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Abstract. Although logic diagrams are widely used as methods for introducing
students to elementary logical reasoning, it is still open to debate in cognitive
psychology whether diagrams can aid untrained people to successfully conduct
deductive reasoning. In our previous work, some empirical evidence was pro-
vided for the effectiveness of a certain type of logic diagrams in the process of
solving categorical syllogisms. However, the question of why certain diagrams
but not others have such inferential efficacy in performing syllogism reasoning
has not been fully answered. Based on a proof-theoretical analysis of categori-
cal syllogisms and diagrammatic reasoning, we supplement our previous study
of cognitive efficacy of diagrams and argue that the relational information under-
lying quantified sentences plays a crucial role in understanding the efficacy of
diagrams in syllogistic reasoning. The distinctive features of our conception of
diagrammatic reasoning are made clear by comparing it with the model-theoretic
conception of ordinary reasoning developed in the mental model theory.

1 Introduction

In logic teaching, Venn and Euler diagrams have been widely used as tools for introduc-
ing students to elementary logical reasoning, including set-theoretical and syllogistic
reasoning.3 However, in the literature of cognitive psychology of reasoning, it is still
open to debate whether external diagrams can aid logically untrained people to conduct
deductive reasoning in a successful way (see Scaife & Rogers [30] for an overview of
the work on external representations in cognitive science). Indeed, it is often claimed
that diagrams can only serve as an auxiliary source of information in deductive problem
solving. Thus, Larkin and Simon [14], in a seminal work on the efficacy of diagram-
matic representations in problem solving in general, argued that reasoning is largely
independent of ways of representing information, and hence, that diagrams are less
beneficial in reasoning than in such tasks as searching and recognition. Additionally,
previous studies reported empirical evidence for negative effects of traditional Euler di-
agrams on the performance of syllogistic reasoning (Calvillo, Deleeuw, & Revlin [4];

3 In fact, Leonhard Euler [7] introduced his diagrams to teach Aristotelian syllogistic logic to a
German princess.
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Rizzo & Palmonari [25]). Furthermore, although various systems of logic diagrams
have been proposed and studied using the methods of mathematical logic (e.g. Shin
[31]; Hammer [11]; for a survey, see Stapleton [34]), little attention has been paid to the
question of how effective such diagrammatic systems are in people’s actual reasoning.4

To improve this situation, we have studied how logic diagrams can support actual
deductive reasoning, focusing on the case of syllogistic reasoning supported by Euler
and Venn diagrams that are externally given to reasoners (Sato, Mineshima & Takemura
[26, 27]).5 Typical examples of reasoning tasks that we examined are shown in Figs.1
and 2.

All A are B.

No C are B.

A
B

C B

(Therefore, No C are A)

Fig.1 An example of a syllogistic reasoning
task with Euler diagrams

All A are B.

No C are B.

(Therefore, No C are A)

Fig.2 An example of a syllogistic reasoning
task with Venn diagrams

Euler diagrams represent set relationships in terms of inclusion and exclusion relations
between circles (see the diagrams in Fig.1). By contrast, Venn diagrams have a fixed
configuration of circles and represent set relationships by stipulating that shaded re-
gions denote the empty set (see the diagrams in Fig.2). In the experiments of Sato et al.
[26], subjects were divided into three groups, called the Euler group, Venn group, and
Linguistic group. The Euler group and Venn group were first provided with instructions
on the meanings of diagrams. A pretest was conducted to check whether the subjects
understood the instructions correctly. The Euler group was then asked to solve syllo-
gistic reasoning tasks in which subjects were presented with two sentential premises
together with two corresponding Euler diagrams, as in Fig. 1, and asked to choose a
valid conclusion. Similarly, the Venn group was asked to solve tasks like the one in Fig.
2. The Linguistic group was presented only with sentential premises and required to
choose a valid conclusion without any aid from diagrams. The results showed that (1)
the performance of the Euler and Venn groups was significantly better than that of the

4 A notable exception is important work on hyperproof by Stenning, Cox, and Oberlander [36],
where the effects of teaching elementary logic classes using Hyperproof methods, i.e., multi-
modal graphical and sentential methods, and a standard syntactic teaching method are com-
pared.

5 Although traditional syllogisms are less expressive than standard first-order logic, they are one
of the most basic form of natural language inferences and still important for investigating hu-
man reasoning. Indeed, syllogistic logics, considered as alternative logical systems to standard
first-order logic, have recently attracted increasing attention from logical and linguistic points
of view, for example, in the study of decidable fragments of first-order logic; see Moss [21]
and references given there.
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Linguistic group, and (2) the performance of the Euler group was significantly better
than that of the Venn group.

Sato et al. [26, 27] argue that the differences in performance between the three
groups can be explained on the basis of the distinction between two kinds of effi-
cacy, namely, interpretational and inferential efficacy. By interpretational efficacy we
mean the effects of diagrams on determining the correct interpretation of a sentence.
For example, sentence All B are A tends to be interpreted as equivalent to All A are
B.6 Diagrams can contribute to avoiding deductive reasoning errors due to such un-
intended interpretations of linguistic materials. For example, those who are presented
with diagrams representing All B are A as shown in Figs. 1 and 2 can immediately see
that the semantic information delivered is not equivalent to All A are B by virtue of
their form. Diagrams can also can play a crucial role in reasoning processes. We refer
to the efficacy of diagrams in reasoning processes themselves as “inferential efficacy”.
More specifically, when diagrams of a certain form are externally given, the process of
solving deductive reasoning tasks could be replaced with the syntactic manipulation of
diagrams.

It should be noted that in the experimental set-up of Sato et al. [26], subjects in
the Euler and Venn groups were given instructions on the meaning of diagrams, while
subjects in the Linguistic group were not. Then one might argue that the difference in
training could have had a major effect on differences in performance between the Euler
and Venn groups, on the one hand, and the Linguistic group, on the other. However,
such an objection can be avoided if a comparison is made between the Euler group and
the Venn group. The latter was also given substantial instructions and practice trials, yet
the result showed that the performance of the Euler group was significantly better than
that of the Venn group.

The hypothesis explored in Sato et al. [26] was that the difference in performance
between the three groups can be explained by assuming that Venn diagrams only have
interpretational efficacy, while Euler diagrams have both interpretational and inferen-
tial efficacy.7 That is, Euler diagrams not only contribute to the correct interpretations of
categorical sentences but also play a substantial role in the inferential processes of solv-
ing syllogisms. To substantiate this claim, Sato et al. [27] outlined a cognitive model
of syllogistic inferences that are externally supported by diagrams, assuming that both
(categorical) sentences and diagrams conventionally express semantic information, and
furthermore, that diagrams are syntactic objects to be manipulated in reasoning pro-
cesses. In Sato et al. [27], however, the semantic and syntactic (proof-theoretical) anal-
yses of categorical sentences and diagrams were left unspecified. Consequently, the
question of why certain logic diagrams, in particular, Euler diagrams, have inferential
efficacy in syllogism solving has not been fully answered. The rest of the present paper
is devoted to addressing this question. Building on the proof-theoretical study of cate-
gorical syllogisms and Euler diagrams in Mineshima, Okada and Takemura [19, 20], we

6 This is known as “illicit conversion error” in the literature; see, e.g. Newstead & Griggs [22].
7 Gurr [10] emphasizes that in addition to the process of combining information, the process

of extracting information from a diagram plays a role in diagrammatic reasoning. Sato, Mi-
neshima, and Takemura [28] examines differences in the cognitive process of extracting infor-
mation between Euler and Venn diagrams in some details.
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will analyze both syllogistic and diagrammatic inferences from a unified perspective,
which we call a relational perspective. Thus, the aim of this paper is to make a con-
nection between the logical study of syllogisms and diagrams in Mineshima et al. [19,
20] and the cognitive study of diagrams in Sato et al. [26, 27], and thereby to provide a
model of reasoning in which the experimental results of Sato et al. [26, 27] can be ex-
plained in a natural way. The key assumption is that both syllogistic and diagrammatic
inferences are decomposed as inferences with two primitive relations, i.e., inclusion and
exclusion. We claim that the efficacy of Euler diagrams in syllogistic reasoning derives
from the fact that they are effective ways of representing and reasoning about relational
structures that are implicit in categorical (quantified) sentences.

The formal study of logic diagrams in Mineshima, Okada and Takemura [20] also
sheds light on the question of how diagrams can contribute to judging that a given in-
ference is invalid in actual reasoning. It has been noticed in cognitive psychology of
reasoning that falsification tasks, including tasks that require a reasoner to judge that
there is no valid conclusion drawable from a given set of premises, are often difficult
for untrained people when inference materials are only presented in linguistic (senten-
tial) form. Interestingly, the experimental results in Sato et al. [26] showed that Euler
diagrams were particularly effective in supporting such falsification tasks of syllogistic
reasoning. We argue that the efficacy of Euler diagrams in falsification tasks is partly
explained by assuming that when such diagrams are externally given, the information
that there is no valid conclusion drawable from the premise diagrams can be obtained
in a direct way, specifically, by combining premise diagrams and extracting the rele-
vant relational information. This way of understanding diagrammatic reasoning can be
made clear by comparing it with model-based inferences such as those studied in the
mental model theory (e.g., Johnson-Laird & Byrne [13]), where the process of con-
structing a particular model plays a crucial role in checking the validity and invalidity
of an inference. By taking a closer look at the difference between the two conceptions
of inferences, we will point out that in reasoning with Euler diagrams, constraints on
unification processes of diagrams play an important role; furthermore, both processes
of proving and refuting a conclusion can be realized as a uniform process of syntactic
manipulation of diagrams.

This paper is structured as follows. In Section 2, we provide a preliminary back-
ground on a relational analysis of categorical syllogisms, originally provided in Mi-
neshima, Okada and Takemura [20]. In Section 3, we turn to the relational analysis of
Euler diagrams. In Section 4, our model of diagrammatic reasoning is compared with
that of the mental model theory. Finally, in Section 5, we give a summary of the discus-
sion.

2 Background: Categorical syllogisms as relational inferences

Categorical syllogisms are inferences concerned with quantificational sentences in nat-
ural languages. According to the traditional analysis in logic textbooks, such quantifi-
cational sentences are analyzed as formulas in first-order logic, i.e., formulas involving
quantification over individuals. Thus, All A are B is analyzed as ∀x(Ax → Bx) and Some
A is B as ∃x(Ax∧Bx), and so on. By contrast, according to the theory of generalized
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quantifiers (see Barwise & Cooper [2]), which is dominant in the field of natural lan-
guage semantics, quantificational expressions such as every, some, and no are analyzed
as denoting relations between sets. Thus, a universal sentence of the form All A are B is
semantically analyzed as expressing that A ⊆ B, where the determiner all corresponds
to the subset relation. Similarly, No A are B is analyzed as expressing that A∩B = /0,
where the determiner no corresponds to the disjointness relation.8 Proof systems for
such a relational semantics of quantificational sentences have been investigated in the
modern reconstructions of Aristotelian syllogisms (cf. Łukasiewicz [16]; Corcoran [6];
Smiley [33]) and in the recent development of natural logic (cf. Moss [21]). In these
studies, the relational structure of a quantified sentence is taken as a primitive logical
form; as a result, syllogistic inferences are formalized as a certain kind of relational
inference without reference to first-order quantifiers and individual terms.

Mineshima, Okada, and Takemura [20] present a simple proof system based on
two primitive relations, i.e., inclusion @ and exclusion ⊢⊣ for syllogistic inferences.9

The system is called a generalized syllogistic inference system and abbreviated as GS.
The inference system of GS is simple but expressive enough to represent categorical
syllogisms in a perspicuous way. In the rest of this section, we provide a brief overview
of the syntax of GS and then see how to formalize categorical syllogisms using inclusion
and exclusion relations of GS.

The language of GS is defined as follows. Terms of GS (denoted by X ,Y,Z, . . .)
are divided into singular terms (denoted by a,b,c, . . .) that correspond to proper names
like Socrates, and general terms (denoted by A,B,C, . . .) that correspond to common
nouns like philosopher. An atomic formula (denoted by P,Q, . . .) is of the form X @ Y
or X ⊢⊣Y , where X and Y are terms. A complex formula (denoted by P ,Q , . . .) is defined
as a set of atomic formulas, {P1, . . . ,Pn}. Intuitively, {P1, . . . ,Pn} means the conjunction
of atomic formulas, P1∧·· ·∧Pn. To simplify the notation, we usually omit the brackets.

The proof system of GS is shown in Fig. 3. A proof in GS has a tree form; it starts
with formulas of GS or Axioms (ax) and proceeds by one of the inference rules in Fig.
3.10 As we will see below, the crucial rules for representing categorical syllogisms are
the (@) and (⊢⊣) rules. A set-theoretical semantics of GS can be given in a natural way,
but to conserve space we omit it here. See Mineshima, Okada & Takemura [19, 20],
where soundness and completeness are established.

Now we turn to categorical syllogisms. A categorial sentence has one of the follow-
ing forms: All A are B, No A are B, Some A are B, and Some A are not B, where A and B
are distinct general terms. We assume that readers are familiar with what count as valid
inferences in categorical syllogisms.11 A translation (·)◦ from a categorical sentence

8 A strong argument against the traditional first-order analysis of natural language quantifiers
comes from the fact that proportional quantifiers such as most and half of cannot be properly
represented in first-order logic. See Barwise & Cooper [2].

9 The notation of ⊢⊣ is due to Gergonne [9], where symbols for some binary relations (the so-
called “Gergonne relations”) were introduced for the purpose of the abstract representation of
Euler diagrams.

10 The (C) rule allows us to infer a @ A (“a is A”) from A @ a (“Only a is A”) and a @ b (“a is
b”) from b @ a (“b is a”).

11 See Mineshima et al. [20] for discussion on so-called existential import.
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Axiom (ax): X @ X .
Inference rules:

X @ Y Y @ Z
X @ Z

(@)
X @ Y Y ⊢⊣ Z

X ⊢⊣ Z
(⊢⊣) X @ a

a @ X
(C)

P Q

P ∪Q
(+) P

Q
(−)

where in (+), P ̸= Q , and in (−), Q is a proper subset of P .

Fig.3 Proof system of GS

into a GS-formula is defined as follows.

(All A are B)◦ = A @ B

(No A are B)◦ = A ⊢⊣ B

(Some A are B)◦ = {c @ A, c @ B} for some c

(Some A are not B)◦ = {d @ A, d ⊢⊣ B} for some d

where c and d are arbitrarily chosen singular terms. The crucial point is that in GS
existential sentences are decomposed in terms of inclusion and exclusion.12 Given this
translation, all the valid inferences in categorical syllogism can be transformed into the
proofs in GS. Let us look at some typical examples. To begin with, syllogisms Barbara
(All A are B, All B are C. Therefore, No A are C) and Celarent (All A are B, No B are
C. Therefore, No A are C) correspond to the (@) and (⊢⊣) rules, respectively.

All A are B
A @ B

All B are C
B @C

A @C
(@)

All A are C

All A are B
A @ B

No B are C
B ⊢⊣C

A ⊢⊣C
(⊢⊣)

No A are C

Here, to make clear the translation between categorical sentences and formulas of GS,
we attach a categorical sentence with each assumption and conclusion. As a case in-
volving an existential sentence, consider a syllogism Darii (Some A are B, All B are C.
Therefore, Some A are C). This inference is simulated in GS as follows:

Some A are B
a @ A, a @ B

a @ A
(−)

Some A are B
a @ A, a @ B

a @ B
(−) All B are C

B @C
a @C

(@)

a @ A, a @C
Some A are C

(+)

As stated above, the formula “a @ A,a @ B” means the conjunction of a @ A and a @ B.
Hence, the (+) and (−) rules can be understood as corresponding to introduction and

12 This translation is similar to Aristotle’s alternative way of formulating categorical syllogisms,
known as ecthesis. See Łukasiewicz [16] for a modern reformulation of ecthesis.
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elimination rules of conjunction in standard natural deduction systems (i.e., the rule
which allows to infer P ∧ Q from P and Q and the rule which allows to infer P as
well as Q from P∧Q). By decomposing existential sentences in terms of inclusion and
exclusion, we can represent syllogisms like Darii without using some additional rules
specific to existential sentences; if we take existential sentences as primitive formulas
or define them from other formulas using sentential negation (e.g. some A are not B is
defined as not (all A are B)), we will need such additional axioms or inference rules. 13

It turns out that all the valid categorical syllogisms (with and without existential import)
can be simulated in GS; more specifically, they can be proved using the inference rules
(@), (⊢⊣), (+), and (−) only.14

If the relational information encoded by categorical sentences was transparent to
untrained reasoners, it would be much easier for them to solve categorical syllogisms.
However, the cognitive psychological studies of deductive reasoning accumulated so
far showed that this is not the case (see Sato et al. [26] and references given there).
For example, the fact that logically untrained people often interpret All A are B as
equivalent to All B are A indicates that the relational information A @ B is not directly
available to them. Similarly, the observed difficulties in solving categorical syllogisms
involving existential sentences (cf. Evans, Newstead & Byrne [8]) suggest that there is a
certain gap between ordinary ways of performing existential inferences and relationally
decomposed processes as indicated above.

3 Solving categorical syllogisms using diagrams

As mentioned in Section 1, there are two aspects in which diagrams can externally
support ordinary reasoning. Given the relational analysis of categorical syllogisms in
the last section, we can summarize the effectiveness of Euler diagrams in syllogistic
reasoning as follows.

1. Interpretation. Euler diagrams that are externally given to reasoners make explicit
the relational information contained in categorical sentences.

2. Inference. Then the process of combining premise information to draw a valid con-
clusion can be replaced by the process of manipulating diagrammatic objects and
extract the relevant relational information.

In what follows, we will concentrate on the inferential aspect in (ii). We start by ex-
plaining the representation system of Euler diagrams used in the experiment of Sato et
al. [26, 27], called the EUL system. The formal properties of this system are studied in
Mineshima et al. [19]. The exposition in this section is informal. More technical mate-
rial as well as a detailed discussion on the motivation behind the relational approach to
formalizing Euler diagrams can be found in Mineshima et al. [19].

13 See Łukasiewicz [16], Corcoran [6], Smiley [33], and Moss [21] for such proposals.
14 For a proof, see Mineshima et al. [20]. Conversely, all the proofs in GS that have syllogistic

formulas in premises and conclusion can be simulated in categorical syllogism. This means
that categorical syllogisms are faithfully embeddable into GS. In other words, although GS is
more expressive than categorical syllogism, the syllogistic fragment of GS proves all and only
the valid inferences in categorical syllogism.
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The EUL system is a simple representation system; diagrams are composed only
of circles and points and no syntactic device to express negation, such as “shading” in
Venn diagrams, is introduced. Following traditional Euler diagrams, the EUL system
represents quantificational sentences in terms of the spatial relationships between cir-
cles, in particular, inclusion and exclusion relations (see Fig. 1 in Section 1). In what
follows, we refer to diagrams in the EUL system simply as Euler diagrams.

In the EUL representation system, an Euler diagram D is abstractly defined as a set
of relations holding between objects in D. Based on this idea, a proof system for Euler
diagrams, called GDS, is developed in Mineshima et al. [19]. An alternative, standard
approach to formalization of diagrams is a “region-based” approach, where diagrams
are defined as a set of regions (e.g. Shin [31]; Hammer [11]).15 In our approach, there
are three kinds of relations to be distinguished:

(i) a circle or a point X is located inside a circle A, symbolically written as X @ A;
(ii) a circle or a point X is located outside a circle A, written as X ⊢⊣ A;

(iii) a circle A and a circle B partially overlap each other, written as A ◃▹ B.

In this symbolic notation, we use the same binary symbols as in GS for the relations in
(i) and (ii). Indeed, the abstract representations of diagrams can be naturally translated
into formulas of GS.

A deductive reasoning task generally requires us to combine the information con-
tained in premise sentences. Given a correspondence between Euler diagrams and cat-
egorical sentences, such a process of combining the premise information can naturally
trigger the process of unifying premise diagrams and extracting the relational informa-
tion. We will explain, by some typical examples, how our Euler diagrams can be used
in representing and reasoning about categorical sentences.

First, consider the case of the syllogism of the form: All A are B, No C are B;
therefore No C are A.

De
1

All A are B.

A
B

De
2

No C are B.

C B

s +Unification

De
3

C B
A

No C are A.

Fig.4 Solving a syllogism with Euler diagrams

Here the premise All A are B is associated with diagram De
1, where the relation A @ B

holds, and the premise No C are B is associated with diagram De
2, where the relation

15 A comparison of these two approaches from a logical point of view is found in Mineshima
et al. [18], where the region-based inference system is formalized as resolution calculus, in
contrast to the relation-based system formalized as a natural deduction system.
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C ⊢⊣ B holds. These diagrams make explicit the relational information contained in the
premise sentences. The operation of combining two diagrams De

1 and De
2 in Fig. 4 is an

instance of an application of the unification rule.16 In this case, the unification process
consists in identifying circle B and keeping all the relations holding on the premise
diagrams. The resulting diagram, De

3, has three relations: A @ B, C ⊢⊣ B and A ⊢⊣ C.
The first two are inherited from the premise diagrams De

1 and De
2, and the last one, the

exclusion relation A⊢⊣C, is created as a by-product of the unification process. As is seen
in Fig.4, this new relation A ⊢⊣ C corresponds to the sentence No C are A, and hence,
one can arrive at the valid conclusion of this syllogism.

An important characteristic of the unification process is that by combining the two
premise diagrams, one can almost automatically determine the semantic relation hold-
ing between the objects in question, without any additional operation. Such information
that is automatically inferred from the result of a diagrammatic operation is what Shi-
mojima [32] calls a “free ride”.

For the process of unifying diagrams, there are two constraints that determine the
spatial relationship between objects in the conclusion diagrams. Namely, for any circle
or point X and for any circle Y and Z,

(C1) if X is inside Y in one diagram D1 and Y is inside Z in another diagram D2, then X
is inside Z in the combined diagram D1 +D2;

(C2) if X is inside Y in one diagram D1 and Y is outside Z in another diagram D2, then
X is outside Z in the combined diagram D1 +D2.

In the example in Fig. 4, the relation A ⊢⊣C is obtained using (C2). Note that these two
constraints have counterparts in inference rules in GS: (C1) corresponds to the (@) rule
and (C2) to the (⊢⊣) rule.

The constraints (C1) and (C2) seem so natural and intuitive that even users who
do not have explicit training on diagrammatic reasoning can exploit them to draw a
correct conclusion without much effort. Theoretically, the inference rules (@) and (⊢⊣),
which are crucial for deriving valid syllogisms, are simulated in terms of the spatial
constraints, (C1) and (C2). Such a simulation can happen in actual syllogistic reasoning
with external diagrams. For example, a procedure using the (⊢⊣) rule, which licenses
us to derive A ⊢⊣ C from A @ B and B ⊢⊣ C, can be made manifest by perceiving the
spatial relationships between diagrammatic objects as seen in Fig. 4. We can then argue
that sentential (linguistic) premises themselves do not provide untrained reasoners with
specific procedures of solving syllogisms in terms of (@) and (⊢⊣), such as the ones
we saw in the last section; by contrast, Euler diagrams externally given provide the
reasoners with a concrete problem-solving procedure based on intuitive understanding
of such constraints as (C1) and (C2).

As a second example, let us look at a syllogism having no valid conclusion, which
is known to be particularly difficult for untrained reasoners (cf. Evans et al. [8]) and
hence deserves special attention.

16 The rule of unification plays a central role in the inference system for Euler diagrams devel-
oped in Mineshima et al. [20]. The system has another rule called deletion rule, which allows
to delete an object from a given diagram. For discussion on the relevance of deletion rule to
the cognitive process of information extraction, see Sato, Mineshima and, Takemura [28].
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All B are A.

De
1

B
A

No C are B.

De
2

C B

s +Unification

De
3

C
A

B

No valid conclusion.

Fig.5 Solving a syllogism with no valid conclusion using Euler diagrams

In the syllogism in Fig.5, sentence All B are A is associated with diagram De
1, where the

relation B @ A holds, and sentence No C are B is associated with diagram De
2, where

the relation C ⊢⊣ B holds. Again, by unifying these two diagrams, one can obtain the
conclusion diagram De

3. Note that in this case, neither constraint (C1) nor (C2) can be
applied. That is, none of the the inclusion and exclusion relations between circles A
and C (i.e., A @ C, C @ A, and A ⊢⊣ C) is inferable from the information conveyed by
the two premises. In such a case, one needs to put circles A and C in such a way that
they partially overlap each other, that is, A ◃▹ C holds. Note that such a convention of
partially overlapping circles is common to Venn diagrams; it enables us to handle partial
or indeterminate information in a relatively simple way.

To be more specific, the relevant rule is the following. For any circles X and Y ,

(C3) if none of the relations X @Y , Y @ X , or X ⊢⊣Y holds in the combined diagram, put
X and Y in such a way that X ◃▹ Y holds.

Using this rule, one can see that the relations holding on the conclusion diagram De
3 in

Fig. 5 are B @ A, B ⊢⊣C, and A ◃▹C. The fact that A ◃▹C holds in the conclusion diagram
indicates that no specific semantic information about terms A and C can be drawn from
the premises. This amounts to saying that there is no valid conclusion with respect to
A and C (except trivial ones such as A @ A) in this syllogism. Here again, we can see
that Euler diagrams associated with sentential premises play a dual role in the process of
checking the invalidity of a syllogism: first, they make explicit the relational information
underlying categorical sentences; second, the unification of premise diagrams using the
constraints (C1) and (C2) leads us to understanding what relational information can
be obtained in a given inference; when no particular inclusion or exclusion relation is
newly introduced by the unification, that is, when the situation is as described in (C3),
the reasoner can conclude that there is no valid conclusion of the inference.

The procedure of checking invalidity of inferences sketched here is remarkably
distinguished from the standard procedure in model-theoretic semantics, according to
which an inference is judged to be invalid if one can construct a counter-model in which
all the premises are true but the conclusion is false. Note that some existing proposals
using diagrams are also based on such an idea of counter-model constructions. Thus in
Lewis Carroll’s version of logic diagrams [5], an inference is invalid if it is impossible
to superpose all the premises and the negation of the conclusion; see Lear [15] for a
discusion. The diagrammatic procedure based on (C3) is distinctive in that it does not
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depend on any process of negating the conclusion; the information that there is no valid
conclusion with respect to the two terms in question can be obtained in a direct way,
via a process of unifying premise diagrams. An interesting point to note is that the pro-
cess of manipulating premise diagrams, more specifically, the process of unification, is
common to the tasks of checking validity and invalidity. In other words, not only proof
but also refutation is realized as a syntactic process of manipulating diagrams, rather
than as a process of constructing counter-models.

4 Comparisons with the mental model theory of reasoning

As mentioned in Section 1, it has been noticed in cognitive study of deductive reason-
ing that falsification tasks are often difficult when inference materials are presented in
natural languages (cf. Evans et al. [8]). As we argued above, our logic diagrams can
contribute to solving such falsification tasks by making available to users syntactic pro-
cesses of unifying diagrams. An interesting feature of such unification processes is that
premise diagrams themselves impose a constraint on the possible ways of unification,
so that by simply trying to unify the premise diagrams, the user can observe what re-
lations hold between the objects in the resulting diagram. In this respect, it is worth
noting that there is a difference between the underlying mechanism behind unification
processes of diagrams discussed in the last section and the reasoning mechanism behind
the mental model theory (e.g. Johnson-Laird & Byrne [13]), which is a dominant model
of linguistic (sentential) deductive reasoning in cognitive psychology.

According to the mental model theory, mental models are made up of tokens (i.e.,
elements of a set) and supposed to represent states of the world (cf. e.g., Bara, Buccia-
relli, & Lombardo [1]). For instance, sentence All A are B corresponds to a model in
which each token of set A is connected to a token of set B. Similarly for sentence All B
are C, in which case each token of set B is connected to a token of set C. As a crucial
step, such two premise models are integrated into a single mental model. In the present
example, we can finally obtain a model in which each token of set A is connected to a
token of set C. This model corresponds to the categorical sentence All A are C. Note
that not all tokens of set C are necessarily connected to some token of set A. By this
fact, we can confirm that All C are A cannot be a valid conclusion of this syllogism.
In general, difficulties in drawing a valid conclusion are measured by the number of
models that can be constructed from the integrated model.

As is suggested by this brief exposition, there is a certain similarity between pro-
cesses of solving syllogisms using Euler diagrams and reasoning processes with mental
models. Specifically, a unification process of Euler diagrams is very similar to an inte-
gration process of mental models, and both processes play a crucial role in deriving a
valid conclusion from given premises.

However, by taking a closer look at processes of invalidity judgements, we can
find that an important difference exists between the two conceptions. In the case of
syllogistic reasoning by mental models, processes of integrating mental models can be
performed without determining the relation between the tokens in question. That is,
alternative models are to be searched for after performing the process of integrating the
premise models. Thus, according to the theory presented by Bucciarelli and Johnson-
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Laird [3], the process of constructing alternative models from an integrated model is
constrained by a representational convention such as [a]. Bracketed token [a] indicates
that the set containing it is represented by this individual; no new tokens can be added to
the sequence with bracketed tokens. On the other hand, in the case of tokens without a
square bracket, new tokens can be added so that alternative models are constructed. As
an illustration, consider the case of a syllogism having no valid conclusion, as shown
in Table 1 (cf. Bucciarelli and Johnson-Laird [3], p. 260). Here, there are two premise
models corresponding to All A are B and All C are B. In the integrated model, then,
the relationship between set A and C is indeterminate; the integration process does not
require us to resolve such indeterminacy, in sharp contrast to the case of unification in
diagrammatic reasoning. Processes of adding the token “b” to this integrated model are
performed after the integration process. As a result, the integration process itself does
not constrain the ways of constructing alternative models; see Stenning & Oberlander
[35] for a related discussion.

Table 1 Representations by mental model theory for the syllogistic task from premises All A are
B and All C are B to the conclusion that there is no valid conclusion.

[a] b [c] b [a] b [c] [a] b [a] b
[a] b [c] b [a] b [c] b [c] b [c]

[a] b [c] [a] b
b [c]

All A are B All C are B
1st premise 2nd premise Integrated model Alternative model 1 Alternative model 2

On the other hand, the unification process of Euler (EUL) diagrams forces a user to
decide what relation holds between the terms in question. That is, the configurations of
diagrams constrain what relations (i.e., @, ⊢⊣, or ◃▹) are created in unifying the premise
diagrams. As is well known, such a characteristic of diagrammatic representations is
called specificity by Stenning and Oberlander [35]. In the case of syllogistic reasoning
with our Euler diagrams, the relevant constraints are (C1) and (C2); these constraints are
almost self-evident given intuitive understanding of inclusion and exclusion relations.
In the case of falsification tasks, in particular, such a constraint can increase the chance
of finding that the indeterminacy relation ◃▹ holds between the relevant objects, say, A
and C, that is, none of the relations A @C, C @ A, or A ⊢⊣C hold in the unified diagram.

It should be noted here that diagrams themselves are not models in the sense of
model theory but certain syntactic representations that are subject to model-theoretic
(set-theoretic) interpretations. In particular, if A ◃▹ C holds in a unified diagram, one
can readily construct a counter-situation to any of the relations A @ C, C @ A, and
A ⊢⊣ C. We may say that the potential to construct alternative models from diagrams
are presupposed in the process of unification, in particular, in the process of entertain-
ing a diagram containing the ◃▹-relation. It has been observed that the specificity of
diagrammatic representations often impedes reasoning; in particular, Shimojima [32]
aptly characterizes such a negative aspect of representations in terms of the notion of
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over-specificity. Interestingly, in the present case, the specificity of diagrams has a pos-
itive effect on the process of checking the invalidity of a syllogistic inference. That is,
the failure to apply constraints such as (C1) and (C2), i.e., the failure to create a mean-
ingful relation (@-relation or ⊢⊣-relation), can trigger the recognition that a given set of
premises does not have a (non-trivial) valid conclusion.

We can summarize that in the case of reasoning with Euler diagrams, the process of
entertaining alternative possibilities is presupposed, and implicitly triggered, in the pro-
cess of unifying premise diagrams, whereas in the case of reasoning with mental mod-
els, such a process is only conducted after the process of integration, without appealing
to visual constraints. In this respect, the two conceptions of combining the premise
information stand in striking contrast to each other.

5 Concluding remark

In the cognitive psychology of deduction, it has long been known that solving cate-
gorical syllogisms is a difficult task for those who are untrained in logic (cf. [8]). The
experimental results in Sato et al. [26] were consistent with this traditional view in that
they show the performance of the Linguistic group as much lower than that of the Eu-
ler and Venn groups. The question we asked is: how can diagrams that are externally
provided improve the performance of syllogism solving even for untrained people? To
answer this question, in Section 1, we distinguished between interpretational and infer-
ential efficacy of diagrams in the overall process of solving syllogisms. Now, given the
relational analysis of categorical syllogisms and Euler-style diagrammatic inferences
presented so far, we can elaborate and summarize the distinction in the following way.

First, concerning the interpretational side, the relational semantic information asso-
ciated with quantificational sentences is often not directly accessible to reasoners. Thus,
there is a tendency to interpret the sentence All A are B as equivalent to All B are A,
and Some A are not B as implying Some B are not A (called conversion error in Sectoin
1). Euler and Venn diagrams can then help reasoners realize the underlying seman-
tic relations implicit in categorical sentences in virtue of their spatial properties, more
specifically, in virtue of inclusion and exclusion relations between objects. Hence, such
external representations allow us to fix the intended relational interpretations of cate-
gorical sentences in syllogistic reasoning tasks, resulting in interpretational efficacy.

Second, concerning the inferential side, the manipulation of diagrams in the infer-
ential process is triggered without effort, if the spatial relations holding on external
diagrams are governed by natural constraints, i.e., constraints that depend solely upon
spatial properties of diagrams and hence are accessible even to untrained users. Further-
more, given the fact that a deductive reasoning task in general requires the reasoner to
assemble the information contained in the premises, the syntactic manipulations of dia-
grams could be spontaneously triggered when those diagrams are externally presented.
The essential steps involved in the manipulations of Euler diagrams are unification pro-
cesses, that is, those processes in which the inclusion and exclusion relations between
objects in the unified diagrams are effectively determined using the constraints (C1),
(C2), and (C3). Such a unification process is composed of steps in matching an object
(a circle or a point) with another object and determining the diagrammatical relation-
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ships between the other objects. Users can exploit the natural constraints of diagrams
and extract the correct procedure to apply from Euler diagrams themselves.

If these claims are correct, it would be expected that any diagram that can make ex-
plicit the relational information of a categorical sentence in a suitable way would be ef-
fective in supporting syllogistic reasoning. Sato and Mineshima [29] examines the case
of a linear variant of Euler diagrams, where set-relationships are represented by one-
dimensional lines, rather than by circles in a plane. The experimental results obtained
there indicated that the linear diagrams for syllogistic reasoning work as effectively as
Euler diagrams. This provides partial evidence that the effectiveness of external dia-
grams in syllogistic reasoning does not depend upon particular shapes such as circles
that are specific to Euler diagrams. Rather, what is crucial is the fact that diagrams can
effectively represent relational structures and aid reasoning about them.17

Such a comparison between reasoning with various forms of diagrams would pro-
vide further evidence to specify the semantic primitives of sentences used in reasoning
tasks, and thus contribute to making progress in understanding the nature of both lin-
guistic and diagrammatic inferential processes in human deductive reasoning. There
are various ways of extending our basic fragment of syllogistic logic; e.g., relational
syllogisms [24], syllogisms involving proportional quantifiers like most [21], and syllo-
gisms involving conjunctive and disjunctive terms [23]. Applications of our framework
to such extended syllogistic and diagrammatic inferences are left for future research.
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