
Facilitating Business Improvement by Information
Systems using Model Transformation and Metrics

Haruhiko Kaiya1,2, Shunsuke Morita1, Kenji Kaijiri1,
Shinpei Hayashi3 and Motoshi Saeki3,2

1 Dept. of Computer Science, Shinshu University, Nagano 380-8553, Japan
kaiya@shinshu-u.ac.jp

12KA110E@shinshu-u.ac.jp, kaijiri@cs.shinshu-u.ac.jp
2 National Institute of Informatics (NII), Tokyo 101-8430, Japan

3 Dept. of Computer Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan
saeki@se.cs.titech.ac.jp, hayashi@se.cs.titech.ac.jp

Abstract. We propose a method to explore how to improve business by intro-
ducing information systems. We use a meta-modeling technique to specify the
business itself and its metrics. The metrics are defined based on the structural
information of the business model, so that they can help us to identify whether
the business is good or not with respect to several different aspects. We also use a
model transformation technique to specify an idea of the business improvement.
The metrics help us to predict whether the improvement idea makes the busi-
ness better or not. We use strategic dependency (SD) models in i* to specify the
business, and attributed graph grammar (AGG) for the model transformation.

Keywords: Requirements Analysis, Strategic Dependency Model, Model
Transformation, Metrics

1 Introduction

To develop an information system supporting business, we typically perform the follow-
ing steps; 1) analyzing current business and construct its model, so called as-is model,
2) identifying the problems that lurk in the as-is model, 3) evolving the as-is model to
the to-be model that can solve the identified problems. In these steps, how to evolve the
as-is to the to-be is one of crucial topics because most intellectual activities of human
analysts are necessary to create the solutions of the identified problems. Although many
techniques and tools are available for supporting these steps, little supporting techniques
in the evolution of to-be models exist. For example, idea generation methods such as
Brain Storming are considered as a useful technique. Although they can help human
analysts to create the idea as solution of the problems, they are too general and weak to
support the evolution step more effectively. Activity based cost (ABC) method [1] eval-
uates as-is activities only from aspects of cost and time spent in executing them, while
Balanced scorecard [6] requires well skilled and experienced analysts to set up evalua-
tion criteria. Rather, best practices of the past evolutions allow the ordinary analysts to
create the to-be of higher quality with their less efforts and a technique to accumulate
and utilized the best practices is necessary. The purpose of this paper is to explore the
technique to formalize reusable best practices of how to create to-be models.



Many techniques and tools are related to modeling languages such as BPMN, Work-
flow Languages, the usages and the extension of UML diagrams, etc. Goal-oriented
Requirements Analysis (GORA) can be applied to describe an as-is model and a to-be
model of the business, and is useful to clarify its business goals. In [14], the authors
developed a language called i* which contains GORA, and used it to represent as-is
models and to-be in the organizational context. Almost all of these modeling languages
are essentially graphs with types and attributes. Thus, the evolution from an as-is model
to a to-be model can be considered as graph transformation and be formalized with
graph grammar. This paper proposes a technique to specify the evolution with Attribute
Graph Grammar (AGG) [12]. To specify types and attributes on graphs, we use a meta-
modeling technique. In addition, we should define metrics to detect the problems in an
as-is and the metrics can be defined on the meta-model. Our technique is for formalize
best practices in creating to-be models with graph grammar and metrics definitions and
accumulating them as reusable assets.

The rest of the paper is organized as follows. Section 2 is for preliminaries and we
explain the existing techniques that we use in this paper, i.e. an extended i* and a graph
re-writing system based on AGG. We use i* diagrams to represent as-is models and to-
be ones as examples. In section 3, we illustrate how to define metrics and graph trans-
formation as the evolution practices from an as-is model into a to-be model. Metrics
play an important role because they are used to select applicable and suitable transfor-
mation rules and to clarify which aspects on a to-be model can be improved. One of
the significant reasons why an information system is developed is to reduce human’s
responsibilities and efforts in achieving business goals by automating them. A Strate-
gic Dependency (SD) model of i* can represents responsibilities of the stakeholders to
goals, and this is a reason why we focus on SD diagram of i* in this paper. However, our
technique is not limited to SD diagrams and we can apply other diagrams by defining
metrics and graph grammar on its certain meta-model. Section 4 is for listing up related
works.

2 Preliminaries

In this section, we briefly introduce i* strategic dependency (SD) modeling and at-
tributed graph grammar (AGG) because our research in this paper uses these two tech-
niques.

2.1 i* SD modeling

Before specifying an information system introduced in business, we have to analyze
what kinds of goals human wants the system to achieve instead of human. For example,
a human secretary wants a meeting scheduling system to summarize schedules of all
staffs because he does not have to do it with the system. A modeling language i* strate-
gic dependency (SD) model [14] is useful for us to analyze it because a dependency
about the ownership and the responsibility for each goal is clearly represented. In i*, an
as-is model is used for specifying current dependencies in business, and a to-be model
is used for specifying expected dependencies in the business normally with information



Meeting
Initiator

Possible
Meeting Dates

Reported

goal:1actor:1

actor:2 Vacant
Schedule
Submitted

Participant

goal:2 actor:3

Secretary

goal:1

goal:2

goal:5

Better
Wages
Wanted

Boss
goal:4

actor:5

Room 
Vacancy
Known

Resource
Management

Software

goal:3 actor:4

goal:3

He really wants to 
achieve the goal.

Actor:1 WANTS 
to achieve goal:1. 

It is hard to be achieved. 

It’s so easy to 
achieve the goal. 

Actor:2 CAN 
achieve goal:1. 

Customer

actor:10

Coffee
Served

goal:5

goal:4

w
c

cw

w

c

w
c

w c

<<node>>

isDangle = false
isHuman = true

actor:1 : Actor

rate = 5/5

<<relation>>

level = 5

: Want

<<node>>
goal:1 : Goal

rate = 5/5

<<relation>>

level = 5

: Can

<<node>>

isDangle = false
isHuman = true

actor:2 : Actor

rate = 10/10

<<relation>>

level = 10

: Want

rate = 3/10

<<relation>>

level = 10

: Want

<<node>>
goal:2 : Goal

<<node>>
goal:4 : Goal

rate = 10/10

<<relation>>

level = 10

: Can

rate = 10/3

<<relation>>

level = 3

: Can

<<node>>

isDangle = false
isHuman = true

actor:3 : Actor

<<node>>

isDangle = false
isHuman = true

actor:5 : Actor

rate = 10/5

<<relation>>

level = 5

: Want

<<node>>
goal:3 : Goal

rate = 5/10

<<relation>>

level = 10

: Can
<<node>>

isDangle = false
isHuman = false

actor:4 : Actor

<<node>>

isDangle = true
isHuman = true

actor:10 : Actor

<<node>>
goal:5 : Goal

rate = 9/7

<<relation>>

level = 7

: Want

rate = 7/9

<<relation>>

level = 9

: Can
<<relation>>

rate = 7/5
level = 5

: Can

<<node>>

isDangle = true
isHuman = true

actor:6 : Actor

Vending
Machine

actor:6

c

5
5

5

9

7
3

10

5 10

10
10

AHR=1.52
AHS=0.64

Fig. 1. An Example of an extended i* Model (top) and its Internal Representation (bottom). The
internal representation is based on the meta-model in Figure 2.

systems. The to-be model should be thus better than the as-is model with respect to
human actors in the to-be model.

To enable the model transformation in a SD model effectively, we extend the syntax
of the SD model, and the extended models partially violate syntax of the original SD
model [13]. The extended syntax will be explained in detail in the next section. Here
we explain how and why we extend the SD model by using an example in Figure 1 in
addition to the original syntax of the SD model.

A SD model consists of several pairs of an actor (called a depender), a goal and
another actor (called a dependee). In each pair, these two issues are modeled; an actor
wants to achieve a goal, and another actor can achieve the goal. Actor:1, goal:1 and
actor:2 at the top-left side in Figure 1 shows such a pair. We call a relationship between
the goal and an actor who wants to achieve the goal as a want-relation, and another



relationship between the goal and another actor who can achieve the goal as a can-
relation. We attach an attribute called “level” to the want-relation and the can-relation
respectively. The attribute takes a value from 1 to 10. When an actor really wants to
achieve a goal, the level of its want-relation takes large value. Otherwise, the level takes
small one. When an actor can achieve a goal almost completely, the level of its can-
relation takes large value. For example in Figure 1, the level of a want-relation between
actor:2 and goal:4 takes ten because the secretary (actor:2) really want to get better
wages (goal:4). However, the level of a can-relation between actor:5 and goal:4 takes
3 because it is hard for his boss (actor:5) to give better wages. Can-relations and want-
relations have another attribute called “rate”. The attribute will be explained in the next
section because the attribute is an intermediate attribute to calculate metrics of a SD
model.

We explain two attributes on actors: isHuman and isDangle. Both attributes take
Boolean value. Distinguishing human actors from other actors is important because one
of the policies of our model transformation is to minimize the responsibility of human
and to maximize the satisfaction of human. An attribute isHuman is used for this pur-
pose. In original i*, completely isolated actors such as actor:10 in Figure 1 are called
dangling actors, and such actors should not be contained in a model [13]. In our exten-
sion, we call any actors with true value in isDangle attribute as dangling actors such
as actor:10 and actor:6 in Figure 1. We then permit a model to contain such dangling
actors because we want to record potential alternatives of dependers and dependees in
the model so that we can easily explore another possibilities of actor dependencies. In
addition, we permit a goal to have more than one candidate of dependees in the same
reason. However, only one dependee has to have isDangle attribute as false and the
others has to have isDangle attribute as true even if a goal has more than dependees.
This constraint is defined as an OCL expression (context Goal) of the meta-model in
Figure 2. For example in Figure 1, goal:5 has two dependees actor:6 and actor:2, but
only actor:2 takes false value in isDangle.

Original i* has several types of goals (more precisely intentions) such as goals, soft-
goals, tasks and resources. However, we only use goals in our SD model. Goals in our
SD model can be used as goals and soft-goals in original i* because goals between a
can-relation with level 10 and a want-relation with level 10 can be regarded as goals
in original i* and others can be soft-goals. We mainly focus on very early stages of
requirements definition, but tasks and resources seem to be related to architecture and/or
implementation issues. We thus do not use tasks and resources in our model.

2.2 Graph Rewriting System

In Model Driven Development (MDD), one of the technically essential points is the
model transformation. Since we use a class diagram to represent a meta-model, a model,
i.e. an instance of the meta-model can be considered as a graph, whose nodes have
types and attributes, and whose edges have types, so called attributed typed graph. In
this paper, the model transformation is thus defined as a graph rewriting system, and
graph-rewriting rules dominate allowable transformations. Here we briefly introduce a
graph rewriting system.

A graph rewriting system converts a graph into another graph or a set of graphs
following pre-defined rewriting rules. There are several graph rewriting systems such



context Can
inv: rate == g.w.level/level

context Want
inv: rate == g.c->select(actor.isDangle==false)->collect(level)->sum() / level

context Goal
inv: c->select(actor.isDangle==false)->size()==1

context Metrics
inv:
noh.value == model.actor->select(isHuman && isDangle==false)->size()
ahr.value == 

model.can->select(actor.isHuman && actor.isDangle==false)
->collect(rate)->sum() / noh.value

ahs.value == 
model.want->select(actor.isHuman && actor.isDangle==false)
->collect(rate)->sum() / noh.value

Meta-Model
of SD model

Meta-Model of Metrics

+ isDangle : boolean
+ isHuman : boolean

<<node>>
Actor <<node>>

Goal

+ rate : float
+ level : int

<<relation>>
Can

+ rate : float
+ level : int

<<relation>>
Want

+ cs

+ actor

0..*

1 + g

+ c

1

1..*

+ ws

+ actor

0..*

1

+ g

+ w

1

1

0..*

SD model
+ actor

+ want

+ can

Metrics

+ value : float

AHR

+ value : float

AHS

- ahr - ahs- model

+ value : int

NumOfHuman

- noh

Fig. 2. Meta-model of a SD model and its Metrics

as PROGRESS [10] and AGG [12]. Since we should deal with the attribute values
attached to nodes in a graph, we adopt the definition of the AGG system in this paper.
An example of AGG can be found in Figure 3 explained in the next section.

3 Metrics and Transformation

We define a meta-model (grammar) of both a SD model and its metrics in Figure 2 to
facilitate effective model transformation on a SD model. An instance of a SD model is
shown at the bottom of Figure 1. Currently, we use two metrics called average human
responsibility (AHR) and average human satisfaction (AHS) with the help of a comple-
mentary metric called number of human actors (NumOfHuman) as shown in the figure.
The formal definitions of these metrics are shown as the OCL invariants in Figure 2.

We will show how to calculate these metrics by using a SD model in Figure 1 and
the intermediate values in Table 1. In the table, the values of Can.rate sum up for each
non-dangling actor respectively. For example, 5/5 and 7/9 are summed up for actor:2
because actor:2 can achieve two goals of goal:1 and goal:5 and Can.rate in can-relations
between actor:2 and each goal takes 5/5 and 7/9 respectively. The value of Can.rate



Table 1. Intermediate values for calculating AHR and AHS in a SD model in Figure 1. Nu-
mOfHuman.value is 4 in this model.

sum. of Can.rate sum. of Want.rate
actor:1 0 5

5

actor:2 5
5

+ 7
9

10
10

+ 5
10

+ 3
10

actor:3 10
10

0
actor:5 10

3
9
7

row total 5
5

+ 7
9

+ 10
10

+ 10
3

5
5

+ 10
10

+ 5
10

+ 3
10

+ 9
7

row total / 4 1.52 (= AHR.value) 1.02 (= AHS.value)

shows relative weight of responsibility with respect to expectation of a depender. For
example in Figure 1, actor:5 has to achieve goal:4, and actor:2 wants to achieve the
goal. In this case, Can.rate between actor:5 and goal:4 takes 10/3 (= 3.3). We may
regard actor:5 takes a really heavy responsibility about goal:4 because this value means
actor:2’s expectation is about three times as actor:5’s ability. On the other hand, actor:3
takes a reasonable responsibility about goal:2 because Can.rate between actor:3 and
goal:2 is 10/10 (= 1.0). The row total of “sum. of Can.rate” shows the total of such
responsibility. We finally divide the value of row total by the number of non-dangling
human actors, and we can get the AHR.value, 1.52 in this case.

How to get AHS.value is almost the symmetrical way above. The value of Want.rate
shows relative weight of satisfaction with respect to ability of a dependee. In our ex-
tended SD model, we permit a goal to have more than one dependee such as actor:6 and
actor:2 of goal:5 in Figure 1. However, we only use a non-dangling actor in such a case,
and our OCL (context Goal) guarantees there is only one non-dangling actor.

Because metrics AHR and AHS can be calculated from any SD model in confor-
mance with the meta-model in Figure 2, we can observe changes of these metrics during
any model transformation. We regard a model transformation is good when AHR de-
creases because systems make the responsibility of human to be decreased. We also
regard a model transformation is good when AHS increases because systems have to
increase satisfaction of human. Currently, we only have two metrics but we may append
any metrics that are useful to evaluate model transformation.

Figure 3 shows an example of a model transformation using AGG. The as-is model
in the figure is a part of the SD model in Figure 1. Three patterns of graphs such as
NAC, LHS and RHS in AGG correspond to a model transformation rule. When a part
of graph is matched to LHS and the part is not matched to NAC, the part is transformed
into RHS. Because each node in a graph pattern may contain variables and variables in
RHS can be defined based on variables in LHS, metrics and its changes can be naturally
represented in a model transformation rule written in AGG. In this example, AHR varies
from 0.388 (=0.7777/2) to 0, and AHS varies from 0.64 (=1.28/2) to 0.71. This model
transformation thus causes the reduction of the human responsibility and the gain of the
human satisfaction.



actor:5
actor:2goal:5

7 9

actor:5 actor:2goal:5

7

5 <<system>>
actor:6

1.28...

0.71...

NAC LHS RHS

A Transformation Rule

Before transformation

After transformation

Fig. 3. Example of a model transformation using AGG. An as-is model in this figure is a part of
the SD model in Figure 1.

4 Related Work

Activity-based Costing (ABC) [1] and Balanced Score Card (BSC) [6] are famous
methodologies to explore better to-be models of business, and they focus on several at-
tributes such as costs, performance, time, knowledge and so on. Such kinds of attributes
can be introduced in our SD meta-model, or our meta-models can be explicitly related
to other meta-models such as business process with such attributes. These methodolo-
gies are useful to explore problems of an as-is model, but to-be models are not explicitly
specified. In our method, the model transformation technique explicitly specifies such
to-be models.

We can find several researches for transforming as-is business process to to-be
one [9, 8, 4], and some of them use metrics for facilitating better transformation. Our
research mainly focuses on strategic dependencies that are earlier than processes with
respect to clarifying requirements. As mentioned in the previous section, the meta-
modeling technique enables us to make explicit relationships between early require-
ments (SD model) and other concerns such as process, architecture and implementation.
This explicit relationships and the separation of concerns help us to integrated and ratio-
nal decision for business improvement. Because transformation among such different
concerns is already proposed [2], it is not so difficult to define such relationships.

Original i* [14] has a lot of vocabularies such as a goal, a soft-goal, a task, a re-
source, an actor, an agent, a role, a position and so on. We however use only a goal
and an actor because these two are the fundamental elements of a SD model. There are
a lot of extensions of i* [5, 7, 11] and they have more vocabularies than original one.
Our method in this paper can be extended naturally according to each extension because
such extended vocabularies can be formalized by attributes attached to goals, actors, can
and want-relations. There are some researches about i* model using metrics (summary
can be found in [3]), but there are few ones focusing on changes of the metrics.



5 Conclusion
In this paper, we proposed a method to improve an as-is model of business by using
a model transformation technique and metrics on the model. We use i* SD model for
representing business models and AGG for model transformation. Currently, we only
focus on strategic dependencies among actors in business, but we have to take into
account more information such as business process, architecture, implementation and
so on. Our method can easily take into account such additional information because it
uses meta-modeling technique useful for make explicit relationships among different
aspects of the business. We want to extend our current meta-model including metrics in
such a way.

Acknowledgement This research is supported by Takahashi Industrial and Economic
Research Foundation, Japan, 02-001-A24-1009 and MEXT/JSPS KAKENHI Grant
Number 23500042.

References

1. Robin Cooper, Robert S. Kaplan, and Lawrence S. Maisel. Implementing Activity-Based
Cost Management: Moving from Analysis to Action. Inst of Management Accountants, Oct.
1993.

2. Ken Decreus, Monique Snoeck, and Geert Poels. Practical challenges for methods trans-
forming i* goal models into business process models. In RE, pages 15–23, 2009.

3. Xavier Franch and Gemma Grau. Towards a catalogue of patterns for defining metrics over
i*models. In CAiSE, pages 197–212, 2008.

4. Kaori Fujiwara, Bala Ramachandran, Akio Koide, and Jay Benayon. Business process trans-
formation wizard: a bridge between business analysts and business process transformation
technology. In IEEE SCC, pages 83–90, 2007.

5. Paolo Giorgini, Fabio Massacci, John Mylopoulos, and Nicola Zannone. Modeling security
requirements through ownership, permission and delegation. In RE, pages 167–176, 2005.

6. Robert S. Kaplan and David P. Norton. The Balanced Scorecard: Translating Strat-
egy into Action. Harvard Business School Press, Sep. 1996. http://www.
balancedscorecard.org.

7. Haralambos Mouratidis and Paolo Giorgini. Secure tropos: a security-oriented extension
of the tropos methodology. International Journal of Software Engineering and Knowledge
Engineering, 17(2):285–309, 2007.

8. Marion Murzek, Gerhard Kramler, and Elke Michlmayr. Structural patterns for the transfor-
mation of business process models. In EDOC Workshops, page 18, 2006.

9. Mariska Netjes, Hajo A. Reijers, and Wil M. P. van der Aalst. On the formal generation of
process redesigns. In Business Process Management Workshops, pages 224–235, 2008.

10. Andy Schürr. Developing graphical (software engineering) tools with progres. In ICSE,
pages 618–619, 1997.

11. Alistair G. Sutcliffe. Trust: From cognition to conceptual models and design. In CAiSE,
pages 3–17, 2006.

12. Gabriele Taentzer. Agg: A graph transformation environment for modeling and validation
of software. In AGTIVE, pages 446–453, 2003. http://user.cs.tu-berlin.de/
˜gragra/agg/.

13. Eric Yu, Jaelson Castro, and Anna Perini. Strategic Actors Modeling with i*, RE 2008 -
Tutorial, Aug. 2008.

14. Eric S. K. Yu. Towards modeling and reasoning support for early-phase requirements engi-
neering. In RE, pages 226–235, 1997.


