
BDD-based Bounded Model Checking for LTLK
over Two Variants of Interpreted Systems?

Artur Mȩski1,2, Wojciech Penczek1,3, and Maciej Szreter1

1 Institute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, Poland
{meski,penczek,mszreter}@ipipan.waw.pl

2 University of Lódź FMCS, Banacha 22, 90-238 Lódź, Poland
3 University of Natural Sciences and Humanities, Institute of Informatics,

3 Maja 54, 08-110 Siedlce, Poland

Abstract We present a novel approach to verification of multi-agent
systems by bounded model checking for Linear Time Temporal Logic
extended with the epistemic component (LTLK). The systems are mod-
elled by two variants of interpreted systems: standard and interleaved
ones. Our method is based on binary decision diagrams (BDD). We de-
scribe the algorithm and provide its experimental evaluation together
with the comparison with another tool. This allows to draw some con-
clusions which semantics is preferable for bounded model checking LTLK
properties of multi-agent systems.

1 Introduction

It is often crucial to ensure that multi-agent systems (MAS) conform to their
specifications and exhibit some desired behaviour. This can be checked in a
fully automatic manner using model checking [5], which is one of the rapidly
developing verification techniques. Model checking has been studied by various
researchers in the context of MAS and different modal logics for specifying MAS
properties [2,7,8,13,15,18,22,23].

When the verification is performed by searching directly through the state
space of the MAS, its size is likely to grow exponentially with the number of
agents, which is known as the state-space explosion problem. Therefore, several
approaches alleviating this problem have been proposed. One of them is bounded
model checking (BMC) [1], in which only a portion of the original model trun-
cated up to some specific depth is considered. This approach can be combined
either with a translation of the verification problem to the propositional sat-
isfiability problem (SAT) [20,13] or with symbolic techniques based on binary
decision diagrams (BDDs) [11].

In this paper we present a novel approach to verification of MAS by BDD-
based bounded model checking for Linear Time Temporal Logic extended with

? Partly supported by National Science Centre under the grant No.
2011/01/B/ST6/05317 and 2011/01/B/ST6/01477.

the epistemic component (LTLK, also called CKLn [8]). The systems are mod-
eled by two variants of Interpreted Systems: standard (IS) [6] and interleaved
ones (IIS) [14]. IIS restrict IS by enforcing asynchronous semantics. This does not
reduce the expressive power of IS, but modifies this popular modelling approach
by bringing the semantics known from verification of concurrent systems like
networks of automata or variants of Petri nets. Our paper shows that the mod-
elling approach has a very strong impact on the efficiency of verification. The
experimental results exhibit that the IIS-based approach can greatly improve
the practical applicability of the bounded model checking method for LTLK.

There has been already some intensive research on BMC for MAS, but
mostly for the properties expressible in CTLK, based either on SAT [20,10]
or on BDDs [11]. A SAT-based verification method for the LTLK properties
of MAS, modeled by IIS, was put forward in [21]. Our technical report [16]
presents a BDD-based approach to verification of LTLK for IIS, while the SAT-
and BDD-based approaches for IIS are compared in [17].

The rest of the paper is organised as follows. Section 2 provides the basic
definitions and notations for LTLK and IS. Our BDD-based BMC method is
described in Section 3. The last two sections contain the discussion of an exper-
imental evaluation of the approach and the final remarks.

2 Preliminaries

In this section we introduce the basic definitions used in the paper. In particular,
we define the semantics of interpreted systems, as well as the syntax and the
semantics of LTLK.

2.1 Formalisms for Modelling Multi-Agent Systems

Interpreted Systems The semantics of interpreted systems provides a setting
to reason about MAS by means of specifications based on knowledge and linear
or branching time. We report here the basic setting as popularised in [6]. We
begin by assuming a MAS to be composed of n agents1 A. We associate a set of
possible local states Li and actions Acti to each agent i ∈ A. We assume that the
special action εi, called “null”, or “silent” action of agent i belongs to Acti; as it
will be clear below the local state of agent i remains the same if the null action
is performed. Also note we do not assume that the sets of actions of the agents
are disjoint. We call Act =

∏
i∈AActi the set of all possible joint actions, i.e.

tuples of local actions executed by agents. We consider a local protocol modelling
the program the agent is executing. Formally, for any agent i, the actions of the
agents are selected according to a local protocol Pi : Li → 2Acti . For each agent i,
we define a relation ti ⊆ Li × Act × Li, where (l, (a1, . . . , an), l) ∈ ti for each
l ∈ Li if ai = εi. A global state g = (g1, . . . , gn) is a tuple of local states for

1 Note in the present study we do not consider the environment component. This may
be added with no technical difficulty at the price of heavier notation.

all the agents corresponding to an instantaneous snapshot of the system at a
given time. Given a global state g = (g1, . . . , gn) we denote by li(g) the local
component gi of agent i ∈ A in g.

For each agent i ∈ A, ∼i ⊆ G×G is an epistemic indistinguishability relation
over global states defined by g ∼i h if li(g) = li(h). Further, let Γ ⊆ A. The
union of Γ ’s accessibility relations is defined as ∼EΓ=

⋃
i∈Γ ∼i. By ∼CΓ we denote

the transitive closure of ∼EΓ , whereas ∼DΓ =
⋂
i∈Γ ∼i.

A global evolution T ⊆ G × Act × G is defined as follows: (g, a, h) ∈ T iff
there exists an action a = (a1, . . . , an) ∈ Act such that for all i ∈ A we have
ai ∈ Pi(li(g)) and (li(g), a, li(h)) ∈ ti. For g, h ∈ G and a ∈ Act s.t. (g, a, h) ∈ T
we write g

a−→ h. We assume that the global evolution relation T is total, i.e.,
for each g ∈ G there exists a ∈ Act and h ∈ G such that g

a−→ h.
An infinite sequence of global states and actions ρ = g0a0g1a1g2 . . . is called

a path originating from g0 if there is a sequence of transitions from g0 onwards,
i.e., gi

ai−→ gi+1 for every i ≥ 0. Any finite prefix of a path is called a run. By
length(ρ) we mean the number of the states of ρ if ρ is a run, and ω if ρ is a path.
In order to limit the indices range of ρ which can be a path or run, we define

the relation �ρ. Let �ρ
def
= < if ρ is a path, and �ρ

def
= ≤ if ρ is a run. A state g is

said to be reachable from g0 if there is a path or a run ρ = g0a0g1a1g2 . . . such
that g = gi for some i ≥ 0. The set of all the paths and runs originating from
g is denoted by Π(g). The set of all the paths originating from g is denoted by
Πω(g).

Definition 1 (Interpreted Systems). Given a set of propositions PV such
that {true, false} ⊆ PV, an interpreted system (IS), also referred to as a model,
is a tuple M = (G, ι,Π, {∼i}i∈A,V), where G is a set of global states, ι ∈ G
is an initial (global) state such that each state in G is reachable from ι, Π =⋃
g∈GΠ(g) is the set of all the interleaved paths and runs originating from all

the states in G, and V : G→ 2PV is a valuation function.

By Πω we denote the set of all the paths of Π.

Interleaved Interpreted Systems We define a restriction of interpreted sys-
tems, called interleaved interpreted systems in which global evolution function is
restricted, so that every agent either executes a shared action or the null action.

We assume that εi ∈ Pi(l), for any l ∈ Li, i.e., we insist on the null action to
be enabled at every local state. For each action a ∈

⋃
i∈AActi by Agent(a) ⊆ A

we mean all the agents i such that a ∈ Acti, i.e., the set of the agents potentially
able to perform a. Then, the global evolution relation T is defined as before, but
it is restricted by the following condition: if (g, a, h) ∈ T then there exists a joint
action a = (a1, . . . , an) ∈ Act, and an action α ∈

⋃
i∈AActi \ {ε1, . . . , εn} such

that: ai = α for all i ∈ Agent(α), and ai = εi for all i ∈ A \ Agent(α). Similar
to blocking synchronisation in automata, the above insists on all the agents
performing the same non-epsilon action in a global evolution; additionally, note
that if an agent has the action being performed in its repertoire it must be
performed for the global evolution to be allowed. This assumes local protocols

are defined in such a way to permit this; if a local protocol does not allow this,
the local action cannot be performed and therefore the global evolution does not
comply with the above definition of interleaving.

2.2 Syntax and Semantics of LTLK

Combinations of linear time with knowledge have long been used in the anal-
ysis of temporal epistemic properties of systems [6]. We now recall the basic
definitions here and adapt them to our purposes when needed.

Definition 2 (Syntax). Let PV be a set of atomic propositions to be interpreted
over the global states of a system, p ∈ PV, q ∈ A, and Γ ⊆ A. Then, the syntax
of LTLK is defined by the following BNF grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ |
Kqϕ | Kqϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ.

The temporal operators U and R are named as usual until and release respec-
tively, X is the next step operator. The epistemic operators Kq , DΓ ,EΓ , and
CΓ represent, respectively, knowledge of agent q , distributed knowledge in the
group Γ , “everyone in Γ knows”, and common knowledge among agents in Γ ,
whereas Kq , DΓ ,EΓ , and CΓ are the corresponding dual ones.

Typically, the semantics of LTLK is defined over paths of a model M only,
whereas our semantics exploits paths and runs. This semantics can be conve-
niently applied also to submodels (to be defined later) in order to verify efficiently
the existential fragment of LTLK over paths and runs.

Definition 3 (Semantics). Given a model M = (G, ι,Π, {∼q}q∈A,V), where
V(s) is the set of propositions that hold at s, let ρ(i) denote the i-th state of a
path or run ρ ∈ Π, and ρ[i] denote the path or run ρ with a designated formula
evaluation position i, where i �ρ length(ρ). Note that ρ[0] = ρ. The formal
semantics of LTLK is defined recursively as follows:

– M,ρ[i] |= p iff p ∈ V(ρ(i)),
– M,ρ[i] |= ¬ϕ iff M,ρ[i] 6|= ϕ,
– M,ρ[i] |= ϕ1 ∧ ϕ2 iff M,ρ[i] |= ϕ1 and M,ρ[i] |= ϕ2,
– M,ρ[i] |= ϕ1 ∨ ϕ2 iff M,ρ[i] |= ϕ1 or M,ρ[i] |= ϕ2,
– M,ρ[i] |= Xϕ iff length(ρ) > i and M,ρ[i+ 1] |= ϕ;
– M,ρ[i] |= ϕ1Uϕ2 iff (∃k ≥ i)[M,ρ[k] |= ϕ2 and (∀i ≤ j < k) M,ρ[j] |= ϕ1],
– M,ρ[i] |= ϕ1Rϕ2 iff [(ρ ∈ Πω(ι) and (∀k ≥ i) M,ρ[k] |= ϕ2] or

(∃k ≥ i)[M,ρ[k] |= ϕ1 and (∀i ≤ j ≤ k) M,ρ[j] |= ϕ2],
– M,ρ[i] |= Kqϕ iff (∀ρ′ ∈ Πω(ι))(∀k ≥ 0)[ρ′(k) ∼q ρ(i) implies M,ρ′[k] |= ϕ],
– M,ρ[i] |= Kqϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼q ρ(i) and M,ρ′[k] |= ϕ],
– M,ρ[i] |= YΓϕ iff (∀ρ′∈Πω(ι))(∀k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) implies M,ρ′[k] |= ϕ],
– M,ρ[i] |= YΓϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) and M,ρ′[k] |= ϕ],
where Y ∈ {D,E,C}.

Let g ∈ G and ϕ be an LTLK formula. We use the following notations:

– M, g |= ϕ iff M,ρ[0] |= ϕ for all the paths ρ ∈ Πω(g);
– M |= ϕ iff M, ι |= ϕ;
– Props(ϕ) is the set of atomic propositions appearing in ϕ.

LTL is the sublogic of LTLK which consists only of the formulae built without
the epistemic operators. ELTLK is the existential fragment of LTLK, defined
by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Kqϕ | EΓϕ | DΓϕ | CΓϕ.

Moreover, an ELTLK formula ϕ holds in the model M , denoted M |=∃ ϕ, iff
M,ρ[0] |= ϕ for some path or run ρ ∈ Π(ι). The intuition behind this definition is
that ELTLK is obtained only by restricting the syntax of the epistemic operators
while the temporal ones remain the same. We get the existential version of these
operators by the change from the universal quantification over the paths (|=) to
the existential quantification (|=∃) over the paths and the runs in the definition
of the validity in the model M . Notice that this change is only necessary when
ϕ contains a temporal operator, which is not nested in an epistemic operator.

Our semantics meets two important properties. Firstly, for LTL the definition
of validity in a model M uses paths only. Secondly, if we replace each Π with
Πω, the semantics does not change as our models have total transition relations
(each run is a prefix of some path). The semantics applied to submodels of M
does not have the above property, but it preserves ELTLK over M , which is
shown in Lemma 1.

3 BDD-based BMC for ELTLK

In this section we show how to perform BMC of ELTLK using BDDs [5] by
combining the standard approach for ELTL [4] with the method for the epistemic
operators [22] in a similar manner to the solution for CTL∗ of [5].

Let PV be a set of propositions. For an ELTLK formula ϕ we define induc-
tively the number γ(ϕ) of nested epistemic operators in the formula:

– if ϕ = p, where p ∈ PV, then γ(ϕ) = 0,
– if ϕ = �ϕ′ and � ∈ {¬,X}, then γ(ϕ) = γ(ϕ′),
– if ϕ = ϕ′ � ϕ′′ and � ∈ {∧,∨,U,R}, then γ(ϕ) = γ(ϕ′) + γ(ϕ′′),
– if ϕ = Yϕ′ and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, then γ(ϕ) = γ(ϕ′) + 1.

Let Y ∈ {Kq ,EΓ ,DΓ ,CΓ }. If ϕ = Yψ is an ELTLK formula, by sub(ϕ) we
denote the formula ψ nested in the epistemic operator Y. Moreover, for an
arbitrary ELTLK formula ϕ we define inductively the set Y(ϕ) of its subformulae
in the form Yψ:

– if ϕ = p, where p ∈ PV, then Y(ϕ) = ∅,
– if ϕ = �ϕ′ and � ∈ {¬,X}, then Y(ϕ) = Y(ϕ′),
– if ϕ = ϕ′ � ϕ′′ and � ∈ {∧,∨,U,R}, then Y(ϕ) = Y(ϕ′) ∪ Y(ϕ′′),
– if ϕ = Yϕ′ and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, then Y(ϕ) = Y(ϕ′) ∪ {ϕ}.

Definition 4. Let M = (G, ι,Π, {∼q}q∈A,V) and U ⊆ G with ι ∈ U . The
submodel generated by U is a tuple M |U = (U, ι,Π ′, {∼′q}q∈A,V ′), where: ∼′q=
∼q ∩ U2 for each q ∈ A, V ′ = V ∩ U2, and Π ′ is the set of the paths and
runs of M having all the states in U , formally, Π ′ = {ρ ∈ Π | (∀0 ≤ i �ρ
length(ρ)) ρ(i) ∈ U}.

For ELTLK formulae ϕ,ψ, and ψ′, by ϕ[ψ ← ψ′] we denote the formula ϕ in
which every occurrence of ψ is replaced with ψ′. Let M = (G, ι,Π, {∼q}q∈A,V)
be a model, then by VM we understand the valuation function V of the model
M , and by GR ⊆ G the set of its reachable states. Moreover, we define [[M,ϕ]] =
{g ∈ GR |M, g |=∃ ϕ}.

Reducing ELTLK to ELTL. Given a model M = (G, ι,Π, {∼q}q∈A,V),
and an ELTLK formula ϕ, Algorithm 1 is used to compute the set [[M,ϕ]],
under the assumption that we have the algorithms for computing this set for
each ϕ being an ELTL formula or in the form Yp, where p ∈ PV, and Y ∈
{Kq ,EΓ ,DΓ ,CΓ } (we use the algorithms from [4] and [22], respectively). In
order to obtain this set, we construct a new model Mc together with an ELTL
formula ϕc, as described in Algorithm 1, and compute the set [[Mc, ϕc]], which
is equal to [[M,ϕ]]. Initially ϕc equals ϕ, which is an ELTLK formula, and we
process the formula in stages to reduce it to an ELTL formula by replacing with
atomic propositions all its subformulae containing epistemic operators. We begin
by choosing some epistemic subformula ψ of ϕc, which consists of exactly one
epistemic operator, and process it in two stages. First, we modify the valuation
function of Mc such that every state initialising some path or run along which
sub(ψ) holds is labelled with the new atomic proposition psub(ψ), and we replace
with the variable psub(ψ) every occurrence of sub(ψ) in ψ. In the second stage,
we deal with the epistemic operators having in their scopes atomic propositions
only. By modifying the valuation function of Mc we label every state initialising
some path or run along which the modified simple epistemic formula ψ holds with
a new variable pψ. Similarly to the previous stage, we replace every occurrence
of ψ in ϕc with pψ. In the subsequent iterations, we process every remaining
epistemic subformulae of ϕc in the same way until there are no more nested
epistemic operators in ϕc, i.e., we obtain an ELTL formula ϕc, and the model
Mc with the appropriately modified valuation function. Finally, we compute the
set of all reachable states of Mc that initialise at least one path or run along
which ϕc holds (line 13). The correctness of the substitution used in Algorithm 1
is stated by the following proposition:

Proposition 1. Let M = (G, ι,Π, {∼q}q∈A,V) be a model, ϕ an ELTLK
formula, and ρ ∈ Π some path or run with an evaluation position such that
m�ρ length(ρ). We define p ∈ PV such that M,ρ′[m′] |= p iff M,ρ′[m′] |= ϕ for
all ρ′ ∈ Π(ι), where m′ �ρ′ length(ρ′). Then, M,ρ[m] |= Yϕ iff M,ρ[m] |= Yp,
where Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, and q ∈ A, Γ ⊆ A.

Proof. Straightforward from the semantics of ELTLK.

Algorithm 1. Computation of [[M,ϕ]]

1: Mc := M , ϕc := ϕ
2: while γ(ϕc) 6= 0 do
3: pick ψ ∈ Y(ϕc) such that γ(ψ) = 1
4: for all g ∈ [[Mc, sub(ψ)]] do
5: VMc(g) := VMc(g) ∪ {psub(ψ)}
6: end for
7: ψ := ψ[sub(ψ)← psub(ψ)]
8: for all g ∈ [[Mc, ψ]] do
9: VMc(g) := VMc(g) ∪ {pψ}

10: end for
11: ϕc := ϕc[ψ ← pψ]
12: end while
13: return [[Mc, ϕc]]

Algorithm 2. BMC algorithm

1: Reach := {ι},New := {ι}
2: while New 6= ∅ do
3: Next := New;

4: if ι ∈ [[M |Reach, ϕ]] then
5: return true
6: end if
7: New := Next \Reach
8: Reach := Reach ∪New
9: end while

10: return false

BMC Algorithm. To perform bounded model checking of an ELTLK formula,
we use Algorithm 2. Given a model M and an ELTLK formula ϕ, the algorithm
checks if there exists a path or run initialised in ι on which ϕ holds, i.e., if

M, ι |=∃ ϕ. For any X ⊆ G by X;
def
= {g′ ∈ G | (∃g ∈ X)(∃ρ ∈ Π(g)) g′ = ρ(1)}

we define the set of the immediate successors of all the states in X. The algorithm
starts with the set Reach of reachable states that initially contains only the
state ι. With each iteration the verified formula is checked (line 4), and the set
Reach is extended with new states (line 8). The algorithm operates on submodels
M |Reach generated by the set Reach to check if the initial state ι is in the set of
states from which there is a path or run on which ϕ holds. The loop terminates if
there is such a path or run in the obtained submodel, and the algorithm returns
true (line 5). The search continues until no new states can be reached from the
states in Reach. When we obtain the set the of reachable states, and a path or
run from the initial state on which ϕ holds could not be found in any of the
obtained submodels, the algorithm terminates returning false.

The correctness of the results obtained by the bounded model checking al-
gorithm is formulated by the following lemma:

Lemma 1. Let M = (G, ι,Π, {∼q}q∈A,V) be a model, ϕ an ELTLK formula,
and ρ ∈ Π a path or run with an evaluation position m such that m�ρ length(ρ).
Then, M,ρ[m] |= ϕ iff exists G′ ⊆ G such that ι ∈ G′, and M |G′ , ρ[m] |= ϕ.

Proof. “⇒” This way the proof is obvious as we simply take G′ = G.
“⇐” This way the proof is more involved. It is by induction on the length of a
formula ϕ. The base case is straightforward, as the lemma follows directly for
the propositional variables and their negations. Assume, the statement holds for
all the proper subformulae of ϕ. Let G′ ⊆ G be a set of states such that M |G′

contains ρ, and (*) M |G′ , ρ[i] |= ϕ, where i ∈ IN.

1. Let ϕ = α ∨ β. By the semantics and the assumption (*), M |G′ , ρ[i] |=
α or M |G′ , ρ[i] |= β. Using the induction hypothesis and the definition of

submodel (Def. 4), ρ exists also in the model M , and M,ρ[i] |= α or M,ρ[i] |=
β, thus M,ρ[i] |= α ∨ β.

2. Let ϕ = α ∧ β. By the semantics and the assumption (*), M |G′ , ρ[i] |= α
and M |G′ , ρ[i] |= β. Using the induction hypothesis and the definition of
submodel, ρ exists also in the model M . Therefore, M,ρ[i] |= α and M,ρ[i] |=
β, thus M,ρ[i] |= α ∧ β.

3. Let ϕ = Xα. By the semantics and the assumption (*), length(ρ) > i, and
M |G′ , ρ[i + 1] |= α. Using the induction hypothesis and the definition of
submodel, we get that ρ exists also in M , and M,ρ[i + 1] |= α, therefore
M,ρ[i] |= Xα.

4. Let ϕ = αUβ. By the semantics and the assumption (*), there exists k ≥ i,
such that M |G′ , ρ[k] |= β, and M |G′ , ρ[j] |= α, for all i ≤ j < k. Using the
induction hypothesis and the definition of submodel, we get that ρ exists
also in M . Therefore, from M,ρ[k] |= β, and M,ρ[j] |= α for all i ≤ j < k,
it follows that M,ρ[i] |= αUβ.

5. Let ϕ = αRβ. By the semantics and the assumption (*) we have one or both
of the following cases:

(a) ρ is a path of M |G′ , and M |G′ , ρ[k] |= β for all k ≥ i, then from the defi-
nition of submodel, ρ exists also in M , and ρ ∈ Πω. Using the induction
hypothesis, we have that M,ρ[k] |= β for all k ≥ i. Therefore, it follows
that M,ρ[i] |= αRβ.

(b) There exists k ≥ i such that M |G′ , ρ[k] |= α, and M |G′ , ρ[j] |= β for all
i ≤ j ≤ k. From the definition of submodel, ρ also exists in M , and using
the induction hypothesis we get that M,ρ[k] |= α, and M,ρ[j] |= β for
all i ≤ j ≤ k. Thus, M,ρ[i] |= αRβ.

6. Let q ∈ A, and ϕ = Kqα. By the semantics and the assumption (*), there
exists such a path or run ρ′ in M |G′ that ρ′(k) ∼q ρ(i) for some k ≥ 0, and
M |G′ , ρ′[k] |= α. From the definition of submodel, ρ and ρ′ also exist in M .
Using the induction hypothesis, we get that M,ρ′[k] |= α and ρ′(k) ∼q ρ(i).
Thus, M,ρ[i] |= Kqα.

7. Let Γ ⊆ A, and ϕ = YΓα, where Y ∈ {D,E,C}. By the semantics and the
assumption (*), there exists such a path or run ρ′ in M |G′ that ρ′(k) ∼Y

Γ ρ(i)
for some k ≥ 0, and M |G′ , ρ′[k] |= α. From the definition of submodel, ρ and
ρ′ also exist in M . Using the induction hypothesis, we get that M,ρ′[k] |= α
and ρ′(k) ∼Y

Γ ρ(i). Thus, M,ρ[i] |= YΓα.

Model Checking ELTL. To compute the sets of states corresponding to the
ELTL formulae, needed in Algorithm 1, we use the method described in [4] and
based on checking the non-emptiness of Büchi automata. Given a model M and
an ELTL formula ϕ, we begin with constructing the tableau for ϕ (as described
in [4]), that is then combined with M to obtain their product, which contains
these paths of M where ϕ potentially holds. Next, the product is verified in terms
of the CTL model checking of EGtrue formula under fairness constraints. Those
constraints, corresponding to sets of states, allow to choose only the paths of the
model, along which at least one state in each set representing fairness constraints

appears in a cycle. In case of ELTL model checking, fairness guarantees that
ϕUψ really holds, i.e., eliminates the paths where ϕ holds continuously, but
ψ never holds. Finally, we choose only these reachable states of the product
that belong to some particular set of states computed for the formula. The
corresponding states of the verified system that are in this set, comprise the set
[[M,ϕ]], i.e., the reachable states where the verified formula holds. As we are
unable to include more details (due to the page limit), we refer the reader to [4].

The method described above has some limitations when used for BMC, where
it is preferable to detect counterexamples using not only the paths but also the
runs of the submodel. As totality of the transition relation of the verified model is
assumed, counterexamples are found only along the paths of the model. However,
this remains correct even if the final submodel only has the total transition
relation: in the worst case the detection of the counterexample is delayed to the
last iteration, i.e., when all the reachable states are computed. Nonetheless, this
should not keep us from assessing the potential efficiency of our approach.

Model Checking Epistemic Modalities. In order to verify the formulae of
the form Yp, where p ∈ PV, and Y ∈ {Kq ,EΓ ,DΓ ,CΓ }, we use the algorithms
described in [22]. The procedures simply follow from the semantics of ELTLK.
The algorithm for CΓ involves a fix point computation, whereas for the remaining
operators the algorithms are based on simple non-iterative computations.

4 Experimental Results

In this section we consider three scalable systems which we use to evaluate the
efficiency of our BDD-based BMC for LTLK over two variants of Interpreted
Systems: IS and IIS. We also compare our results with the ones obtained using
MCK. The tool MCK2 enables fair comparisons for IS semantics, as according
to the manual it supports SAT-based BMC for CTL∗K. Unfortunately, no the-
ory behind this implementation has ever been published. The paper [10], which
describes SAT-based BMC for CTLK, does not discuss how this approach can
be extended to CTL∗K.

The tests have been performed on a computer fitted with Intel Xeon 2 GHz
processor and 4 GB of RAM, running Linux 2.6. Our methods are implemented
with reordering, and with the fixed interleaving order of the BDD variables. The
reordering is performed by the Rudell’s sifting algorithm available in CUDD
library, used for manipulating BDDs.

The specifications for the described benchmarks are given in the universal
form, for which we verify the corresponding counterexample formula, i.e., the
formula which is negated and interpreted existentially. Moreover, for every spec-
ification given, there exists a counterexample. With i(n) and iI(n) we denote the
number of iterations needed by our algorithms for IS and IIS, respectively, to find

2 http://cgi.cse.unsw.edu.au/~mck/mcks/docDownload/manual, version 0.5.1 was
used as the newer 1.0.0 is provided only for 32-bit machines.

the counterexample, where n is the scaling parameter. The detailed descriptions
of our experiments together with the specifications for the systems used, can be
found at the web page of Verics.3 The memory and the time consumption are
shown in the respective figures as the functions of the scaling parameter for each
benchmark. Note that the figures are presented in a logarithmic scale.

4.1 Benchmarks

Faulty Generic Pipeline Paradigm (FGPP) (adapted from [19]) consists
of Producer, Consumer, and a chain of n intermediate Nodes transmitting data,
together with a chain of n Alarms enabled when some error occurs. We consider
the following specifications:
ϕ1 = G(ProdSend→ KCKPConsReady)), ϕ2 = G(Problemn → (F(Repairn)∨
G(AlarmnSend))), ϕ3 =

∧n
i=1 G(Problemi → (F(Repairi)∨G(AlarmiSend))),

and ϕ4 =
∧n
i=1 G(KP (Problemi → (F(Repairi) ∨ G(AlarmiSend)))). The for-

mula ϕ1 (i(n) = iI(n) = 2n+ 3) states that if Producer produces a commodity,
then Consumer knows that Producer does not know that Consumer has the
commodity. The formula ϕ2 (i(n) = iI(n) = 2n+ 4) expresses that each time a
problem occurs at node n, then either it is repaired or the alarm of node n rings.
The formula ϕ3 (iI(n) = 8, i(n) = 2n + 4) expresses that each time a problem
occurs on a node, then either it is repaired or the alarm rings. The formula, ϕ4

(iI(n) = 5, i(n) = 8) expresses that Producer knows that each time a problem
occurs on a node, then either it is repaired or the alarm rings.

A faulty train controller system (FTC) (adapted from [9]) consists of a
controller and n trains (for n ≥ 2), one of which is dysfunctional. We consider
the following specifications: ϕ1 = G(InTunnel1 → KTrain1

(
∧n
i=2 ¬InTunneli)),

and ϕ2 = G(KTrain1

∧n
i=1,j=2,i<j ¬(InTunneli ∧ InTunnelj). The formula ϕ1

(iI(n) = 5, i(n) = 8) expresses that whenever a train is in the tunnel, it knows
that the other trains are not. The formula ϕ2 (iI(n) = 5, i(n) = 7) represents
that trains are aware of the fact that they have exclusive access to the tunnel.

Dining Cryptographers (DC) [3] is a scalable anonymity protocol, which
has been formalised and analysed in many works, e.g., [12,15]. We consider
the following specifications: ϕ1 = G(odd ∧ ¬paid1 →

∨n
i=2 K1(paidi)), ϕ2 =

G(¬paid1 → K1(
∨n
i=2 paidi)), ϕ3 = G(odd → C1,...,n¬(

∨n
i=1 paidi)). The for-

mula ϕ1 (iI(n) = 4n + 2, i(n) = 3) expresses that always when the number of
uttered differences is odd and the first cryptographer has not paid for dinner,
then he knows the cryptographer who paid for dinner. The formula ϕ2 (iI(n) = 2,
i(n) = 3) states that it is always true that if the first cryptographer has not paid
for dinner, then he knows that some other cryptographer pays. The formula ϕ3

(iI(n) = 4n+ 2, i(n) = 3) states that always when the number of uttered differ-
ences is odd, then it is common knowledge of all the cryptographers that none
of the cryptographers has paid for dinner.

3 http://verics.ipipan.waw.pl/r/2is

4.2 Performance Evaluation

 10

 100

 1000

 10000

 1 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time for FGPP, formula 1

 10

 100

 1000

 1 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time for FGPP, formula 2

 10

 100

 1000

 10000

 1 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, formula 3

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time for FGPP, formula 3

Comparing IS algorithms, in most cases MCK is better than VerICS-IS, but
remains close when looking at the orders of magnitude. The reason for better
performance of MCK may come from the fact that it is based on the translation

 10

 100

 1000

 10000

 1 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

Memory usage for FGPP, formula 4

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

T
im

e
 i
n

 s
e

c
.

Number of Nodes

Total time for FGPP, formula 4

 10

 100

 1000

 10000

 1 10 100 1000

M
e

m
o

ry
 i
n

 M
B

Number of trains

Memory usage for a FTC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for a FTC, formula 1

 10

 100

 1000

 10000

 1 10 100 1000

M
e

m
o

ry
 i
n

 M
B

Number of trains

Memory usage for a FTC, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC

 0.01

 0.1

 1

 10

 100

 1000

 1 10 100 1000

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for a FTC, formula 2

 10

 100

 1000

 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Cryptographers

Memory usage for DC, formula 1

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n

 s
e

c
.

Number of Cryptographers

Total time for DC, formula 1

 10

 100

 1000

 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Cryptographers

Memory usage for DC, formula 2

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n

 s
e

c
.

Number of Cryptographers

Total time for DC, formula 2

 10

 100

 1000

 10 100

M
e

m
o

ry
 i
n

 M
B

Number of Cryptographers

Memory usage for DC, formula 3

VerICS-IIS, fixed order
VerICS-IIS, reordered
VerICS-IS, fixed order

MCK-BMC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100

T
im

e
 i
n

 s
e

c
.

Number of Cryptographers

Total time for DC, formula 3

to SAT, and SAT-based BMC does not need to store the whole examined part
of the state space.

For most of the considered benchmarks the VerICS-IIS method is superior to
the two IS approaches: MCK and VerICS-IS, sometimes even by several orders
of magnitude. This can be observed especially in the case of FTC. However,
in the case of FGPP and ϕ3 with no epistemic modalities, MCK proved to be
more efficient, but for the formula ϕ4 containing the K operator, VerICS-IIS was
superior. This can be justified by the fact that introducing epistemic modalities
partitions the ELTL verification task into several smaller ones.

In the case of IIS, the reordering of the BDD variables does not cause any
significant change of the performance in the case of FGPP and FTC, but for DC
it reduces the memory consumption. Therefore, for IIS the fixed interleaving
order we used can often be considered optimal. The penalty in the verification
time to reorder the variables, in favour of reducing memory consumption, is also
not significant and can be worth the tradeoff. However, in the case of IS the
performance did not change, thus we include only the results for the fixed order
of the variables for VerICS-IS.

It is important to note that from our comparison of [17] it follows that in
the case of IIS, the general performance of BDD-based approach is superior
to the SAT-based one. Therefore, we can conclude now that BMC for LTLK
is less efficient for IS when comparing with IIS. This could be explained by the
different structure of the state space, which for IS is more dense, i.e., more states

are explored at every iteration of the BMC algorithm. The case of DC shows
that this factor can be more important than the lengths of the counterexamples,
which can be shorter for IS, or may even be of constant length when scaling the
system.

5 Final Remarks

We have proposed, implemented, and experimentally evaluated our BDD-based
BMC algorithms for LTLK over two variants of Interpreted Systems: standard
and interleaved ones. The experimental results show that the approach based
on the interleaved Interpreted Systems can greatly improve the practical appli-
cability of the bounded model checking method. Although, we have tested only
properties of LTLK, we can expect to obtain similar results for other specifi-
cation formalisms. Moreover, contrary to the SAT-based method of MCK and
of [21], our BDD-based BMC is complete, i.e., it can also be easily used to verify
that existential properties are false in the considered model.

In the future we are going to extend the presented algorithms to handle also
the CTL∗K properties. Since our implementation is in its preliminary stage, we
also need to improve it in many ways, e.g., it should be investigated in the case
of the non-interleaving semantics whether a different strategy for finding good
BDD variables ordering would improve the results.

Our results are preliminary and the comparison is by no means complete. It
ignores the fact that some formulae can give different verification results for each
of the considered semantics, e.g., in the presence of the next-state operator X.
However, we believe our results can be viewed as a justification and a starting
point for further research on the subject.

References

1. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Highly Dependable Software, volume 58 of Advances in Computers.
Academic Press, 2003. Pre-print.

2. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model check-
ing multi-agent programs with CASP. In Proc. of the 15th Int. Conf. on Com-
puter Aided Verification (CAV’03), volume 2725 of LNCS, pages 110–113. Springer-
Verlag, 2003.

3. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65–75, 1988.

4. E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
In Proc. of the 6th Int. Conf. on Computer Aided Verification (CAV’94), volume
818 of LNCS, pages 415–427. Springer-Verlag, 1994.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. R. Fagin, J. Y. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, 1995.
7. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.

In Proc. of the 16th Int. Conf. on Computer Aided Verification (CAV’04), volume
3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

8. W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
Proc. of the 9th Int. SPIN Workshop (SPIN’02), volume 2318 of LNCS, pages
95–111. Springer-Verlag, 2002.

9. W. van der Hoek and M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

10. X. Huang, C. Luo, and R. van der Meyden. Improved bounded model checking for
a fair branching-time temporal epistemic logic. In Proc. of 6th Int. Workshop on
Model Checking and Artificial Intelligence 2010, LNAI. Springer, 2011.

11. A. V. Jones and A. Lomuscio. Distributed bdd-based bmc for the verification of
multi-agent systems. In AAMAS, pages 675–682, 2010.

12. M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and
M. Szreter. Comparing BDD and SAT based techniques for model checking
Chaum’s dining cryptographers protocol. Fundam. Inform., 72(1-2):215–234, 2006.

13. M. Kacprzak, A. Lomuscio, and W. Penczek. From bounded to unbounded model
checking for temporal epistemic logic. Fundam. Inform., 63(2-3):221–240, 2004.

14. Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu. Partial order reduction
for model checking interleaved multi-agent systems. In AAMAS, IFAAMAS Press.,
pages 659–666, 2010.

15. R. van der Mayden and K. Su. Symbolic model checking the knowledge of the
dining cryptographers. In Proc. of the 17th IEEE Computer Security Foundations
Workshop (CSFW-17), pages 280–291. IEEE Computer Society, June 2004.

16. A. Mȩski, W. Penczek, and M. Szreter. Bounded model checking linear time and
knowledge using decision diagrams. In Proc. of the Int. Workshop on Concurrency,
Specification and Programming (CS&P’11), pages 363–375, 2011.

17. A. Mȩski, W. Penczek, M. Szreter, B. Woźna-Szcześniak, and A. Zbrzezny.
Bounded model checking for knowledge and linear time. In Proceedings of the
11th AAMAS. IFAAMAS Press, 2012. To appear.

18. R. van der Meyden and N. V. Shilov. Model checking knowledge and time in
systems with perfect recall. In Proc. of the 19th Conf. on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’99), volume 1738 of
LNCS, pages 432–445. Springer-Verlag, 1999.

19. D. Peled. All from one, one for all: On model checking using representatives. In
Proc. of the 5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697
of LNCS, pages 409–423. Springer-Verlag, 1993.

20. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundam. Inform., 55(2):167–185, 2003.

21. W. Penczek, B. Woźna-Szcześniak, and A. Zbrzezny. Towards SAT-based BMC
for LTLK over interleaved interpreted systems. In Proc. of the Int. Workshop on
Concurrency, Specification and Programming (CS&P’11), pages 565–576, 2011.

22. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by
model checking via OBDDs. Journal of Applied Logic, 5(2):235–251, 2007.

23. K. Su, Abdul Sattar, and Xiangyu Luo. Model checking temporal logics of knowl-
edge via OBDDs. The Computer Journal, 50(4):403–420, 2007.

