
A Mobility Logic for Object Net Systems

Frank Heitmann and Michael Köhler-Bußmeier

University of Hamburg, Department for Informatics
Vogt-Kölln-Straße 30, D-22527 Hamburg

{heitmann,koehler}@informatik.uni-hamburg.de

Abstract. In this paper we present work in progress on a special variant
of Object Petri Nets and on the introduction of a Mobility Logic to reason
about them.
The Petri nets considered in this paper allow the vertical transport of net
tokens i.e. the transport of net tokens through different nesting levels,
giving one enhanced modelling capabilities and allowing one to naturally
model certain situations arising in nested structures.
The logic then allows us not only to reason about the evolution of the
described system in time, but also about spatial configurations, i.e. in
this logic we can express for example, that a certain object or agent
is always somewhere or at a specific location. This part of our work is
inspired by the work of Cardelli and Gordon on the Ambient Calculus
and the Ambient Logic.

Keywords: design methods, higher-level Petri net models, nets-within-nets,
mobility logic, model checking and verification

1 Introduction

Object Petri Nets are Petri Nets whose tokens may be Petri Nets again and
thus may have an inner structure and activity. This approach is useful to model
mobile systems and other systems arising in Computer Science which enjoy a
certain nesting of structures (cf. [10] and [11]).

This approach, which is also called the nets-within-nets paradigm, was pro-
posed by Valk [22, 23] for a two levelled structure and generalised in [12, 13]
for arbitrary nesting structures. By now many related approaches like recur-
sive nets [6], nested nets [18], adaptive workflow nets [19], AHO systems [9],
PN2 [8], Mobile Systems [17], and many others are known. See [14] for a detailed
discussion.1

A variant introduced a few years ago in [15], allows the vertical transport
of net tokens, i.e. the transport of net tokens through different nesting levels,
giving one enhanced modelling capabilities and allowing one to naturally model
certain situations arising in nested structures.

1 Another line of research also dealing with nesting, but not in the field of Petri nets,
is concerned with process calculi. Arguably most prominently there are the Ambient
Calculus of Gordon and Cardelli [2] and the Seal Calculus [3] among many others.

Unfortunately the formalism was rather complicated and thus not well suited
for neither theoretical investigations nor modelling applications. In the first part
of this paper we devise a more convenient variant with regard to theoretical in-
vestigations than the variant known so far. The variant proposed here retains the
ability to transport tokens in the vertical dimension, but in particular restricts
the transitions participating in the firing to at most two levels.

After introducing the formalism we go on and introduce a logic that allows us
not only to reason about the evolution of the described system in time, but also
about spatial configurations, i.e. a logic in which we can express for example,
that a certain object or agent is always somewhere or at a specific location. This
part of our work is deeply inspired by the work of Cardelli and Gordon on the
Ambient Calculus and the Ambient Logic [2], [1].

While the main part of this presentation deals with the introduction of the
formalism and the logic and thus with definitions and examples, we also hint at
work in progress regarding the complexity of certain problems for object nets and
the newly developed logic. In particular we show that the reachability problem
is decidable in PSpace for a specific finite-state-segment of our formalism and
argue that the model checking problem for the new logic might also be in PSpace
for this variant.

In the following we assume basic knowledge of Petri nets, see e.g. [20].

2 Object Nets

In [15] we presented a formalism for object nets which was rather complicated.
The firing rule was particularly hard to formulate and to understand as were
the events themselves. Unsurprisingly the formalism was Turing-complete, but
many of the formalism’s facets where not even used in the proof.

In the following we will present a stripped-down variant that still captures
the essentials of the formalism in [15], namely the nets-within-nets structure,
the synchronisation, and in particular the possibility to transport nets vertically
through the channels. For an example take a look at Figure 3. An object net
resides on place p′ whose place p is again marked by another object net. The
transitions t′ and t use the same channel descriptor c and the channel proper-
ties match.2 Ignoring the inner structure of the net tokens both transitions are
activated and may fire. The successor marking is pictured in Figure 4. The net
token previously on p′ has travelled to p′′′, but it’s place p is now empty, because
that object net has travelled in the vertical dimension via channel c to the place
p′′. In the following we will give a formal description of this formalism.

An Object Net System (ONS for short) consist of a system net N̂ = (P̂ , T̂ , F̂)
and a finite number of object nets N = {N1, . . . , Nm}, Ni = (Pi, Ti, Fi). Black
tokens can be described by a special object net which has no places and transi-
tions. We set N̂ := N ∪ N̂ . Instead of Pi, Ti and so on we sometimes make use

2 This will be defined later, for now note that the channel property ↑N1 of t means
that t wants to send a object of type N1 upwards and the channel property ∩N1 of
t′ means that it wants to catch a object of type N1 (both via channel c).

Fig. 1. Before Firing. Fig. 2. After Firing.

of the notation T (Ni) := Ti, i.e. given an object net N the set of its transitions

is denoted by T (N), the set of its places by P (N). We use PN :=
⋃̇
N∈NP (N),

P := PN ∪ P̂ , TN :=
⋃̇
N∈NT (N), and T := TN ∪ T̂ to denote the set of all

places and transitions.

The places are all typed via the typing function d : P → N . Note that no
place is typed with the system net N̂ .

Transitions are labelled with channels to allow for synchronisation. Chan-
nels consist of a descriptor taken from a finite set of channel descriptors Cd =
{c1, c2, . . . , cn} and a channel property Cp = {⇑,⇓,⇑N1 , . . . ,⇑Nm ,⇓N1 , . . . ,⇓Nm

,∪N1
, . . . ,∪Nm

,∩N1
, . . . ,∩Nm

}. A channel is then a element of the set C :=
Cp × Cd, where instead of e.g. (⇑, c1) we usually simply write ⇑ c1.

Since the system net is at the highest level of the hierarchy, not every channel
can be used there. To ease the notation later we additionally define Ĉ := (Cp\{⇑
,⇑N1

, . . . ,⇑Nm
,∪N1

, . . . ,∪Nm
})× Cd.

The labelling functions are now defined as

l̂ : T̂ → (Ĉ ×N) ∪ {ε}

and for each i ∈ [m] as

li : Ti → (C × N̂) ∪ {ε}

which are combined to

l : T → (C × N̂) ∪ {ε}

with l(t) = l̂(t) if t ∈ T̂ and l(t) = li(t) if t ∈ Ti.
Note that each transition is labelled with exactly one channel or ε. The

intended meaning of l(t) = (c,N) is that t synchronizes via channel c with a net
of type N . In the case of l(t) = ε the transition t fires autonomously.

We now describe the possible labellings together with there intended meaning
and the restrictions the labellings impose on the nets’ structure.

1. l(t) = ε, t ∈ T (N). In this case there is no synchronisation and t fires in
principal as in a normal p/t net.

Fig. 3. Before Firing. Fig. 4. After Firing.

2. l(t) = (⇑ c,N ′), t ∈ T (N), N 6= N̂3. The labelling means that t wants to
synchronize (via c) with a transition in N ′, where N ′ is a net ”above” N ,
i.e. N is a net-token in N ′ (see Figure 1 and 2). Formally we demand a place
p′ in N ′ with d(p′) = N and a transition t′ ∈ p′• with l(t′) = (⇓ c,N).

3. l(t′) = (⇓ c,N), t′ ∈ T (N ′). The complement to the above case. There is
now a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t with
l(t) = (⇑ c,N ′).

4. l(t) = (⇑N1
c,N ′), t ∈ T (N), N 6= N̂ . Similar to ⇑ above, t wants to synchro-

nize (via c) with a transition in N ′ ”above”. This time additionally a net of
type N1 is send from N through c upwards to N ′ (resp. to a place in the
postset of the transition in N ′ that uses the channel c). The situation is de-
picted in Figures 3 and 4. Note that the token on place p (Fig. 3) resp. place
p′′ (Fig. 4) can be an object net. Formally there is a place p′ with d(p′) = N
and a transition t′ ∈ p′• with l(t′) = (∩N1

c,N).4 Moreover there is a place
p ∈ •t with d(p) = N1 and no place in the postset of t of this type. In N ′

there is a place p′′ ∈ t′• with d(p′′) = N1 and no place in the preset of t′ of
this type. (The net of type N1 thus travels from p (in N) to p′′ (in N ′).)

5. l(t′) = (∩N1c,N). The complement to the case above, but similar to ⇓.
There is a place p′ ∈ •t′ with d(p′) = N and in N there is a transition t with
l(t) = (⇑N1

c,N ′). Moreover there is a place p ∈ t• with d(p) = N1 and no
place in the postset of t with this type, and also a place p′′ ∈ t′• in N ′ with
d(p′′) = N1 and no place in the preset of t of this type.

6. l(t) = (⇓N1
c,N ′), t ∈ T (N). Similar to ⇓ above, t wants to synchronize via

c with a transition in N ′ ”below”. This time a net of type N1 is additionally
send from N through c downwards to N ′ (resp. to a place in the postset of
the transition in N ′ that uses the channel ∪N1

c). The situation is depicted
in Figures 5 and 6. Note again that the token on place p (Fig. 5) resp. place
p′′ (Fig. 6) can be an object net. Formally there is a place p ∈ •t with
d(p) = N ′, a transition t′ in N ′ with l(t′) = (∪N1

c,N) and moreover a place
p′ ∈ •t with d(p′) = N1 and a place p′′ ∈ t′• with d(p′′) = N1. There is no

3 In the system net N̂ the channel property ⇑ can not be used.
4 The usage of the symbol ∩ shall illustrate that a net coming from below is ”caught.

Fig. 5. Before Firing. Fig. 6. After Firing.

place in the postset of t or in the preset of t′ of type N1. (The Net of type
N1 thus travels from p′ (in N) to p′′ (in N ′).)

7. l(t′) = (∪N1c,N), t′ ∈ T (N ′), N ′ 6= N̂ . Again the complement to the case
directly above.

In addition to the above described restrictions on the nets’ structure imposed
by the labelling, we demand that each type appears at most once in the preset
and in the postset of a transition, i.e.

∀N ∈ N̂ ∀t ∈ T (N) : |{p | p ∈ •t ∧ d(p) = N}|, |{p | p ∈ t• ∧ d(p) = N}| ≤ 1

Markings. To define markings, which will turn out to be nested multi-sets, let
OS be an object net system as above consisting of a system net N̂ and a finite
set of object nets N . Furthermore let d : P → N be the typing function (no
place is typed with the system net). Now let

M0(N) := {p[0] | p ∈ P (N)}

for a N ∈ N̂ and letM0 := ∪N∈N̂M0(N). Note that with µ ∈MS(M0(N)) for

a fix N ∈ N̂ we can describe how many empty net tokens reside on each place of
N (this includes black tokens, which are just special net tokens in our setting).
The multiset µ is thus similar to the usual multiset of places that describes a
marking.

Let

Mi+1(N) := {p[µ] | p ∈ P (N) ∧ µ ∈MS(∪k≤iMk(d(p))} and

Mi+1 := ∪N∈N̂Mi+1(N)

and finally let

M :=MS(∪i≥0Mi) =MS(∪i≥0 ∪N∈N̂ Mi(N)).

Each nested multiset µ ∈ M, µ =
∑n
k=1 p̂k[Mk], is a marking of the object net

system OS, where p̂k is a place in the system net and Mk is a marking of a
net-token of type d(p̂k), which again might be a nested multiset.

We extend addition, subtraction and ≤-relations etc. for nested multisets in
the usual way, e.g. µ ≤ µ′ for two nested multisets if another nested multiset ρ
exists such that µ+ρ = µ′. Furthermore, we need a relation to address the nesting
of markings. We write µ

`
µ′ to indicate that the submarking µ′ is contained in

the marking µ within exactly one level of nesting:

µ
h
µ′ iff ∃p ∈ P, µ′′ ∈M . µ ≡ p[µ′] + µ′′

The reflexive and transitive closure of this relation is denoted by
`∗

as usual.
Thus µ

`∗
µ′ means that µ contains µ′ at some nesting level.

Note that M differs for different object net systems. If necessary we will
denote the set of possible markings of a ONS OS byMOS , but if no ambiguities
can arise, we neglect the subscript.

Given a (sub-)marking µ we use Π1(µ) to abstract away the substructure of
all net-tokens and Π2

N (µ) for the summed up marking of all net tokens of type
N ∈ N ignoring their local distribution, i.e.

Π1(

n∑
k=1

pk[Mk]) =

n∑
k=1

pk

Π2
N (

n∑
k=1

pk[Mk]) =

n∑
k=1

1N (pk) ·Mk,

where 1N : P → {0, 1} with 1N (p) = 1 iff d(p) = N . Note that the summation in
Π2
N is not recursive, i.e. a marking of a net token of type N on a deeper nesting

level is not summed up (but remains in the sub-marking Mk). Defined in this
way Π2

N is useful to describe the firing rule.

Object Net Systems, Events, and the Firing Rule.

Definition 1. An Object Net System (ONS) is a tuple OS = (N̂ ,N , d, l) with

1. The system net N̂ ,
2. a finite set of object nets N ,
3. the typing function d : P → N , and
4. the labelling function l : T → (C × N̂) ∪ {ε}, which is consistent with the

structural restrictions mentioned above.

An ONS with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where the initial

marking µ0 ∈M is a marking of N̂ , i.e. there is a k such that µ0 ∈Mk(N̂).

To define events and the firing rule we distinguish four cases in accordance
with the labelling above:

1. (t, t′) ∈ T × T with l(t) = (⇑N1
c,N ′) and l(t′) = (∩N1

c,N) (Fig. 3 and 4).
2. (t, t′) ∈ T × T with l(t) = (⇓N1 c,N

′) and l(t′) = (∪N1c,N) (Fig. 5 and 6).
3. (t, t′) ∈ T × T with l(t) = (⇑ c,N ′) and l(t′) = (⇓ c,N) (Fig. 1 and 2).
4. t ∈ T with l(t) = ε.

The first three cases are synchronous events, the last one describes an au-
tonomous event.

Now for the first case let µ be the current marking and let λ, λ′, ρ, ρ′ ≤ µ be
sub-markings with λ′ ≤ λ and ρ′ ≤ ρ. The intended meaning is that λ is the
sub-marking of µ enabling t′ and λ′ is the sub-marking (of λ) that enables t in
the synchronous event. Then ρ is the resulting sub-marking with regard to t′

and ρ′ with regard to t. Furthermore a net of type N1 is removed from λ′ and
added to ρ.

This is expressed in the firing predicate φ⇑N1
,∩N1

:

φ⇑N1
,∩N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t′) ∧Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧Π1(ρ′) = post(t) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ′) = Π2

N ′(λ′) ∧
Π2
N (ρ) = Π2

N (λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = Π2
N1

(λ′) ∧
Π2
N1

(ρ′) = 0

(1)

The first two lines take care of activation of t and t′ and the correct successor
marking. Lines 3 and 4 handle non involved object nets and the last three lines
correctly relate the different (sub-)markings with regard to the synchronous
event, i.e. with regard to the two firing transitions.

The other cases are quite similar and the third and fourth case can even be
seen as special (and easier) cases to the above.

For the second case the firing predicate is given by

φ⇓N1
,∪N1

(t, t′, λ, λ′, ρ, ρ′) ⇐⇒
Π1(λ) = pre(t) ∧Π1(ρ) = post(t) ∧
Π1(λ′) = pre(t′) ∧Π1(ρ′) = post(t′) ∧
∀N ′ ∈ N \ {N,N1} : Π2

N ′(ρ) = Π2
N ′(λ) ∧

∀N ′ ∈ N \ {N1} : Π2
N ′(ρ′) = Π2

N ′(λ′) ∧
Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′ ∧
Π2
N1

(ρ) = 0 ∧
Π2
N1

(ρ′) = Π2
N1

(λ)

(2)

Note that λ now enables t, λ′ enables t′, ρ is the resulting sub-marking with
regard to t and ρ′ with regard to t′. Furthermore a net of type N1 is removed
from λ and added to ρ′ (and also to ρ, since ρ′ ≤ ρ). In principle the first two
cases only differ in the last three lines that relate the different (sub-)markings
and the firing transitions.

At last the third and fourth case:

Fig. 7. The object nets N0 and N1 (from Theorem 1).

φ⇑,⇓(t, t
′, λ, λ′, ρ, ρ′) ⇐⇒

Π1(λ) = pre(t′) ∧Π1(ρ) = post(t′) ∧
Π1(λ′) = pre(t) ∧Π1(ρ′) = post(t) ∧
∀N ∈ N \ {N ′} : Π2

N (ρ) = Π2
N (λ) ∧

Π2
N ′(ρ) = Π2

N ′(λ)− λ′ + ρ′

(3)

φε(t, λ, ρ) ⇐⇒
Π1(λ) = pre(t) ∧Π1(ρ) = post(t) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)

(4)

Note that the four firing predicates might a first glance look cumbersome, but
are quite similar and in particular restrict every firing to two levels, which is far
better tractable from a theoretical point of view than the firing rule introduced
in [15] where a tree of synchronous transitions was able to fire. The firing rule
can now be stated as follows:

Definition 2 (Firing Rule). Let OS be an ONS and µ, µ′ ∈M markings. The
synchronous event (t, t′) is enabled in µ for the mode (λ, λ′, ρ, ρ′) ∈M4 iff λ′ ≤
λ ≤ µ, ρ′ ≤ ρ and one of φ⇑N1

,∩N1
, φ⇓N1

,∪N1
, or φ⇑,⇓ holds for (t, t′, λ, λ′, ρ, ρ′),

according to the labelling of t and t′.
An autonomous event t, l(t) = ε is enabled in µ for the mode (λ, ρ) iff λ ≤ µ

and φε holds.

An event ϑ that is enabled in µ for a mode can fire: µ
ϑ−−→
OS

µ′. The resulting

successor marking is defined as µ′ = µ− λ+ ρ.
The set of events is denoted by Θ. Firing is extend to sequences w ∈ Θ∗ in

the usual way. The set of reachable markings from a marking µ is denoted by
RSOS (µ) or simply RS(µ). The reachability problem asks given an ONS OS
with initial marking µ0 and a marking µ, if µ ∈ RSOS (µ0) holds.

2.1 Turing-Completeness of Object Net Systems

In [15] we have shown that the there defined object net formalism can directly
simulate counter programs and thus is Turing-complete. We have severely re-
stricted the formalism here, but retained the general ability to transfer net-
tokens in the vertical dimension of the nested marking. The formalism devised
here remains Turing-complete and indeed the proof in [15] can be easily adjusted
to our new setting. We will only sketch the proof here.

Fig. 8. Net fragments for the simulation of counter programs (from Theorem 1).

Theorem 1. Object net systems can directly simulate counter programs and
thus the reachability problem is undecidable for them.

Proof sketch. In counter programs one has a fixed number of counters, an increase
and a decrease operation and an operation that tests if a certain counter is zero
and jumps accordingly.

The counters are encoded by the nesting depth of the two object nets depicted
in Figure 7. For a counter cj two places p0j and p1j will exist in the system net,

where p0j is typed with N0 and p1j with N1. Initially each place p0j will hold a
object net of type N0 whose place z0 will be marked by a black token. If the
counter is increased a net token of type N1 is created and the aforementioned net
token will be put into it on place s0. The net-tokens are then either packed into
each other or unpacked from each other depending on the increase or decrease
operation used in the counter program.

Figure 8 shows the net fragments for each of the possible counter program
commands. Note how in the increase operation either a net token of type N0 or
of type N1 is created, depending on the most outer net token currently encoding
the state of the counter. The current net-token is then put into the new one
by use of the channel in0 or in1 again depending on the current state of the
counter. If in the current state of the counter the place p0j is marked, then the
channel in0 is used by synchronizing with the identically named channel in the

net of type N1 residing on q1k. The net of type N0 is taken from p0j transported
down via the channel in0 to the place s0 in the net of type N1. This very net
then ends up at place p1j representing the new state of the counter. Note how
the channel properties of the channel in0 match. Unpacking for the decrease
operation is encoded similarly. The zero test can be easily encoded by trying to
synchronise with the transition in N0 which uses channel zero0. Only the net on
the lowest level has the place z0 marked. Garbage collection (on the lower right
of Figure 8) is only needed to make final markings unique and is not discussed
here.

Details on the construction can be found in [15]. �

Safeness for Object Net Systems. Introducing safeness for ONS and thus
restricting the state space to a finite size is part of current work and we only
want to touch the topic and not go into details.

In general it is a good idea to restrict the size of the state space by introducing
safeness for a given Petri net formalism. Unfortunately due to the nesting depth
the state space might non the less become very big for ONS. It seems that
the reachability problem is far beyond PSpace (for 1-safe p/t nets and also
for safe Eos, a nets-within-nets formalism with only two levels, reachability is
PSpace-complete [5], [16]) and indeed seems to be Exptime-complete.

Definition 3 (Safeness). Let OS be an ONS with initial marking µ0. OS is
safe iff |RSOS (µ0)| <∞, i.e. if the set of reachable markings of OS is finite.

OS is strongly safe iff OS is safe and each net-token is 1-safe, that is, if
|RSOS (µ0)| <∞ and ∀µ ∈ RS(µ0) ∀µ′

a∗
µ ∀p ∈ P : Π1(µ′)(p) ≤ 1

Conjecture 1. The Reachability problem for safe ONS is Exptime-complete.

Additionally forbidding the creation of net-tokens on the other hand gives
us the opportunity to solve the reachability problem in PSpace again. This
restriction is indeed not as severe as it might seem at first glance, because it
simply does not allow the creation or destruction of net-tokens which - if net-
tokens are interpreted as agents - might not be so undesirable at all.

Definition 4. Let OS be an ONS and µ =
∑n
k=1 pk[Mk] be a marking of OS.

With Π3
N (µ) we denote the number of net-tokens of type N present in µ, i.e.

Π3
N (

n∑
k=1

pk[Mk]) =

n∑
k=1

1N (pk) +Π3
N (Mk).

Note that Π3
N (µ) is calculated recursively.

Theorem 2. Let OS be a strongly safe ONS in which no object nets are created
nor destroyed, i.e. if µ, µ′ ∈ RSOS (µ0) and µ′ is an immediate successor of µ,
then Π3

N (µ) = Π3
N (µ′) for all N ∈ N .5 Then the reachability problem is solvable

in PSpace.
5 The firing rule ensures that the object nets are actually the ”same nets.

Proof sketch. Assume that k net-tokens are present in OS . Furthermore for
N ∈ N̂ let PN be the set of places of N . Let n = max{PN | N ∈ N̂} be the
maximal number of places of the involved nets.

We give an (rough) upper bound for the number of reachable markings.
Assume that all net-tokens reside on one system net place p̂. Ignoring the nesting
and in particular the structure of nested tokens and thus only taking into account
if a place of a net-token is marked or not, we have an upper bound of (2n)k = 2n·k

different markings, because each net-token is 1-safe and thus has at most 2n

different markings and because we have k net-tokens.
To give a bound for the number of different nestings, we use Cayley’s formula

according to which the number of different trees on n nodes is nn−2 [4]. Note
that the nesting of the k net-tokens can be represented by forests, i.e. by a set
of trees. The root of each tree represents a net-token residing on p̂. The children
of a node v of the tree represent net-tokens residing in the net-token represented
by v.

At most we have k trees and each of the k net-tokens may be part of one of
those trees, so we have at most kk different trees. In each of these possibilities
we have at most k trees and each tree has at most k nodes, so we have an upper
bound of kk · k · kk−2 < k2k for the number of forests on k nodes (where the last
factor comes from Cayley’s formula).6

Taking the number m := |P̂ | of system net places into account we end up with
at most (k2k · 2nk)m ≤ (k2k · 2nk)n = k2kn · 2nkn = 2log k·2kn · 2nkn < 22kkn+nkn

Now note that 2kkn+ nkn is a polynomial in the input length and thus the
technique Savitch used to prove that PSpace and NPSpace are equal (cf. [21])
is applicable. Since we can furthermore test in polynomial space if a marking is
reachable from another marking and also if a marking is identical to another all
necessary operations are possible in polynomial space in the input length, and
thus the reachability problem is solvable in polynomial space.7 �

The result above can be easily complemented by a proof of PSpace-hardness.
Indeed the proof in [7] that the reachability problem is PSpace-hard for ppGSMs
can be carried over one-to-one to the setting above.

3 A Mobility Logic for Object Nets

In common logics used in formal verification like CTL and LTL statements about
time are possible, e.g. it is possible to ask if a certain state is ever reached or if
all states reached (in time) have a certain property. In the context of modelling
formalisms which allow to model the local distribution of certain objects a logic
which also takes locality into account is highly useful. One then might ask ques-
tions like e.g. if a certain object will be at a certain position at a certain point
in time, or if a certain object will at least be somewhere.

6 This bound is only a rough approximation, but it suffices here.
7 For a more detailed discussion of this technique we direct the reader to [7], where

we also used it to prove that polynomial space suffices to decide reachability for
ppGSMs.

A prominent example for this is the Ambient Calculus and the Ambient Logic
associated with it [2], [1], by which our work is deeply inspired. The ambient
calculus can be used to describe processes which do not only evolve in time, but
also in space. The ambient logic can then be used to express properties of such
processes taking into account both, time and space.

For the object net formalism presented above a similar logic is desirable. In
the example above one could then for example ask the question if it is possible
for an agent to enter a certain vehicle. In the following we devise a Mobility
Logic for Object Net Systems in which satisfaction of formulas will be defined
with regard to a given marking of a given object net system, i.e. OS, µ |= F holds
that the marking µ of the object net system OS satisfies the closed formula F .
We usually omit the ONS OS.

The satisfaction relation ≡ is based on the structural congruence relation.
Intuitively, this relation equalizes markings up to ’commutativity’ and ’associa-
tivity’ of submarkings.

µ ≡ µ
µ ≡ µ′ ⇒ µ′ ≡ µ
µ ≡ µ′, µ′ ≡ µ′′ ⇒ µ ≡ µ′′

µ + µ′ ≡ µ′ + µ
(µ + µ′) + µ′′ ≡ µ + (µ′ + µ′′)
µ + 0 ≡ µ

Formulas are defined inductively by the following grammar:

φ := T | ¬φ | (φ ∨ φ) |
0 | p[φ] | (φ+ φ) |
♦φ | � φ

To define the semantic, let OS be an ONS andM be the set of markings of
OS. The truth of a formula φ as defined above is then given by the recursively
defined relation |= with regard to OS. Note that we used µ

`
µ′ to indicate that

the submarking µ′ is contained in the marking µ within exactly one level of
nesting and that µ

`∗
µ′ means that µ contains µ′ at some nesting level.

∀µ ∈M µ |= T
∀µ ∈M µ |= ¬φ iff µ 6|= φ
∀µ ∈M µ |= (φ1 ∨ φ2) iff µ |= φ1 or µ |= φ2
∀µ ∈M µ |= 0 iff µ ≡ 0
∀µ ∈M µ |= p[φ] iff ∃µ′ ∈M.µ ≡ p[µ′] ∧ µ′ |= φ
∀µ ∈M µ |= (φ1 + φ2) iff ∃µ′, µ′′ ∈M.µ ≡ µ′ + µ′′∧

µ′ |= φ1 ∧ µ′′ |= φ2
∀µ ∈M µ |= ♦φ iff ∃µ′ ∈M.µ

∗−→ µ′ ∧ µ′ |= φ
∀µ ∈M µ |= �φ iff ∃µ′ ∈M.µ

`∗
µ′ ∧ µ′ |= φ

Example 1. We give a few examples for formulas of the mobility logic:

– µ |= (p[T] + T) is true, if the place p is marked in µ at nesting depth 0, that
is µ is congruent to p[µ′] + µ′′, where µ′ and µ′′ are submarkings.

– µ |= ♦(p1[0] + p2[p[0]]) is true, if the place p1 is marked in µ with an empty
net-token (which might also symbolize a black token) and p2 is marked with
an object net whose place p is marked by an empty net-token (or a black
token). In this way the standard reachability problem can be formulated.

– µ |= �p[T] is true if in the marking µ a object net N resides (in some
nesting depth) whose place p is marked (in an arbitrary way). Note that no
other place of N might be marked. To allow this one would use the formula
�(p[T] + T).

– µ |= ♦� p[T] is true if from µ a marking µ′ is reachable that satisfies �p[T]
(see above).

Model Checking the Mobility Logic against ONS. Given an ONS OS ,
a marking µ of OS , and a formula φ of the mobility logic, we want to decide if
OS , µ |= φ holds, i.e. if φ is satisfied in the marking µ of OS .

Since we can easily express reachability with the operator ♦ in the logic, the
problem is undecidable for the general ONS-formalism due to Theorem 1 above.

For the restricted ONS-formalisms which enjoy a finite state space, i.e. for
safe ONS, strongly safe ONS, and for strongly safe ONS, with a constant num-
ber of net-tokens, the question is currently open. We suspect that in the last
case PSpace again suffices and that we need exponential time or exponential
space in the first two cases.

Note that to decide if µ |= �p[T] + T holds, it is sufficient to scan over µ in
linear time and test if p is present somewhere - at least if µ is given as a string
as in our examples. This test should thus be easy to do in a subroutine in a
PSpace-algorithm.

The nesting of operators on the other hand, might complicate things since to
test µ |= ♦�♦φ the formula ♦φ might be true for an object net somewhere which
is reached sometime, but only if this object net is then treated in isolation (and
not taking the other nets into account). So we might have to start subroutines
with different object net systems to decide if certain sub-formulas hold or not.

4 Conclusion and Outlook

The formalisms introduced in this paper, the considered problems, and the re-
sults and conjectures so far are summarized in Table 1 below. The entries with
a question mark are conjectures.

We have introduced a simplified version of the object net formalism from [15],
which still allows the transportation of net-tokens in the vertical dimension,
but which has a much easier firing rule, in particular restricting the transitions
participating in the firing to at most two levels of nesting.

Table 1. The results and conjectures so far.

Reachability Model Checking Mob. Log.

ONS undecidable undecidable

safe ONS Exptime-complete ? Exptime-complete ?

strongly safe ONS Exptime-complete ? Exptime-complete ?

strongly safe ONS with a
constant number of net-tokens

PSpace-complete PSpace-complete ?

We have shown that the formalism remains Turing-complete and have in-
troduced several restrictions of the formalism to a finite state space: safe ONS,
strongly safe ONS, and strongly safe ONS with a constant number of net-tokens.
For the last formalism we have shown that the reachability problem is solvable in
polynomial space, but all these formalisms deserve a more thorough investigation
in the future.

We have then introduced a mobility logic for object net systems which allows
to reason about the nesting and thus about the location of net-tokens. In future
work we want to focus on the model checking problem for this logic and variants
of the object net formalism. We also want to investigate variants of the logic
where reasonable. For example it might be interesting to restrict the allowed
nesting of operators to prevent e.g. formulas of the form ♦� ♦φ.

References

1. Cardelli, L., Gordon, A.D.: Anytime, anywhere. modal logics for mobile ambients.
In: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 365–377. ACM Press (2000)

2. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240,
177–213 (2000)

3. Castagna, G., Vitek, J., Nardelli, F.Z.: The seal calculus. Information and Com-
putation 201, 1–54 (2005)

4. Cayley, A.: A theorem on trees. Quarterly Journal of Pure and Applied Mathe-
matics 23, 376–378 (1889)

5. Esparza, J.: Decidability and complexity of petri net problems – an introduction.
In: Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models, Ad-
vances in Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 374–428.
Springer-Verlag (1998)

6. Haddad, S., Poitrenaud, D.: Theoretical aspects of recursive Petri nets. In: Do-
natelli, S., Kleijn, J. (eds.) Application and Theory of Petri Nets. Lecture Notes
in Computer Science, vol. 1639, pp. 228–247. Springer-Verlag (1999)

7. Heitmann, F., Köhler-Bußmeier, M.: P- and t-systems in the nets-within-nets-
formalism. In: Pomello, L., Haddad, S. (eds.) To Appear in 33rd International
Conference on Application and Theory of Petri Nets and Concurrency. Lecture
Notes in Computer Science, Springer-Verlag (2012)

8. Hiraishi, K.: PN2: An elementary model for design and analysis of multi-agent
systems. In: Arbab, F., Talcott, C.L. (eds.) Coordination Models and Languages,
COORDINATION 2002. Lecture Notes in Computer Science, vol. 2315, pp. 220–
235. Springer-Verlag (2002)

9. Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as
tokens. In: Application and Theory of Petri Nets and Other Models of Concurrency.
Lecture Notes in Computer Science, vol. 3536, pp. 268 – 288. Springer-Verlag (2005)

10. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In:
Colom, J.M., Koutny, M. (eds.) Application and Theory of Petri Nets. Lecture
Notes in Computer Science, vol. 2075, pp. 224–241. Springer-Verlag (2001)

11. Köhler, M., Moldt, D., Rölke, H.: Modelling mobility and mobile agents using nets
within nets. In: v. d. Aalst, W., Best, E. (eds.) Application and Theory of Petri
Nets. Lecture Notes in Computer Science, vol. 2679, pp. 121–140. Springer-Verlag
(2003)

12. Köhler, M., Rölke, H.: Concurrency for mobile object-net systems. Fundamenta
Informaticae 54(2-3) (2003)

13. Köhler, M., Rölke, H.: Properties of Object Petri Nets. In: Cortadella, J., Reisig, W.
(eds.) Application and Theory of Petri Nets. Lecture Notes in Computer Science,
vol. 3099, pp. 278–297. Springer-Verlag (2004)

14. Köhler-Bußmeier, M.: A survey of elementary object systems: Decidability results.
Report of the Department of Informatics, Universität Hamburg (2011)

15. Köhler-Bußmeier, M., Heitmann, F.: On the expressiveness of communication chan-
nels for object nets. Fundamenta Informaticae 93(1-3), 205–219 (2009)

16. Köhler-Bußmeier, M., Heitmann, F.: Safeness for object nets. Fundamenta Infor-
maticae 101(1-2), 29–43 (2010)

17. Lakos, C.: A Petri net view of mobility. In: Formal Techniques for Networked and
Distributed Systems (FORTE 2005). Lecture Notes in Computer Science, vol. 3731,
pp. 174–188. Springer-Verlag (2005)

18. Lomazova, I.A.: Nested Petri nets – a formalism for specification of multi-agent
distributed systems. Fundamenta Informaticae 43(1-4), 195–214 (2000)

19. Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova, N., Voorhoeve,
M.: Nested nets for adaptive systems. In: Application and Theory of Petri Nets and
Other Models of Concurrency. pp. 241–260. Lecture Notes in Computer Science,
Springer-Verlag (2006)

20. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models, Lecture
Notes in Computer Science, vol. 1491. Springer-Verlag (1998)

21. Savitch, W.: Relationship between nondeterministic and deterministic tape com-
plexities. J. on Computer and System Sciences 4, 177–192 (1970)

22. Valk, R.: Modelling concurrency by task/flow EN systems. In: 3rd Workshop on
Concurrency and Compositionality. No. 191 in GMD-Studien, Gesellschaft für
Mathematik und Datenverarbeitung, St. Augustin, Bonn (1991)

23. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Desel, J.,
Reisig, W., Rozenberg, G. (eds.) Advanced Course on Petri Nets 2003. Lecture
Notes in Computer Science, vol. 3098, pp. 819–848. Springer-Verlag (2003)

