ[g′].
Since∆1 is a single step, body(φ) = > and for all runs BEL(ctx(φ))), ctx(φ) ∈ FB .

Then ∀Kβ
Γ |= φ which, same as above, implies |= φ.

Case b) Let us suppose |∼ φ. Then we have two subcases. The first one is
given by Definition 6 item 2.1. So, we have that ` φ which, as we showed above,
already implies |= φ. On the other hand, by item 2.2, we have a ¬φ and two
alternatives. The first alternative, item 2.2.1, is ♦E(INT(φ) U ¬BEL(ctx(φ))).
Thus, we can reduce this expression by way of Definition 5 items P3 and S4, to
a translation in terms of runs: ∃Kβ

Γ |= φ U ¬BEL(ctx(φ)), which implies |≈ φ.
The second alternative comes from item 2.2.2, ♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧
∀ψ[g′] ∈ body(φ) |∼ ψ[g′]) which in terms of runs means that for some run
∃φ[g] ∈ I : BEL(ctx(φ))∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′], but ∆1 is a single step, and
thus body(φ) = >. Thus, there is a run in which ∃φ[g] ∈ I : BEL(ctx(φ)), i.e.,

(∃Kβ
Γ |= (φ U ¬BEL(ctx(φ))) by using the weak case of Definition 6 P5. Thus,

by addition, (∃Kβ
Γ |= (φ U ¬BEL(ctx(φ)))∨ |= φ, and therefore, |≈ φ.

Inductive case. Case a) Let us assume that for n ≤ k, if ∆n ` φ then ∆ |= φ.
And suppose ∆n+1. Further, suppose ∆n ` φ, then we have two alternatives.
First one being, by Definition 6 item 1.1, that we have an intention φ s.t. ctx(φ) =
body(φ) = >. Since body(φ) is empty, it trivially holds at n, and by the induction
hypothesis, body(φ) ⊆ ∆n+1, and thus |= φ. Secondly, by Definition 6 item 1.2,
for all runs ∃φ[g] ∈ I : BEL(ctx(φ))∧∀ψ[g′] ∈ body(φ) ` ψ[g′]. Thus, for all runs
n, ∀ψ[g′] ∈ body(φ) ` ψ[g′], and so by the induction hypothesis, body(φ) ⊆ ∆n+1,
i.e., ∆ ` ψ[g′]. Therefore, |= φ.

Case b) Let us assume that for n ≤ k, if ∆n |∼ φ then ∆ |≈ φ. And suppose
∆n+1. Assume ∆n |∼ φ. We have two alternatives. The first one is given by
Definition 6 item 2.1, i.e., ` φ, which already implies |= φ. The second alternative
is given by item 2.2, ∆ a ¬φ and two subcases: ♦E(INT(φ) U ¬BEL(ctx(φ))) or
♦E(∃φ[g] ∈ I : BEL(ctx(φ)) ∧ ∀ψ[g′] ∈ body(φ) |∼ ψ[g′]). If we consider the
first subcase there are runs n which comply with the definition of |≈ φ. In the
remaining subcase we have ∀ψ[g′] ∈ body(φ) |∼ ψ[g′], since body(φ) ⊆ ∆n, by
the induction hypothesis ∆ |∼ ψ[g′], and thus, ∆n+1 |∼ φ, i.e., |≈ φ. �

Corollary 3 The following relations hold:

a) If a φ then =| φ b) If ∼| φ then ≈| φ

3.3 Other formal properties

But there are other formal properties that may be used to explore and define
the rationality of intentional reasoning, i.e., its good behavior. In first place, it
results quite reasonable to impose Reflexivity on the consequence relation so
that if φ ∈ ∆, then ∆ |∼ φ.
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Further, another reasonable property should be one that dictates that strong
intentions imply weak intentions. In more specific terms, that if an intention φ
follows from ∆ in a monotonic way, then it must also follow according to a non-
monotonic approach. Thus, in second place, we need the reasonable requirement
that intentions strongly mantained have to be also weakly mantained, but no
the other way around:

Proposition 6 (Supraclassicality) If ∆ ` φ, then ∆ |∼ φ.

Proof. See Proposition 1. �
Another property, a very strong one, is Consistency Preservation. This prop-

erty tells us that if some intentional set is classically consistent, then so is the
set of defeasible consequences of it.

Proposition 7 (Consistency preservation) If ∆ |∼ ⊥, then ∆ ` ⊥.

Proof. Let us consider the form of the intention ⊥. Such intention is the intention
of the form φ ∧ ¬φ, which is, therefore, impossible to achieve, that is to say, for
all agent runs, |∼ ⊥ is never achieved. Thus ∆ |∼ ⊥ is false, which makes the
whole implication true. �

And, if an intention φ is a consequence of ∆, then ψ is a consequence of
∆ and φ only if it is already a consequence of ∆, because adding to ∆ some
intentions that are already a consequence of ∆ does not lead to any increase
of information. In terms of the size of a proof [1], such size does not affect the
degree to which the initial information supports the conclusion:

Proposition 8 (Cautious cut) If ∆ |∼ φ and ∆,φ |∼ ψ then ∆ |∼ ψ.

Proof. Let us start by transforming the original proposition into the next one:
if ∆ ∼| ψ then it is not the case that ∆ |∼ φ and ∆,φ |∼ ψ. Further, this
proposition can be transformed again: if ∆ ∼| ψ then either ∆ ∼| φ or ∆,φ ∼| ψ
from which, using Corollary 1, we can infer: if ∆ a ψ then either ∆ a φ or
∆,φ a ψ. Now, let us assume that ∆ a ψ but it is not the case that either ∆ a φ
or ∆,φ a ψ, i.e., that ∆ a ψ but ∆ ` φ and ∆,φ ` ψ. Considering the expression
∆,φ ` ψ we have two alternatives: either ψ ∈ body(φ) or ψ 6∈ body(φ). In the
first case, given that ∆ ` φ then, since ψ ∈ body(φ) it follows that ` ψ, but that
contradicts the assumption that ∆ a ψ. In the remaining case, if ∆,φ ` ψ but
ψ 6∈ body(φ), then ∆ ` ψ, which contradicts the assumption that ∆ a ψ. �

If we go a little bit further, we should look for some form of Cautious
Monotony as the converse of Cut in such a way that if φ is taken back into
∆ that does not lead to any decrease of information, that is to say, that adding
implicit information is a monotonic task:

Proposition 9 (Cautious monotony) If ∆ |∼ ψ and ∆ |∼ γ then ∆,ψ |∼ γ.

Proof. Let us transform the original proposition: if ∆,ψ ∼| γ then it is not
the case that ∆ |∼ ψ and ∆ |∼ γ. Thus, if ∆,ψ ∼| γ then either ∆ ∼| ψ or
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∆ ∼| γ, and by Corollary 1, if ∆,ψ a γ then either ∆ a ψ or ∆ a γ. Now, let
us suppose that ∆,ψ a γ but it is false that either ∆ a ψ or ∆ a γ, this is to
say, that ∆,ψ a γ and ∆ ` ψ and ∆ ` γ. Regarding the expression ∆,ψ a γ
we have two alternatives: either γ ∈ body(ψ) or γ 6∈ body(ψ). In the first case,
since γ ∈ body(ψ) and ∆ a ψ, then a γ, which contradicts the assumption that
∆ ` γ. On the other hand, if we consider the second alternative, ∆ a γ, but that
contradicts the assumption that ∆ ` γ. �

4 Conclusion

It seems reasonable to conclude that this bratmanian model of intentional rea-
soning captures relevant features of the nature of intentional reasoning and can
be modelled in a well-behaved defeasible logic that clarifies its status, since it sat-
isfies conditions of Consistency, Soundness, Supraclassicality, Reflexivity, Con-
sistency Preservation, Cautious Cut and Cautious Monotony. In other words,
it is plausible to conclude that intentional reasoning has the right to be called
logical reasoning since it behaves, mutatis mutandis, as a logic, strictly speaking,
as a non-monotonic logic.

The relevance of this work becomes clear once we notice that, although
intentions have received a lot of attention, their dynamic features have not
been studied completely [16]. There are formal theories of intentional reason-
ing [7,17,22,24] but very few of them consider the revision of intentions [16]
or the non-monotonicity of intentions [13] as legitimate research topics, which
we find odd since the foundational theory guarantees that such research is le-
gitimate and necessary [4]. Recent works confirm the status of this emerging
area [13,16,19].
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Appendix

AgentSpeak(L) syntax An agent ag is formed by a set of plans ps and beliefs
bs (grounded literals). Each plan has the form te : ctx ← h. The context ctx of
a plan is a literal or a conjunction of them. A non empty plan body h is a finite
sequence of actions A(t1, . . . , tn), goals g (achieve ! or test ? an atomic formula
P (t1, . . . , tn)), or beliefs updates u (addition + or deletion −). > denotes empty
elements, e.g., plan bodies, contexts, intentions. The trigger events te are updates
(addition or deletion) of beliefs or goals. The syntax is shown in Table 1.

ag ::= bs ps h ::= h1;> | >
bs ::= b1 . . . bn (n ≥ 0) h1 ::= a | g | u | h1;h1

ps ::= p1 . . . pn (n ≥ 1) at ::= P (t1, . . . , tn) (n ≥ 0)
p ::= te : ctx← h a ::= A(t1, . . . , tn) (n ≥ 0)
te ::= +at | − at | + g | − g g ::= !at | ?at
ctx ::= ctx1 | > u ::= +b | − b
ctx1 ::= at | ¬at | ctx1 ∧ ctx1

Table 1. Sintax of AgentSpeak(L).

AgentSpeak(L) semantics The operational semantics of AgentSpeak(L) are
defined by a transition system, as showed in Figure 1, between configurations
〈ag, C,M, T, s〉:

ProcMsg

SelEv RelPl ApplPl

SelAppl

AddIM

SelInt

ExecInt

ClrInt

SelEv2

SelEv1 Rel1

Rel2

Appl1Appl2

SelAppl
ExtEv
IntEv

SelInt1

SelInt2

Action

AchvGl

TestGl1
TestGl2

AddBel
DelBel

ClrInt2

ClrInt1
ClrInt3

Fig. 1. The interpreter for AgentSpeak(L) as a transition system.

Under such semantics a run is a set Run = {(σi, σj)|Γ ` σi → σj} where Γ is
the transition system defined by the AgentSpeak(L) operational semantics and
σi, σj are agent configurations.


