
Analysing SONAR Model Transformations

Michael Köhler-Bußmeier

University of Hamburg, Department for Informatics
Vogt-Kölln-Str. 30, D-22527 Hamburg
koehler@informatik.uni-hamburg.de

Abstract. In this paper we study the space of organisation models that
are reachable via model transformation in our Sonar-framework.

The space of organisation models is defined as a Petri net, where each
reachable marking represents one Sonar-organisation model and each
transitions represent a model transformation.

Keywords: multi-agent systems, organisation centred design, model
transformation, Petri net, Sonar

1 Introduction

In virtual enterprises different partners, called agents, cooperate within an or-
ganisational setting. A major research focus for multi-agent systems (MAS) is
the coordination of self-interested agents. Recent work puts emphasis on the or-
ganisation, that enables the teamwork of agents (cf. [1, 2] for an overview). Team-
work includes aspects like team formation, team planing (distributed problem
solving), and coordinated plan execution.

The interdisciplinary field socionics [3], situated between sociology and com-
puter science, emphasises the interplay of the macro level (i.e. the organisation)
and the micro level (i.e. the agent), i.e. an organisation is not only a passive
structure that provides a guiding frame for the teamwork – with the same right
one could define it the other way around: The organisation is the dynamic entity
that evolves in the context of the interaction of agents. In analogy to the notion
of teamwork we like to coin this dynamics as orgwork.

Our in-depth discussion of the interplay of agents and organisations shows
that both are active entities (cf. [4]), which influence each other at the same
time. The conceptual background is a little bit different from the mainstream
in organisation-centred MAS: While both agree on the fact that organisations
are entities that are not static, but evolve, organisation-centred MAS motivate
this aspect from the desire to allow some kind of adaption at the organisation
level, while in socionics agents and organisations are instantiations of the same
concept, which naturally implies that organisation plan, learn, adapt, etc. like
agents do. Since agents and organisations are essentially the same, we are free
to describe a system either from the agent-perspective, from the organisation-
perspective, or from their interplay-perspective. We will concentrate on the
interplay-perspective in the following, i.e. the orgwork.

In this presentation we show how the orgwork is modelled in our Sonar-
framework (short for: Self-Organising Net ARchitecture). The teamwork aspects
of Sonar have been studied in [5]. The orgwork aspects of Sonar are devoted
to distributed model transformations. Note, that in Sonar teamwork and org-
work are entangled, i.e. model transformations are not independent from agent
interactions – they are the other side of the coin. Each teamwork is an orgwork,
as it generates a transformation. From the organisation perspective one could
say that the organisation learns during the model transformation.

We already have a rich theoretical basis for the teamwork, which is based on
Petri nets [6]: Teams are unfoldings of delegation nets, plans are unfoldings of
multi-party workflow nets, etc. In this paper, we demonstrate that model trans-
formations could also be handled within the Petri net theory. For this purpose, we
introduce so called meta-organisation nets. The marking of a meta-organisation
net describes an organisation model, the firing of a meta-transition describes
a model transformation. This might seem a little bit unusual, since most ap-
proaches specify model transformations within a graph rewriting context [7].
Here, we advocate for a Petri net based approach due to the following reasons:
(i) We like to have only one type of formalism in Sonar to obtain an integrated,
lean formal setting and (ii) we like team- and orgwork to be executed by the same
engine (here: Renew). It turns out, that many interesting properties of transfor-
mations could be formulated as natural net properties. Therefore, we could rely
on well established analysis tools to investigate the space of all transformations.

The paper has the following structure: Section 2 introduces the Sonar-
framework. Section 3 presents how the team-/org-work is generated from a
Sonar-model. Analogously, Section 4 defines meta-organisation nets, which are
used to specify the org-work. In Section 5 we define a simple logic to define or-
ganisation policies, i.e. properties, which have to be fulfilled by an organisation
model and have to be preserved by the transformations. We show how meta or-
ganisation nets can be analysed to check properties of the space of organisation
transformations.

2 The SONAR Framework

In this section we give a short introduction into our modelling formalism, called
Sonar. A Sonar-model encompasses (i) a data ontology, (ii) a set of interac-
tion models (called distributed workflow nets), (iii) a model, that describes the
team-based delegation of tasks (called role/delegation nets), (iv) a network of
organisational positions, and (v) transformation rules.

2.1 Distributed Workflows, Roles and Services

In the following we ignore the colour of of workflow tokens and restrict ourselves
to black tokens and skip the discussion of the data ontology. In the following we
fix a set of roles R. A distributed workflow net (Dwfn) D = (P, T, F, r : T → R)
is a multi-party version of the well-known workflow nets [8] where the parties

are called roles. Each transition of a distributed workflow net is mapped by r to
a role with the meaning that a transition t can executed only by an agent that
implements the role r(t).

Let R(D) be the set of roles used by D, i.e. R(D) := r(TD). For each
set of roles R ⊆ R(D) we can construct the subnet D[R] = (PR, TR, FR)
of D = (PD, TD, FD) (called the role-component generated by R) by setting
TR := r−1(R), PR := (•TR∪TR

•), and FR := FD∩(PR∪TR)
2. All message places

become places at the border of D[R]. Each partition R1, . . . , Rk on the set of
roles in D also decomposes D into its role-components: D = D[R1]‖ . . . ‖D[Rk].
The role-component D[R] defines the service provided by D w.r.t. the roles R.
For singletons D[{r}] we write D[r].

Fig. 1. Refined Distributed Workflow

D[R] ≃ D′[R′] denotes the fact that a component D[R] cannot distinguished
from another component D′[R′] with the same interface. This is formalised as
a bisimulation with respect to the input/output behaviour at the message in-
terface. The Dwfn PC 2 in Figure 1 shows such a refinement, where the role
Consumer of another DFWN PC (not shown here) has been refined by the
interaction of the three roles Consumer1, Decision Maker , and Consumer2.
The fact that the consumer part PC [Consumer] is i/o-bisimlar to the part
PC 2[Consumer1,Decision Maker ,Consumer2] is denoted:

PC [Consumer] ≃ PC 2[Consumer1,Decision Maker ,Consumer2]

Let D be a set of DWF nets. Then, (R,D, ≃) is called a Dwfn repository.

2.2 The Formal Organisation

Assume that A is the set of agents. On the conceptual level we define the tasks
the organisation is responsible for and how they are handled. In Sonar, organ-
isation is a net, where each place is of the form p = taskaD[R], which describes a

task for the agent a to establish the service D[R]. Each transition t is either a
delegation, a split, a refinement, or an execution operation (cf. Fig. 2):1

1. Delegate: The task to implement Dwfn D[r] is delegated from agent a to b.
Only the delegation operation delegates the ownership of a task.

2. Split: The Dwfn D[r1, . . . , rn] is split into the component D[r1], . . . , D[rn].
Note, that this operation does not alter the interaction behaviour since
D[r1, . . . , rn] ≃ (D[r1]‖ · · · ‖D[rn]).

3. Refinement: The Dwfn D[r] is replaced by D′[r1, . . . , rn], which has to be
a refinement, i.e. D[r] ≃ D′[r1, . . . , rn] must hold.

4. Execution: The Dwfn D[r] is executed by the agent that is responsible for
the task.

The set of all tasks and operations is defined as follows:

P := {taskaD[R] | D ∈ D ∧R ⊆ R(D), a ∈ A}

Tdeleg :=
{

d({taskaD[r]}, {task
b
D[r]})

∣

∣

∣
D ∈ D ∧ r ∈ R(D) ∧ a, b ∈ A ∧ a 6= b

}

Tsplit :=
{

s({taskaD[r1,...,rn]}, {task
a
D[r1], . . . , task

a
D[rn]})

∣

∣ D ∈ D ∧ {r1, . . . , rn} ⊆ R(D) ∧ n > 1 ∧ a ∈ A
}

Trefine :=
{

r({taskaD[r]}, {task
a
D′[R]}) | D,D′ ∈ D ∧D 6= D′ ∧D[r] ≃ D′[R] ∧ a ∈ A

}

Texec :=
{

e({taskaD[r]}, ∅) | D,D′ ∈ D ∧ a ∈ A
}

Fig. 2. Delegation, Split, Refinement, and Excution

We define T := Tdeleg ∪Tsplit ∪Trefine ∪Texec . Note, that the sets Tdeleg , Tsplit ,
Trefine , and Texec are pairwise disjoint.

Let t = op(X,Y) ∈ T , op ∈ {d, s, r, e}, then we define the flow relation F by
•t = X and t• = Y ,

The mapping α : P → A returns the owner of a task: α(taskaD[R]) := a. For
each t we define its ownership equal to the owner of the place in the preset. Then
all conflicts are agent-internal: ∀p ∈ P : ∀t ∈ p• : α(t) = α(p).

1 This is a slight modification of the definition in [6, 5], which allows that a transition t

is a delegation, split, and refinement at the same time. We have chosen this simplified
version for presentational purposes.

The places P and transitions T encode implicitly several aspects: the oper-
ation type, the ownership of tasks, and the agency of operations.

A Sonar-model is stratified in the sense that each node of organisation net
belongs to a specific level n. Assume we have (P, T ,F) as given above. We
assume that each Dwfn D ∈ D belongs to exactly one level n = n(D) and for
each p = taskaD[R] ∈ P we set its level to n(p) = n(D). Let Pn be the set of all
place with level n. Furthermore, we assume that for each t ∈ T the level does
not change, i.e. all the places p in •t ∪ t• belong to the same level. We define
the level of t ∈ T as the level of the surrounding places. Let Tn be the set of all
place with level n.

An organisation is a Petri net that contains some transitions of T and for
each transition the complete pre- and postset.

Definition 1. A organisation is a Petri net N = (P, T, F) with T ⊆ T , P =
•T ∪ T •, and F = F ∩ (P ∪ T)2.

The places in P 0 := ◦P := {p ∈ P | •p = ∅} are those tasks that the
organisation is responsible for, i.e. tasks that are generated externally.

Fig. 3. An Example Organisation Net

Figure 3 shows an example organisation net, where the agents (firm A, firm
B etc.) are indicated by the named boxes.

The stratification partitions the sets P and T , i.e. P =
⋃

n∈N
Pn and T =

⋃

n∈N
Tn. Similarily, each organisation N = (P, T, F) is decomposed into N :=

⋃

n∈N
Nn, where each Nn = (P ∩Pn, T ∩ Tn, F ∩ (Pn,∪Tn)

2) is the organisation
of level n.

The transitions in T are those operations that are explicitly allowed by the
organisation N . This does not mean that the operations in T \ T are forbidden
– some operations may become allowed whenever the organisation transforms.
To specify which operations are permitted or forbidden we define organisation
policies in Section 5.

2.3 Basic Transformations

We define two basic transformations: addt and delt where addt adds the transition
t ∈ T to the organisation N = (P, T, F) provided that the preset of t is already
part of N . Analogously, delt removes t and its postset:

addt(P, T, F) :=

{

(P ∪ t•, T ∪ {t}, F ∪ •t× {t} ∪ {t} × t•) if t 6∈ T ∧ •t ⊆ P

undef. otherwise

delt(P, T, F) :=

{

(P \ t•, T \ {t}, F \ (•t× {t} ∪ {t} × t•)) if t ∈ T

undef. otherwise

Then ATF := {addt, delt | t ∈ T } is the set of all atomic transformations. A
transformation is the composition τ = τ1; · · · ; τn of atomic transformations.

The level of a basic transformation addt or delt is defined as the level of t,
i.e. n(addt) = n(t) and n(delt) = n(t).

We now come to the org-work part: Each transition tD of a Dwfn D is
labelled with a basic transformation: λ(tD) = addt or λ(tD) = delt – or with
λ(tD) = ⊥ to indicate the absence of a transformation. The intended meaning
is that the execution of the Dwfn transition tD also executes the basic trans-
formation λ(tD). We will come back to this point in Section 3.

We require that the transformation inscription of each transition in D has
a level less than the level n(D) of the Dwfn D itself. Therefore, each firing
sequence w = t1 · · · tn of the Dwfn generates a sequence of transformations
λ(w) = λ(t1) · · ·λ(tn) and due to the level restriction on the λ(ti), i = 1..n we
obtain the property that the Dwfn transforms only lower organisation levels.

3 Team-Work and Org-Work

In the following we give a short explanation of the teamwork derived from a
Sonar-model: team formation, the team-Dwfn, team planning via negotiation,
and organisational transformations as show in Fig. 4. This is just a short sum-
mary - cf. [5] for details.

The processes described below are implemented by a specific middleware,
called Mulan4Sonar, which is parametrised by a concrete Sonar-model. The
generic part of the Mulan4Sonar-middleware is specified by a high-level Petri
net, namely a reference net. This is beneficial for two reasons: (1) the prototype
directly incorporates the main Petri net structure of the Sonar-model; (2) the
prototype is immediately functional as reference nets are directly executable
using the open-source Petri net simulator Renew [9] and we can easily integrate
the prototype into Mulan [10, 11], our development and simulation system for
MAS based on Java and reference nets.

Team Formation: Processes of the Organisation Net Team formation
for a given task taskaD[R], i.e. the assignment to a to implement D[R], is then
expressed as an execution sequence w from the initial marking m0 = taskaD[R]

Fig. 4. Interplay of team- and org-work in Sonar

to the empty marking m = 0, i.e. m0
w
−→ 0 assigns an executing agents to each

(sub-)tasks p.
Note, that the following refinement property holds for all task assignments:

Whenever we put a token on the place taskaD[R] then each reachable marking m

describes a refinement of D[R].
If Petri net processes (i.e. partially ordered runs) are used instead of se-

quences, then the net structure of the process can be used as the team’s inter-
action structure (for the formal definitions of “teams-as-processes” cf. [6]). Here,
only maximal processes are considered (i.e. we assume the progress property).

Assume that we have an organisation team OT , i.e. a process of the or-
ganisation net for the initial marking m0 = taskaD[R] together with the process
morphism φ. For each reachable place-cut C of OT define the Dwfn D(C) as
the composition of the role-components of the final transitions:

D(C) := ‖b∈CD(φ(b))[R(φ(b))]

Since each transition in the organisation N actually refines D[R], we obtain that
for each reachable place-cut C in a team OT the distributed workflow net D(C)
is a refinement of D[R]: D[R] ≃ D(C).

The Team-Dwfn Each team OT generates the team-Dwfn D(OT) that is
derived from the executing transitions, which are the maximal transitions in the
process net.

Each group member starts with its individual partial plan, which is an un-
folding of the team-Dwfn D(OT) with the property that all different branches

of the unfolding lead to the final state. The set of all partial plans of a workflow
N is denoted PP(N).

Assume that we have the team OT and its team-Dwfn D(OT). From OT

we can deduce which agents implements which role of the team-Dwfn: αOT :
R(D(OT)) → A maps each role r in the team-Dwfn to the agent of the team
that is assigned to r.

Team Planning: Group Plan Negotiation Each team generates a team-
plan via negotiation. In our formal setting, Petri net unfoldings are used since a
compromise can be easily characterised in terms of intersection of Petri nets –
which is not that easy for a sequential formalisation of partial plans.

A team OT defines a tree-like structure, i.e. a team consists of sub-team, etc.
Note, that the same agent can occur several times at different positions within
a team. We denote this tree as nested sets, which we denote by GOT .

Let G be some sub-group, i.e. a subset of GOT . During the negotiation each
group member g ∈ G (which is a group again) recursively calculates its local
partial plan πg. The intersection

⋂

g∈G πg of all these partial plans is not a partial
plan in general: If all group members reach the final state of the workflow via
different processes the intersection does not contain the final state at all.

For each G we define a group-plan πG as a partial-plan with minimal distance
to the intersection

⋂

g∈G πg of all the local plans: Let PP(N, (πg)g∈G, d) denote
the set of all partial plans such that we have to expand the intersection

⋂

g∈G πg

by at most d nodes.
The negotiation protocol is roughly the following: The hierarchical structure

of the team G induces a the set of sub-groups. The negotiation protocol selects
a sub-team G′ and an initial distance d. Then the agents within G′ compute a
non-empty approximating subset of PP(N, (πg)g∈G′ , d). Iteratively, these sets of
group-plans are combined to obtain an approximation for a “bigger” sub-group.
It is allowed to extend the distance d whenever this seems appropriate.

Finally, the group G = GOT is considered and we obtain the team-plan
πOT := πGOT

for the whole team.

Group Plan Effect: Transformations Each group plan πOT induces a trans-
formation λ(πOT) on the organisation. Therefore, we have a dynamics of the
organisation, i.e. org-work.

Each sequence w = t1 · · · tn of transition in the team-Dwfn D(OT) generates
the organisation transformation λ(w) : ORG → ORG:

λ(w) := λ(t1); . . . ;λ(tn) := λ(tn) ◦ · · · ◦ λ(t1)

We have already seen that due to the level restrictions on each λ(t) the trans-
formation λ(w) transforms only lower levels of the organisation.

There is another constraint for transformations that arises from the own-
ership within the team OT : From a given team OT we know the agent a =
αOT (r(tD)) that executes the team-Dwfn transition tD in the team plan. In

general, the executor can be different from the owner of a transformation, where
the owner is the agent that owns the manipulated t: α(addt) := α(t) and
α(delt) := α(t). But since agents are autonomous, agents cannot “manipulate”
each other. If one agents likes to transform t (i.e. add or delete it), but does not
own it, it has to negotiate with the owner about it. Therefore, we require that
the executor αOT (r(tD)) of a transformation λ(tD) is also its owner α(λ(tD)):

∀tD ∈ TD : λ(tD) 6= ⊥ =⇒ αOT (r(tD)) = α(λ(tD))

Definition 2. Assume that N is an organisation and OT is a team.
A firing sequence w = t1 · · · tn of the team-Dwfn D(OT) is a team-transformation

if each transformation is executed by the agent that owns it: ∀1 ≤ i ≤ n : λ(tD) 6=
⊥ =⇒ αOT (r(ti)) = α(λ(ti)).

A firing sequence is called applicable to the organisation N if the transfor-
mation λ(w) is defined for N .

We can extend these notions to partially ordered runs of a Dwfn. Whenever
we have two concurrent events e1 and e2 in the run, then we require that the
transformations λ(φ(e1)) and λ(φ(e2)) are independent and owned by the right
agent.

4 Formalisation of Org-Work by Meta-Organisations

The main problem of the negotiation process is to ensure that the transformation
generated by a team plan is applicable to the current organisation. The approach
taken here is to define meta-orgaisations. A meta-organisation net encodes in its
marking the current organisation and can “decide” which transformations (i.e.
addt and delt) are currently applicable. Therefore, a firing sequence of the team-
Dwfn is applicable iff it is enabled in the meta-organisation.

We can guarantee that the transformation generated by the team plan is
applicable to the organisation if we synchronise the team-Dwfn D(OT) with
the meta-organisation N̂P 0 . And during the negotiation, we do not construct a
partial plan for the team D(OT), but for the synchronous product of D(OT)
and the meta-organisation N̂P 0 . Then each team plan (more precisely: the subnet
that is obtained by restricting the process to nodes belonging to the team-Dwfn

D(OT)) fulfils the transformation constraints of Def. 2 by construction.
Here, we see the benefit to have an integrated model for team- and org-work:

Both are Petri nets, which allows a very simple definition of the synchronisation
as a net product.

In the following we define transformations as processes of another Petri net
N̂P 0 , called the meta-organisation. Assume a fixed universe (P, T ,F). We also
assume a set of places P 0 ⊆ P that contains all tasks that the organisation is
responsible for.

For each n ∈ N we define the meta-organisation of level n as N̂n = (P̂n, T̂n, F̂n)
to describe the possible transformation processes.

– We define the set of meta-places and the set of meta-transitions:

P̂n := {p̂ | p ∈ Pn} ∪ {ont, offt | t ∈ Tn}

T̂n := {activatet, deactivatet | t ∈ Tn}

– The meta-arcs for activatet are defined by:

•activatet := {p̂ | p ∈ •t}∪{offt} and activatet
• := {p̂ | p ∈ •t∪t•}∪{ont}

A token on p̂ is used to “activate” each transformation on t ∈ p•, i.e. each
transition activatet.
Each transition deactivatet reverts the activation transition:

•deactivatet := activatet
• and deactivatet

• := •activatet

– Since all the Pn and Tn are disjoint, so are the meta-organisations N̂n and we

can define their union, too: N̂P 0 :=
⋃

n∈N
N̂n :=

(

⋃

n∈N
P̂n,

⋃

n∈N
T̂n,

⋃

n∈N
F̂n

)

.

– The initial meta-marking m̂0 marks all meta-places offt and the task places
p̂ that the organisation is responsible for:

m̂0 := {p̂ | p ∈ P 0} ∪ {offt | t ∈ T }

Figure 5. shows the initial fragment of the meta-organisation N̂P 0 for the set
P 0 = {taskO1

PC [Prod,Cons]}.

Fig. 5. Fragment of the Meta-Organisation N̂P0 with P
0
= {taskO1

PC [Prod,Cons]}

The following proposition gives a characterisation of the reachable markings.

Proposition 1. Assume m̂0
ŵ
−→ m̂ for some ŵ = t̂1 · · · t̂n.

1. For all t ∈ T the places ont and offt are 1-safe, since m̂(ont) + m̂(offt) = 1.
2. For each p̂ ∈ P̂ we have: m̂(p̂) = 1P 0(p) + |I+(ŵ, p̂)| − |I−(ŵ, p̂)|

where
I+(ŵ, p̂) := {i ∈ {1..n} | t̂i = activatet ∧ t ∈ •p}
I−(ŵ, p̂) := {i ∈ {1..n} | t̂i = deactivatet ∧ t ∈ •p}

.

Induced Organisation The meta-places ont are used to “link” an organisa-
tion and its meta-organisation: We obtain an organisation by selecting those
transitions t that are activated by a token on ont.

Definition 3. Let N̂P 0 be a meta-organisation and m̂ ∈ RS (N̂P 0 , m̂0) a reach-
able marking. The organisation induced by m̂ is N(m̂) := (Pm̂, Tm̂, Fm̂), where
Tm̂ := {t ∈ T | m̂(ont) = 1}, Pm̂ = P 0 ∪ •Tm̂ ∪ Tm̂

•, and Fm̂ = F ∩ (Pm̂ ∪ Tm̂)2.

In Sonar, we use meta sequences ŵ to encode organisations, since each firing

sequence ŵ ∈ T̂ ∗

n starting in m̂0, i.e. m̂0
ŵ
−→ m̂, generates an organisation net in

a natural way: N(ŵ) := N(m̂).
The following shows that construction N(·) is injective:

Lemma 1. Let N be an organisation net and N̂P 0 a meta-organisation. When-
ever there is a meta-marking m̂ such that N = N(m̂) holds, then m̂ is uniquely
defined.

Proof. Assume that there are two reachable meta-markings, say m̂1 and m̂2 with

m̂0
ŵ
−→ m̂1 and m̂0

ŵ
−→ m̂2, that both generate N , i.e. we have: N = N(m̂1) =

N(m̂1).
We know the invariance m̂(ont) + m̂(offt) = 1 for all reachable markings m̂.

Assume that m̂1 and m̂2 differ on some ont/offt pair. Then we have m̂1(ont) = 1
and m̂2(ont) = 0 (or vice versa) and t ∈ TN(m̂1), but t 6∈ TN(m̂2) and therefore
N(m̂1) 6= N(m̂2).

Since m̂1 and m̂2 agree on each ont/offt pair, we know that for each t we
have the same balance in ŵ1 and ŵ2:

|ŵ1|activatet − |ŵ1|deactivatet
= |ŵ2|activatet − |ŵ2|deactivatet

Since this implies |I+(ŵ1)| − |I−(ŵ1)| = |I+(ŵ2)| − |I−(ŵ2)|, we know that
1P 0(p) + |I+(ŵ1, p̂)| − |I−(ŵ1, p̂)| = 1P 0(p) + |I+(ŵ2, p̂)| − |I−(ŵ2, p̂)| and by
Prop. 1 we have m̂1(p̂) = m̂2(p̂) for each p̂. 2

The Meta-Organisation as a High-Level Net In Mulan4Sonar we model
the meta organisation as a a high-level Petri net. Figure 6 shows the Renew-
based model for the meta organisation net. The place meta places contains all
tokens of the form p̂. The place actions contains all tokens of the form ont.
Due to the invariant m̂(ont) + m̂(offt) = 1 the marking of offt can represented
implicitly by looking for absent tokens of the form ont. The transition add action
is enabled whenever there is one token p̂ on meta places such that •t = {p} (which
is specified by the inscription act = [type, task, tasks]) and no token of the form
ont on actions. Note, that the arc from actions to add action is an inhibitor arc.
Whenever add action fires, it generates the action, i.e. puts the token ont on
the place actions and foreach p ∈ t• one token p̂ on meta places. Note, that the
arc from add action to meta places is a so called flexible arc, which generates a
multiset of flexible cardinality.

Fig. 6. The High-Level Net Variant for the Meta Organisation Net (Fragment)

Induced Transformations Each meta-transition induces a transformation. In
the following we show that for m̂1

ŵ
−→ m̂2 the organisation generated from a

meta-marking, i.e. N(m̂2), coincides with the organisation obtained from the
induced transformation, i.e. τ(w)(N(m̂1)).

The transformation induced by the meta-transition t̂ is τt̂, which defined as:

τt̂(N) =

{

N(m̂′), if ∃m̂, m̂′ : m̂ ∈ RS (N̂P 0 , m̂0) ∧N = N(m̂) ∧ m̂
t̂
−→ m̂′

undef., otherwise

Note, that Lemma 1 guarantees that τt̂ is well defined.
We extend the induced transformations to sequences of meta-transitions:

Define τ(t̂1···t̂n) := τt̂1 ; . . . ; τt̂n and τǫ = id .
We can formalise the correspondence of the induced transformations and

atomic transformations by defining the isomorphism h : (T̂ ∪{⊥})∗ → ATF ∗ by

h(activatet) = addt, h(deactivatet) = delt, and h(⊥) = id .

Each meta-sequence ŵ induces a corresponding transformation:

Lemma 2. Let m̂ be a reachable marking. Each meta-sequence ŵ = t̂1 · · · t̂n
induces a transformation τŵ which coincides with h(ŵ) on N(m̂):

m̂
ŵ
−→ m̂′ =⇒ τŵ (N(m̂)) = h(ŵ) (N(m̂))

Proof. The general proposition follows by induction over the length over ŵ.
The case n = 0 is clear, since τǫ̂ = id = h(ǫ). The induction step follows
form the definitions of the basic transformations addt and and delt: Whenever
t̂ = activatet, then τt̂ is equivalent to addt and whenever t̂ = deactivatet then τt̂
is equivalent to delt. 2

Conversely, each transformation τ induces a corresponding meta-sequence:

Lemma 3. Let the transformation τ = τ1; . . . ; τn be defined for the organisation
N and let N = N(m̂) for some m̂.

Then τ induces the meta-sequence h−1(τ) and h−1(τ) is enabled in m̂, i.e.

m̂
h−1(τ)
−−−−→ m̂′, and the generated organisations are equal: τ(N) = N(m̂′)

Proof. Similar to the proof above. 2

The relationship of transformations, organisations, and meta-organisation is
illustrated by the following diagram:

m̂
ŵ

−−−−→ m̂′

y

N(·)

y

N(·)

N = N(m̂)
τŵ−−−−→ N ′ = N(m̂′)

The product D(OT) ⊗αOT
N̂P 0 fuses each team-Dwfn transition tD with

λ(tD) = addt with a copy of the meta-transition activatet and each tD with
λ(tD) = delt with a copy of deactivatet.

5 Analysis of Organisation Transformations

In Sonar, policies are used to describe those properties that have to remain
invariant during reorganisation processes of the model.

The set of atomic propositions is AP = {P[t],O[t],F[t] | t ∈ T }, where P[t]
(O[t], F[t]) means that it is permitted (obligated, f orbidden) to perform the
basic operation t.

A policy Φ is a propositional logic formula with AP as the set of atomic
propositions. The set of all t occurring within the formula is denoted TΦ.

Usually, it is not possible to permit and forbid a at the same time. Analo-
gously, if there is an obligation to do t then t is usually permitted and not for-
bidden. Usually these constraints are encoded inside modal logic and the deontic
qualifiers are modelled as modalities. For simplicity reasons, we use propositional
logics and add a constraint for the truth assignment function instead.

Definition 4. An assignment of a policy Φ is a mapping v : AP → {0, 1} with
the property: v(F[t]) = 1 =⇒ v(P[t]) = 0 and v(O[t]) = 1 =⇒ v(P[t]) = 1 for
all t ∈ T . The set of all assignments is ASSIGN .

We are interested in the fact, whether a organisation is a model for a policy.

Definition 5. An organisation N is a model for a policy Φ (denoted N |= Φ)
whenever we have:

∀v ∈ ASSIGN : v(Φ) = 1 =⇒
(

∀t ∈ TΦ : v(O[t]) = 1 =⇒ t ∈ T

∧ v(P[t]) = 0 =⇒ t 6∈ T

∧ v(F[t]) = 1 =⇒ t 6∈ T
)

When we use a marked meta organisation (N̂P 0 , m̂) instead of N , then t ∈ T

in the definition above has to be replaced by m̂(ont) = 1.

Analysis Each organisation transformation has to preserve the organisational
policy, i.e. whenever N |= Φ holds and τ is a transformation, then τ(N) |= Φ

holds, too. Define the set of meta-markings that satisfy a policy Φ as:

SAT (Φ) := {m̂ ∈ RS(N̂P 0 , m̂0) | N(m̂) |= Φ}

Definition 6. The meta-organisation N̂ enforces the policy Φ if SAT (Φ) =
RS(N̂P 0 , m̂0).

But in almost all cases this property does not hold, and this is not always
problematic, since it is not necessary that each N(m̂) satisfy Φ after each step
of the team plan. It is only necessary that each N(m̂) satisfy Φ at the end of
the execution of the team plan.

We could formulate this property as follows: Assume that we have an ini-
tial model N = N(m̂0) that satisfies the policy Φ and the meta-marking m̂ is
reachable, i.e. N1 = N(m̂) might be the result of a transformation. Whenever
N1 does not satisfy the policy, the question arises whether it is possible to reach
a meta-marking m̂′ such that N1 = N(m̂′) satisfies Φ:

∀m̂ ∈ RS(N̂P 0 , m̂0) : ∃m̂
′ ∈ RS(N̂P 0 , m̂) : m̂′ ∈ SAT (Φ)

Whenever this is not the case, then we known that there exist some transforma-
tion which should be suppressed in all team-plans, because we can never repair
the situation. If the property holds, we know that each transformation can be
extended to one that satisfies the policy again.

When understood as a question for the meta-organisation the answer is
trivially “yes”, since each transformation in N̂ can be undone ad N̂ is revert-
ible. But of course it is undesired to reach a policy satisfying marking again,
by undoing all transformations. Therefore we exclude some (or all) deactivatet
from the analysis: For N̂ = (P̂ , T̂ , F̂) and Â ⊆ P ∪ T we define the subnet
(N̂ − Â) := (P̂ ∩ B̂, T̂ ∩ B̂, F̂ ∩ B̂2), where B̂ = (P ∪ T) \ Â.

Definition 7. The meta-organisation N̂ is stable w.r.t. the policy Φ if we have
for Â = {deactivatet | t ∈ T }:

∀m̂ ∈ RS(N̂ − Â, m̂0) : ∃m̂
′ ∈ RS(N̂ − Â, m̂) : m̂′ ∈ SAT (Φ)

Proposition 2. Assume, that A and D are finite sets.
Given a meta-organisation N̂ , it can be checked using standard model check-

ing techniques, whether the policy is enforced and whether the policy is stable.

Proof. Note, that whenever A and D are finite sets, then N̂ is finite, too, and
by Prop. 1 its state space is finite. Enforcement is a safety property and this can
be checked doing an exhaustive state space exploration.

Stability is a kind of liveness property and can be checked by computing the
strongly connected components (SCC) of the state space and checking whether
each terminal SCC contains an m̂ that satisfies Φ. 2

6 Conclusion

In this paper we studied the organisation-oriented perspective of multi-agent
systems and their transformations, which we named org-work as opposed to
team-work.

We defined the dynamics of organisation models in the formalism of meta
nets. This explicit representation of the history of the model transformation
(understood by the meta-marking m̂) allows us a deeper insight in the possible
transformation that can arise as the byproduct of the teamwork.

Since we use the same formalism for team- and org-work, we can mix both
models and obtain an integrated view on the system. The negotiation protocol
directly benefits from this: During the negotiation, we do construct a partial plan
not only for the team D(OT), but for the synchronous product of D(OT) and
the meta-organisation N̂P 0 . This guarantees that the transformation generated
by a team plan π is always applicable to the actual organisation, which is a
non-trivial property to ensure by negotiation.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In Weiß, G., ed.:
Multiagent Systems. MIT Press (1999) 229–330

2. Dignum, V., ed.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global (2009)

3. Malsch, T.: Naming the unnamable: Socionics or the sociological turn of/to dis-
tributed artificial intelligence. Autonomous agents and multi-agent systems 4

(2001) 155–186
4. Köhler, M., Moldt, D., Rölke, H., Valk, R.: Linking micro and macro description

of scalable social systems using reference nets. In Fischer, K., Florian, M., Malsch,
T., eds.: Socionics: Sociability of Complex Social Systems. Volume 3413 of LNAI,
(2005) 51–67

5. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for
organisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. 5460 (2009) 98–114

6. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79 (2007) 415 – 430

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer-Verlag (2006)

8. Aalst, W.v.d.: Verification of workflow nets. In Azeme, P., Balbo, G., eds.: Appli-
cation and theory of Petri nets. Volume 1248 of LNCS (1997) 407–426

9. Kummer, O. et al.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: ATPN 2004. Volume 3099 of LNCS
(2004) 484 – 493

10. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In
Colom, J.M., Koutny, M., eds.: ATPN 2001. Volume 2075 of LNCS (2001) 224–241

11. Cabac, L., Dörges, T., Duvigneau, M., Moldt, D., Reese, C., Wester-Ebbinghaus,
M.: Agent models for concurrent software systems. In Bergmann, R., Lindemann,
G., eds.: MATES’08. Volume 5244 of LNAI (2008) 37–48

